Способ измерения шероховатости поверхности в процессе электролитно-плазменной обработки

Изобретение относится к контрольно-измерительной технике и может быть использовано в машиностроении для контроля шероховатости поверхности электропроводных изделий, например, из нержавеющей стали в процессе электролитно-плазменной обработки. Сущность: прикладывают высоковольтное напряжение между обрабатываемой деталью, являющейся анодом, и катодом. Измеряют значения плотности тока j и высоковольтного напряжения U. Шероховатость поверхности в ходе обработки определяют по формуле: , где Rmin - минимально достижимая для используемого электролита шероховатость поверхности; R0 - начальное значение шероховатости поверхности обрабатываемой детали; t - время; j - плотность тока; U - напряжение; τ0 - среднее значение постоянной времени; k1, k2 - коэффициенты пропорциональности, зависящие от материала детали, природы и концентрации электролита. Величины τ0, k1, k2 вычисляют по семейству тарировочных кривых зависимости постоянной времени снижения шероховатости от напряжения U и плотности тока j. Технический результат: увеличение быстродействия измерения. 1 табл., 2 ил.

 

Изобретение относится к контрольно-измерительной технике и может быть использовано в машиностроении для контроля шероховатости поверхности электропроводных изделий, например, из нержавеющей стали в процессе электролитно-плазменной обработки. Способ позволяет определять шероховатость поверхности детали непосредственно в процессе ее обработки.

Известен способ измерения шероховатости поверхности электропроводящих изделий, заключающийся в том, что контролируемое изделие и измерительный электрод помещают в диэлектрическую жидкость, прикладывают высоковольтное напряжение и измеряют ток между ними, по величине которого определяют степень шероховатости [а.с. СССР №1474452, МКИ4 G01B 7/34. Публ. 23.04.89].

Недостатком аналога является невозможность использования его для определения шероховатости поверхности в ходе электролитно-плазменной обработки в связи с необходимостью прерывания процесса.

Известен способ измерения шероховатости поверхности электропроводящих деталей в процессе электролитно-плазменной обработки, заключающийся в том, что прикладывают высоковольтное напряжение между обрабатываемой деталью, являющейся анодом, и катодом. Измеряют ширину нормированного частотного спектра переменной составляющей тока разрядов по уровню среза, выбираемою из диапазона 0,2…0,5 в зависимости от рабочего напряжения. Определяют шероховатость по формуле

Ra=k·f+R0,

где Ra - шероховатость поверхности, мкм; k - коэффициент пропорциональности, зависящий от материала детали, природы и концентрации электролита; f - измеренная ширина спектра при определенном уровне среза, Гц; R0 - эмпирический параметр. При этом значения к и R0 вычисляют по тарировочной кривой зависимости шероховатости от ширины спектра [патент РФ №2133943, МКИ6 G01B 7/34. Публ. 27.07.99].

Недостатком данного аналога является необходимость измерения спектральной плотности сигнала переменной составляющей тока в ряде диапазонов частот для построения частотного спектра, определения его ширины и, соответственно, шероховатости поверхности.

Наиболее близким по технической сущности является способ измерения шероховатости поверхности электропроводящих изделий в процессе электролитно-плазменной обработки, заключающийся в том, что прикладывают высоковольтное напряжение между обрабатываемой деталью, являющейся анодом, и катодом и переменную составляющую тока подают на полосовой фильтр с граничными частотами 500-700 и 1300-1500 Гц, измеряют действующее значение напряжения на выходе фильтра u, рассчитывают начальное значение напряжения u0 путем усреднения значения и в течение 20-40 с от начала процесса, шероховатость в ходе обработки определяют но формуле

где u - текущее значение напряжения на выходе полосового фильтра;

u0 - начальное значение напряжения на выходе полосового фильтра;

Ra0 - начальное значение шероховатости обрабатываемой поверхности [патент РФ №2240500, МКИ6 G01B 7/34. Публ. 20.11.04].

