Способ спуска отделяющейся части ступени ракеты космического назначения



Способ спуска отделяющейся части ступени ракеты космического назначения
Способ спуска отделяющейся части ступени ракеты космического назначения

 


Владельцы патента RU 2475429:

Государственное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" (RU)
Российская Федерация, от имени которой выступает Министерство образования и науки Российской Федерации (RU)

Изобретение относится к ракетно-космической технике и может быть использовано для программного смещения координат точек падения отделяющихся частей (ОЧ) ступеней ракет космического назначения. Программу управления работой газовых ракетных двигателей и движением ОЧ ступеней ракет космического назначения разделяют на внеатмосферный и атмосферный участки. Участки разбивают на конечное число интервалов времени и определяют программу углового разворота и движения ОЧ на каждом интервале. Изобретение обеспечивает полную выработку жидких остатков компонентов ракетного топлива в топливных баках ОЧ, изменение и снижение точек падения ОЧ. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к ракетно-космической технике и может быть использовано для приведения отработавшего ускорителя - отделяющейся части первой (ОЧ) ступени ракеты космического назначения (РКН) в ограниченный район падения для уменьшения воздействия РКН на экологическое состояние района эксплуатации.

Известен способ спуска ускорителя РКН в посадочную зону по патенту RU №2043954, B64G 1/24 по заявке №5035363/23 от 01.04.1992 г., где ОЧ после отделения стабилизируют ОЧ двигателем вперед, осуществляют управление с помощью аэродинамических рулей в каналах тангажа и рыскания, устанавливают радиолокатор на борту ОЧ, радиомаяк в точке падения и т.д.

Использование такого технического решения сопряжено с техническими и эксплуатационными проблемами, которые, в конечном итоге, делают этот подход экономически затратным и нецелесообразным, по крайней мере, на современном уровне развития ракетно-космической техники.

Наиболее близким к предлагаемому техническому решению является способ возвращения на космодром многоразовой первой ступени ракеты по патенту RU №2309089, B64G 1/14 по заявке №2006110150/11 от 29.03.2006 г., где спуск ОЧ ступени РКН в район космодрома осуществляется за счет многократного включения маршевых и рулевых двигателей ОЧ первой ступени КРН.

Использование этого технического решения связано со значительными затратами жидких компонентов ракетного топлива (КРТ), проблемами многократного запуска маршевого ЖРД и т.д.

Целью предлагаемого изобретения является уменьшение воздействия РКН на экологическое состояние района эксплуатации путем повышения эффективности управления спуском ОЧ в заданный район ее падения и полной выработки остатков КРТ.

Поставленная цель изобретения достигается тем, что в известном способе спуска ОЧ, основанном на развороте ОЧ в статически устойчивое положение после ее отделения от РКН, приложении импульса к ОЧ, аэродинамическом торможении при спуске, добавляют следующие действия, а именно:

1.1. Программу углового движения (угла тангажа, рыскания) ОЧ на участке спуска после ее разворота на направления приложения импульса разделяют на участки внеатмосферного и атмосферного полета, движение на внеатмосферном участке траектории полета разбивают на конечное число Sвн интервалов времени, и программу углового разворота ОЧ на каждом i-м интервале времени (i=1, 2…Sвн) определяют из условия максимального изменения приращения дальности точки падения ОЧ в пассивном полете от конца i-го текущего интервала времени по формуле:

где

ΔVi - импульс скорости, приложенный под углом ϑi на i-ом интервале времени 4 рулевыми камерами газового ракетного двигателя (ГРД), y0, Vx0, Vy0, g0 - значения координаты, скоростей центра масс ОЧ и ускорения поля тяготения Земли на начало i-го интервала времени.

1.2. Движение на атмосферном участке траектории полета разбивают на конечное Sат число интервалов времени, и программу углового разворота ОЧ на каждом j-ом интервале времени (j=1, 2…Sат) определяют из условия создания аэродинамического момента, не превышающего, например, управляющий момент рулевых камер ГРД, условий прочности и т.д., и обеспечивающего максимальное изменение приращения дальности точки падения ОЧ в пассивном полете от конца текущего j-го интервала времени до точки падения ОЧ, которое определяют по формуле:

где y, Vxj, Vyjк, g - значения координаты скоростей центра масс ОЧ и ускорения поля тяготения Земли на конец j-го интервала времени.