Недостатком прототипа является недостаточное быстродействие, обусловленное тем, что первое измеренное значение шероховатости может быть получено только через существенный промежуток времени 20-40 с от начала электролитно-плазменной обработки, тогда как скорость изменения шероховатости на начальном этапе обработки имеет наибольшее значение, а вся длительность процесса в ряде случаев может составлять 30-60 с.

Задачей, решаемой заявляемым изобретением, является повышение быстродействия измерения шероховатости поверхности в ходе электролитно-плазменной обработки за счет исключения операции усреднения регистрируемых электрических параметров в течение 20-40 с от начала процесса.

Поставленная задача решается способом измерения шероховатости поверхности электропроводящих изделий в процессе электролитно-плазменной обработки, по которому прикладывают высоковольтное напряжение между обрабатываемой деталью, являющейся анодом, и катодом, согласно изобретению измеряют значения плотности тока и высоковольтного напряжения, а шероховатость в ходе обработки определяют по формуле:

где Rmin - минимально достижимая для используемого электролита шероховатость поверхности;

R0 - начальное значение шероховатости поверхности обрабатываемой детали;

t - время;

j - плотность тока;

U - напряжение;

τ0 - среднее значение постоянной времени;

k1, k2 - коэффициенты пропорциональности, зависящие от материала детали, природы и концентрации электролита,

а величины τ0, k1, k2 вычисляют по семейству тарировочных кривых зависимости постоянной времени снижения шероховатости от напряжения U и плотности тока j.

Существо способа поясняется чертежами. На Фиг.1 показан типичный характер изменения шероховатости Ra во времени t при начальной шероховатости R0 и минимально достижимой для используемого электролита шероховатости поверхности Rmin. На Фиг.2 показана типичная тарировочная кривая зависимости постоянной времени τ от высоковольтного напряжения U и плотности тока j.

Закономерность изменения шероховатости Ra (Фиг.1) имеет экспоненциальный характер и объясняется уменьшением степени воздействия парогазовой оболочки на обрабатываемую поверхность при сглаживании микронеровностей, что приводит к снижению скорости изменения шероховатости. Скорость снижения шероховатости по экспоненциальному закону характеризуется постоянной времени τ, на которую влияет прикладываемое высоковольтное напряжение U и характер воздействия парогазовой оболочки, который отражается в значениях плотности тока j.

Тарировочная кривая зависимости постоянной времени τ (Фиг.2) может быть описана функцией вида:

где t - время;

j - плотность тока;

U - напряжение;

τ0 - среднее значение постоянной времени.

Изменение напряжения U, связанное с нестабильностью напряжения питающей сети, и изменение плотности тока j, связанное с изменением шероховатости, с нестабильностью температуры электролита и его концентрации, а также с выработкой электролита, влияют на скорость электролитно-плазменной обработки при полировании поверхностей. Уравнение (2) учитывает указанные неопределенности и позволяет измерять шероховатость поверхности электропроводных изделий, например, из нержавеющей стали в процессе электролитно-плазменной обработки.

Пример конкретной реализации способа.

Образцы из стали 20X13 обрабатывали электролитно-плазменным методом в 5% растворе сульфата аммония при различных начальных шероховатостях поверхности, напряжениях и температурах электролита. Между поверхностью детали, являющейся анодом, и катодом прикладывали высоковольтное напряжение, измеряли плотность тока j и высоковольтное напряжение U, а шероховатость в ходе обработки определяли по формуле:

,

где Rmin=0,09 мкм,

при этом величины

τ0=0,072 мин;

k1=-5,296 мин·см2·A-1;

k2=0,0165 мин·B-1

вычисляли по семейству тарировочных кривых зависимости постоянной времени снижения шероховатости от напряжения U и плотности тока j, показанному на Фиг.2. Шероховатость поверхности измерялась также профилометром после обработки. Результаты приведены в таблице. Как видно из таблицы, незначительное расхождение рассчитанной (6-й столбец таблицы) и измеренной (7-й столбец таблицы) шероховатости свидетельствует о применимости способа.