1.3. Суммарную длину участков управления и соотношение их длительностей:

τI - длительность участков управления; - невыработанные остатки жидкого топлива в баках ОЧ, которые газифицируются и подаются в ГРД, каждая камера которого установлена в управляемый привод; - массовый секундный расход газифицированного топлива через ГРД определяют из условия достижения максимальной дальности точки падения ОЧ.

2. Сущность предлагаемых действий способа поясняется следующими материалами.

2.1. Разделение траектории полета ОЧ на участки управления приведено на фиг.1:

- Разворот ОЧ на направление разгона (поз.0-1),

- внеатмосферного (поз.1-2),

- атмосферного (поз.2-3).

На фиг.2 приведено размещение камер ГРД для отработки управляющих воздействий, каждая из которых установлена в управляемый одностепенной привод.

Для создания управляющих воздействий в канале тангажа (Mz1) камеры 8, 9 отклоняются в плоскостях, параллельных плоскости Y1O1X1.

Для создания управляющих воздействий в канале рыскания (My1) камеры 10, 11, отклоняются в плоскостях, параллельных плоскости X1O1Z1.

Для создания управляющих воздействий в канале крена (Mx1) используются все камеры 8-11.

Величина δL(1) для оценки величины приращения дальности полета (поз. 4, 5 на фиг.1) ОЧ от точки с координатами x0, y0, Vx0, Vy0 на участке разгона (поз. 1-2 на фиг.1) получена на основе аналитического решения системы уравнений, описывающего пассивный полет ОЧ при допущениях: g=g0=const (Земля плоская), атмосфера отсутствует (см. кн.1 Ю.Г.Сихарулидзе. Баллистика летательных аппаратов. М.: Наука, 1982, стр.69).

В соответствии с действиями предлагаемого способа осуществляется разделение траектории участка (поз. 1-2 на фиг.1) на Sвн интервалов времени Δτi. На каждом интервале времени Δτi с помощью ГРД прилагается импульс ΔVi.

С начальными условиями:

определяется дальность в пассивном полете ОЧ и, соответственно, приращение дальности (2), полученное за счет придания импульса ΔVi с ориентацией ϑi. Решая численно тригонометрическое уравнение (1), определяется оптимальное значение ϑiopt. Далее осуществляется переход к следующему интервалу времени Δτ2, и процедура определения ϑiopt повторяется до окончания участка разгона. Уравнение (1) в раскрытом виде из-за его громоздкости не приводится.

Условие максимума приращения дальности точки падения ОЧ используется при оценке возможности максимального смещения дальности точки падения ОЧ при полной выработке топлива (5).

2.2. Определение углового движения на атмосферном участке полета определяют по принципу, аналогичному определению углового движения на внеатмосферном участке со следующими отличиями:

- определение угловой ориентации ОЧ на каждом интервале времени Δτj на атмосферном участке полета ОЧ осуществляют в соответствии с формулой:

где α - значение оптимального угла атаки (скольжения), которое варьируется при определении ориентации ОЧ (6), например, последовательным перебором в интервале:

при этом должно удовлетворяться условие на всем интервале Δτj по прочности, тепловому нагружению, управляемости ОЧ:

- начало атмосферного участка управления (поз.2 на фиг.1) выбирают из условия максимального приращения дальности за счет аэродинамического маневра;

- с выбранным текущим значением угла атаки из (7) и тангажа (6) интегрируют полное уравнение движения ОЧ (кн.1, стр.100) на интервале времени Δτj;

- после окончания интегрирования при значениях координат и скоростей в момент окончания интервала Δτj с различными углами атаки осуществляют оценку изменения приращения дальности на основе аналитического решения (3).

Использование этого решения для проведения сравнительных оценок различных управлений на малых интервалах времени Δτj (до 10 сек) вполне приемлемо (поз.6, 7 на фиг.1).