Таким образом, заявляемое изобретение позволяет увеличить быстродействие измерения шероховатости поверхности в процессе электролитно-плазменной обработки за счет исключения операции усреднения регистрируемых электрических параметров в течение 20-40 с от начала процесса. Предлагаемый способ имеет простое техническое исполнение, не требует прерывания процесса и обеспечивает высокую точность измерений.

Способ измерения шероховатости в процессе электролитно-плазменной обработки
U, B T, °C Время t, мин Начальное значение шероховатости Ra 0, мкм Плотность тока j, А/см2 Рассчитанная шероховатость Ra, мкм Измеренная шероховатость Ra, мкм
1 2 3 4 5 6 7
250 70 3 0,32 0,39 0,18±0,02 0,15±0,02
300 80 6 0,33 0,27 0,16±0,02 0,13±0,02
350 90 9 0,35 0,19 0,15±0,02 0,16±0,02
250 70 12 0,60 0,36 0,11±0,02 (),12±0,02
300 80 15 0,49 0,24 0,11±0,02 0,14±0,02
350 90 15 0,49 0,20 0,12±0,02 0,15±0,02

Способ измерения шероховатости поверхности электропроводящих изделий в процессе электролитно-плазменной обработки, по которому прикладывают высоковольтное напряжение между обрабатываемой деталью, являющейся анодом, и катодом, отличающийся тем, что измеряют значения плотности тока и высоковольтного напряжения, а шероховатость в ходе обработки определяют по формуле:

где Rmin - минимально достижимая для используемого электролита шероховатость поверхности;
R0 - начальное значение шероховатости поверхности обрабатываемой детали;
t - время;
j - плотность тока;
U - напряжение;
τ0 - среднее значение постоянной времени;
k1, k2 - коэффициенты пропорциональности, зависящие от материала детали, природы и концентраций электролита, а величины τ0, k1, k2 вычисляют по семейству тарировочных кривых зависимости постоянной времени снижения шероховатости от напряжения U и плотности тока j.



 

Похожие патенты:

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике, а именно к устройствам измерения с помощью сканирующего зондового микроскопа рельефа, линейных размеров и физических характеристик поверхности объектов в режимах сканирующего туннельного микроскопа и атомно-силового микроскопа.

Изобретение относится к зондовой микроскопии, а именно к устройствам, обеспечивающим комплексные исследования сложных объектов при контроле и создании требуемой среды измерения.

Изобретение относится к измерительной технике и предназначено для измерения шероховатости наружной сферической поверхности детали. .

Изобретение относится к контрольно-измерительной технике, используемой при послеремонтном контроле поверхностей крупногабаритной трубопроводной арматуры /ТПА/. .

Нутромер // 2381440
Изобретение относится к измерительной технике и предназначено для использования в качестве устройства измерения линейных величин неровностей профиля поверхности внутренней полости трубы.

Изобретение относится к измерительной технике и предназначено для усовершенствования работы инструментов, измеряющих высоту рельефа поверхности, и для сертификации высотных стандартов.

Изобретение относится к машиностроению, а именно к области создания средств и методов бесконтактного измерения неровностей поверхностей, геометрических размеров, эксцентриситета и перемещений деталей машин и механизмов.

Изобретение относится к области сканирующей зондовой микроскопии. .

Изобретение относится к областям металлургии, производства материалов и может быть использовано преимущественно в листопрокатных технологиях. .