2.3. Определение длительностей участков (4) и оптимального их соотношения осуществляют на основе итерационной процедуры при определении программ тангажа (рыскания) при оптимизации критериев, например, приращения дальности простым перебором значений ζ, например, в диапазоне: 0,1<ζ<1.

Условие (4) соответствует полной выработке остатков жидких КРТ, запасы которых могут достигать до 3% от начальных объемов заправок топлива ОЧ, и является одним из основных экологических требований к программе управления спуском ОЧ в район падения.

Реализация процесса выработки жидких остатков КРТ обеспечивается за счет их газификации с последующей отработкой импульса с помощью ГРД, что достаточно полно описано в литературе, например:

- Способ очистки отделяющейся части ракеты от жидких токсичных остатков компонентов ракетного топлива и устройство для его осуществления / патент RU №2359876. Опубл. 27.06.2009. Бюл. №18,

- Способ увода отделившейся части ракеты-носителя с орбиты полезной нагрузки и двигательная установка для его осуществления / патент RU №2406856. Опубл. 20.12.2010. Бюл. №35.

Дополнительными преимуществами предлагаемого способа управления спуском являются:

- возможность изменения координат точки падения ОЧ за счет использования энергетики, заключенной в невыработанных остатках жидкого топлива в баках;

- снижение разбросов точек падения ОЧ за счет управляемого спуска ОЧ ступени РКН даже в плотных слоях атмосферы;

- полная выработка жидких остатков КРТ в топливных баках ОЧ к моменту подлета в район падения.

Масса элементов конструкции, обеспечивающая реализацию данного способа, не превышает 0,5% массы сухой конструкции ОЧ.

На фиг.1, 2 приведены схемы, поясняющие действия способа.

1. Способ спуска отделяющейся части ступени ракеты космического назначения с жидкостным ракетным двигателем, основанный на развороте отделяющейся части после ее отделения от ракеты космического назначения в статически устойчивое положение, приложении импульса, использовании аэродинамического качества при спуске, отличающийся тем, что программу управления движением отделяющейся части ступени на участке спуска разделяют на внеатмосферный и атмосферный полет, движение на внеатмосферном участке траектории полета разбивают на конечное число Sвн интервалов времени и программу углового разворота отделяющейся части на каждом i-м интервале времени (i=1, 2…Sвн) определяют из условия максимального изменения приращения дальности точки падения отделяющейся части в пассивном полете от конца i-го текущего интервала времени по формуле:

где

ΔVi - импульс скорости, приложенный под углом ϑi, на i-м интервале времени 4 рулевыми камерами газового ракетного двигателя, y0, Vx0, Vy0, g0 - значения координаты, скоростей центра масс отделяющейся части и ускорения поля тяготения Земли на начало i-го интервала времени, движение отделяющейся части на атмосферном участке траектории полета разбивают на конечное Sат число интервалов времени и программу углового движения отделяющейся части на каждом j-м интервале времени (j=1, 2…Sат) определяют из условия создания аэродинамического момента, не превышающего, например, управляющего момента рулевых камер газового ракетного двигателя, условий прочности и обеспечивающей максимальное изменения приращения дальности точки падения отделяющейся части в пассивном полете от конца текущего j-го интервала времени до точки падения отделяющейся части, которое определяют по формуле:

где y, Vxj, Vyjк, g - значения координаты, скоростей центра масс отделяющейся части и ускорения поля тяготения Земли на конец j-го интервала времени.

2. Способ по п.1, отличающийся тем, что суммарную длину участков управления, на которых работает газовый ракетный двигатель, и их соотношение определяют по формуле:

где τi - длительность участков управления; - невыработанные остатки жидкого топлива в баках отделяющейся части, которые газифицируются и подаются в камеры газового ракетного двигателя, каждая камера которого установлена в управляемый привод; - массовый секундный расход газифицированного топлива через камеры газового ракетного двигателя, определяют из условия достижения максимальной дальности точки падения отделяющейся части.



 

Похожие патенты:

Изобретение относится к управлению движением изделий ракетно-космической техники. .

Изобретение относится к области ракетно-космической техники. .
Изобретение относится к контролю запуска маршевого двигателя (МД) разгонного блока (РБ) при выведении его на опорную орбиту после отделения от ракеты-носителя (РН). .

Изобретение относится к космонавтике и служит для полетов астронавтов в космосе. .

Изобретение относится к области реактивных двигательных установок, а именно к ракетным двигателям, и предназначено для управления малыми космическими аппаратами. .

Изобретение относится к космической технике и касается полетов в высоких слоях атмосферы и в космосе. .

Изобретение относится к системам жизнеобеспечения пилотируемых космических аппаратов (КА), оснащенных газореактивными системами ориентации. .

Изобретение относится к ракетно-космической технике, в частности к ракетам-носителям на жидком топливе. .

Изобретение относится к управлению космическим аппаратом (КА), в частности к управлению положением линии визирования при сближении и причаливании КА. .

Изобретение относится к ракетно-космической технике и касается ракетного разгонного блока и элементов его конструкции, предназначенных для его стабилизации и увода от отделившегося космического аппарата

Изобретение относится к ракетно-космической технике и может быть использовано в ракетах космического назначения (РКН) с многодвигательной первой ступенью

Изобретение относится к ракетно-космической технике, в частности к ракетам космического назначения (РКН) с жидкостными ракетными двигателями (ЖРД)

Изобретение относится к космической технике и может быть использовано для стыковки двух космических объектов, один из которых активный, а другой - пассивный

Изобретение относится к ракетно-космической технике. Способ управления движением ракеты-носителя на начальном участке полета заключается в отклонении качающейся части маршевого двигателя в заданной плоскости увода струи с учетом периодического вычисления командного сигнала на отклонение качающейся части маршевого двигателя ракеты-носителя в зависимости от программного угла, отклонения и скорости отклонения характерной точки ракеты-носителя от вертикальной оси пускового устройства, угла и угловой скорости тангажа ракеты-носителя и в одновременной стабилизации углового положения ракеты-носителя в плоскости, перпендикулярной заданной. Отклонение качающейся части маршевого двигателя осуществляют, принимая упомянутый программный угол отклонения качающейся части маршевого двигателя и коэффициенты усиления командного сигнала по отклонению и скорости отклонения характерной точки ракеты-носителя от вертикальной оси пускового устройства по заранее выбранным зависимостям от периодически измеряемой высоты подъема над горизонтальной плоскостью пускового устройства характерной точки ракеты-носителя, в качестве которой берут центр качания качающейся части маршевого двигателя. Достигается увеличение ресурса конструкции пускового устройства. 4 ил.

Изобретение относится к ракетно-космической технике с жидкостными ракетными двигателями (ЖРД), разгонным блокам и могут быть использованы при запуске двигательных установок (ДУ), когда остатки запасов жидкого топлива малы и не превышают 3% от начальной заправки. В способе увода отделяющейся части (ОЧ) ступени ракеты-носителя, основанном на газификации жидких остатков невыработанных компонентов ракетного топлива (КРТ) в баках окислителя и горючего, обеспечении тормозного импульса за счет их сгорания в камере газового ракетного двигателя (ГРД) и высокоскоростного истечения продуктов сгорания в космическое пространство, согласно изобретению для газификации невыработанных остатков КРТ используют твердотопливные газогенерирующие составы (ТГГС), причем в бак окислителя подают ТГГС с избытком кислорода, а в бак горючего - с недостатком кислорода, при этом химический состав и количество ТГГС при минимально возможных остатках КРТ определяют исходя из условий реализации заданной величины характеристической скорости: где - характеристическая скорость; - импульс, реализуемый за счет минимальных невыработанных остатков КРТ в баках ОЧ и ТГГС, необходимых для их газификации; - импульс, реализуемый только за счет сгорания в ГРД газов ТГГС. Устройство для реализации способа в виде двигательной установки (ДУ), включающей в свой состав топливные баки окислителя и горючего, систему наддува баков, газовый ракетный двигатель с системой питания и системой газификации остатков КРТ, причем ДУ снабжена твердотопливными газогенераторами, выходы которых соединены с устройствами ввода газа, снабженными пиромембранами, в соответствующие топливные баки с остатками жидких КРТ. Изобретение обеспечивает повышение эффективности использования жидких остатков КРТ в топливных баках на момент выключения маршевого ЖРД. 2 н. и 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к управлению движением космического аппарата (КА) при его выведении на орбиту искусственного спутника планеты с использованием аэродинамического маневра. На этапе аэродинамического торможения прогнозируют значения скорости КА, угла ее наклона к местному горизонту и высоты апоцентра переходной орбиты - на момент выхода КА из атмосферы планеты. При этом в каждый из последовательных моментов прогноза рассматривают движение КА на оставшихся участках полета в атмосфере при углах крена γ = 0 рад и γ = π. Для каждого из этих углов находят указанные выше прогнозируемые параметры маневра. Их значения используются при управлении углом атаки КА (вблизи его значения, отвечающего максимальному качеству) и выдачей импульса скорости КА в апоцентре переходной орбиты. Технический результат изобретения состоит в повышении эффективности аэродинамического маневра КА вследствие указанного управления. 1 ил.