Изобретение относится к технической диагностике и может быть использовано для обнаружения дефектов поверхности катания колес железнодорожных транспортных средств в движении

Изобретение относится к машиностроению, в частности к способам изучения процесса износа поверхностей деталей машин. Сущность: подают ток на контактирующие детали, нагруженные в соответствии с реальными условиями эксплуатации. Регистрируют изменение силы тока в цепи во времени. Рассчитывают текущее значение общего сопротивления электрической цепи, используя зависимость для текущего изменения опорной контактной площади микронеровности, являющейся функцией изменения величины контактного сближения поверхностей. Определяют текущее значение силы тока по высоте микрорельефа. Задаются рядом значений моментов времени и определяют изменение величины контактного сближения поверхностей от времени (эксплуатационного износа) и изменение опорной контактной площади микронеровности от времени. Технический результат: расширение возможности исследования микрогеометрии поверхностей, возможность прогнозировать кинетику изменения микрорельефа в реальных условиях эксплуатации и сделать выводы о предпочтительности применения того или иного микрорельефа в реальных условиях эксплуатации. 6 ил.

Изобретение относится к измерительной технике. Устройство используют для контроля отклонения от прямолинейности поверхности боковой рабочей грани головки рельса в горизонтальной плоскости и поверхности катания головки рельса в вертикальной плоскости бесконтактным методом. Устройство автоматического контроля прямолинейности сварных стыков рельсов содержит корпус, механическую часть, торцевые панели, бесконтактные датчики базирования, датчики бесконтактного измерения расстояния до поверхности рельса и электронный блок. Механическая часть состоит из базирующих призм, закрытых с внешней стороны торцевыми панелями, которые имеют вырезы, соответствующие поверхностям, ответным контролируемым, между которыми установлены встроенные магниты. Каждая призма имеет опорные наконечники, контактирующие с контролируемыми поверхностями. Рядом с наконечниками расположены бесконтактные датчики базирования, сопряженные с электронным блоком. В центральной части корпуса между вспомогательными призмами расположены датчики бесконтактного измерения расстояния до поверхности рельса, сопряженные с электронным блоком, осуществляющим отображение отклонений от прямолинейности на аналоговых индикаторах и на графическом дисплее и хранение результатов отклонения в блоке памяти. Изобретение касается также способа использования этого устройства. В результате обеспечивается возможность получить наглядную и достоверную информацию, сокращается время, необходимое для контроля прямолинейности сварных стыков рельсов. 2 н.п. ф-лы, 10 ил.

Использование: для изготовления иглы кантилевера сканирующего зондового микроскопа. Сущность изобретения заключается в том, что для изготовления иглы кантилевера используют хрупкую прозрачную подложку, которую заполняют оптически прозрачной жидкостью и в горизонтальном положении укладывают в пластическую массу, которую периодически замораживают и размораживают. Затем с помощь источника света с направленным плоским световым потоком воздействуют на подложку, добиваясь появления микротрещин на подложке, которые впоследствии разрушают подложку, в результате чего происходит скалывание и образование иглы кантилевера. В качестве подложки можно использовать любой подручный хрупкий материал. Технический результат: повышение производительности и снижение материалоемкости при изготовлении иглы кантилевера со сверхострой вершиной. 3 з.п. ф-лы, 3 ил.

Данное изобретение относится, в целом, к области абразивной подготовки поверхности, а более конкретно к способам и устройству измерения профиля подготовленной поверхности. Заявленная группа изобретений включает способ измерения поверхности и устройство измерения поверхности. Причем способ содержит этапы, на которых осматривают множество образцов первой неровной поверхности обрабатываемой детали в двух измерениях, причем каждый из множества образцов имеет, по существу, одинаковый размер, определяют, на основе осмотров образцов, общее число выступов поверхности на каждом из множества образцов, получают предел допустимых отклонений из статистической изменчивости общего числа выступов поверхности на каждом из множества образцов, причем предел допустимых отклонений задается для указания условия выхода за допуск для общего числа выступов поверхности на второй неровной поверхности обрабатываемой детали, осматривают участок второй неровной поверхности обрабатываемой детали в двух измерениях, причем участок имеет, по существу, тот же размер, что и один из множества образцов, определяют, на основе осмотра участка второй неровной поверхности обрабатываемой детали, общее число выступов поверхности на участке и сравнивают общее число выступов поверхности на участке с пределом допустимых отклонений, чтобы определять, находится ли вторая неровная поверхность обрабатываемой детали в условиях выхода за допуск. Технический результат заключается в обеспечении способа и устройства измерения поверхности, посредством которых возможно проводить осмотр и измерение поверхности обрабатываемой детали, например, определять, находится ли профиль поверхности в пределах желаемых спецификаций, пределов допустимых отклонений или допусков, идентифицируя выступы и/или впадины на поверхности, а также возможно идентифицировать изменения и неровности поверхности, вызванные другими условиями, возникающими во время подготовки поверхности, такими как вибрация, температура, скорость колеса и т.п. 2 н. и 18 з.п. ф-лы, 7 ил.

Использование: для создания датчиков контроля толщины осадка в осадкообразующих жидкостях. Сущность изобретения заключается в том, что датчик контроля толщины осадка содержит электроды, выполненные в виде двух плоских гребенок, имеющих зубья и основание в виде плоских прямоугольников, соединенных между собой и нанесенных на плоское диэлектрическое основание датчика, зубья одной гребенки входят в зазоры между зубьями второй гребенки с образованием равномерно чередующихся зубьев и зазоров между ними, ширина зазора между зубьями равна ширине зуба, погружаемые в сосуд с жидкостью, образующей осадок, электроды включены в схему измерения емкости между этими электродами, где с двух диаметрально расположенных углов датчика установлены дополнительные электроды таким образом, что на каждом упомянутом углу располагаются по меньшей мере три плоских Г-образных электрода, при этом внутренний Г-образный электрод образован зубом и основанием соответствующей плоской гребенки. Технический результат: обеспечение возможности повышения точности измерений. 2 з.п. ф-лы, 4 ил.

Использование: для создания датчиков контроля толщины тонкопленочных диэлектрических материалов. Сущность изобретения заключается в том, что датчик контроля толщины тонкопленочных диэлектрических материалов содержит электроды, выполненные в виде двух плоских гребенок, имеющих зубья и основание в виде плоских прямоугольников, соединенных между собой и нанесенных на плоское диэлектрическое основание датчика, зубья одной гребенки входят в зазоры между зубьями второй гребенки с образованием равномерно чередующихся зубьев и зазоров между ними, ширина зазора между зубьями равна ширине зуба, при этом упомянутые электроды включены в схему измерения емкости между этими электродами, где с двух диаметрально расположенных углов датчика установлены дополнительные электроды таким образом, что на каждом упомянутом углу располагаются, по меньшей мере, два плоских Г-образных электрода, при этом внутренний Г-образный электрод образован зубом и основанием соответствующей плоской гребенки. Технический результат: обеспечение возможности повышения точности измерения. 2 з.п. ф-лы, 4 ил.

Изобретение относится к измерительной технике и предназначено для обнаружения дефектов поверхности катания железнодорожных колес в движении. Сущность: на участке пути на рельс на середине высоты устанавливают тензодатчики парами симметрично с двух сторон шейки рельса и ориентируют вертикально. В процессе движения колесной пары по измерительному участку определяют симметричные деформации и проводят их частотную фильтрацию в зависимости от скорости движения. Номер колеса определяют по количеству превышений порога селекции. Регистрируют локальные минимумы симметричных деформаций, определяют скорость и продольную координату колеса на рельсе, момент входа колеса в зону чувствительности пары тензодатчиков. Используя фильтрованные симметричные деформации и эталонные деформации, определяют вертикальную силу от колеса на рельс. При превышении силой ее критического значения колесную пару бракуют. Технический результат: повышение достоверности результатов контроля поверхности катания колес грузовых вагонов в движении для своевременного выявления дефектов за счет уменьшения влияния траектории движения колеса по поверхности катания рельса на параметры диагностических сигналов. 1 табл., 3 ил.
Наверх