Изобретение относится к реактивным средствам перемещения преимущественно в свободном космическом пространстве. Предлагаемое средство перемещения содержит корпус (1), полезную нагрузку (2), систему управления и не менее одной кольцевой системы сверхпроводящих фокусирующе-отклоняющих магнитов (3). Каждый магнит (3) прикреплен к корпусу (1) силовым элементом (4). Предпочтительно использовать две описанных кольцевых системы, расположенных в параллельных плоскостях («друг над другом»). Каждая кольцевая система предназначена для длительного хранения циркулирующего в ней потока (5) высокоэнергичных электрически заряженных частиц (релятивистских протонов). Потоки в кольцевых системах взаимно противоположны и вводятся в эти системы перед полетом (на орбите старта). К выходу одного из магнитов (3) «верхней» кольцевой системы прикреплено устройство (6) для выведения части потока (7) во внешнее космическое пространство. Аналогично производится выведение части потока (9) через устройство (8) одного из магнитов «нижней» кольцевой системы. Потоки (7) и (9) создают реактивную тягу. Устройства (6) и (8) могут быть выполнены в виде отклоняющей магнитной системы, нейтрализатора электрического заряда потока или ондулятора. Техническим результатом изобретения является увеличение энергоотдачи рабочего тела, создающего тягу. 1 н. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к аэрокосмической технике, а именно к летательным аппаратам (ЛА). ЛА содержит корпус, реактивные двигатели, блок управления подачи, воспламенения и истечения топлива, блок симметричных конусообразных камер сгорания, два блока выхлопных сопел, блок симметричных изогнутых выхлопных труб с оконечностью. Каждая камера сгорания жестко связана с соответствующим выхлопным соплом первого блока выхлопных сопел позади камер сгорания и жестко связана с соответствующим выхлопным соплом второго блока выхлопных сопел впереди камер сгорания. Каждое сопло жестко связано с размещенной впереди соответствующей изогнутой выхлопной трубой внутри корпуса, гидравлические входы которого блока симметричных изогнутых выхлопных труб связаны с соответствующими гидравлическими выходами блока управления. Изобретение позволяет уменьшить время полета до удаленных объектов, снизить количество потребляемой энергии. 1 ил.

Изобретение относится к управлению движением космического аппарата (КА). Согласно предложенному способу определяют тяги двигателей коррекции (ДК)(управляющих ускорений) по суммарным изменениям периода обращения КА от коррекции к коррекции. Последние проводят одними и теми же ДК и судят об уровне тяги этих ДК. Для достоверного знания тяг пары взаимно противоположных ДК время от времени проводят последовательные контрольные включения этой пары равными импульсами. Невязку по суммарному импульсу тяги вносят поровну с противоположным знаком в реализованные импульсы. В результате получают достоверные уровни тяг работавших ДК. Техническим результатом изобретения является уменьшение затрат и повышение точности определения тяги ДК по данным траекторных измерений, а также повышение точности коррекций орбиты КА.
Наверх