Способ эксплуатации парогенератора типа "натрий-вода" атомной электростанции

Изобретение относится к атомной энергетике. Способ эксплуатации парогенератора типа «натрий-вода» атомной электростанции включает прокачку по замкнутым контурам водного и натрийсодержащего теплоносителей, подачу в водяной теплоноситель химических веществ. В качестве химических веществ используют летучие окислитель и щелочь. В период пуска парогенератора концентрацию окислителя и щелочи повышают до 0,5-1,0 мг окислителя/кг и 2-3 мг щелочи/кг, а в период его эксплуатации на номинальной мощности концентрацию летучих окислителя и щелочи снижают до заданного уровня. В качестве летучего окислителя используют газообразный кислород, перекись водорода или газообразную закись азота, а в качестве щелочи применяют аммиак. При выходе на номинальный уровень мощности парогенератора концентрацию окислителя и щелочи в водном теплоносителе снижают соответственно до 0,1 мг окислителя/кг и 0,05-0,08 мг щелочи/кг. Газообразную закись азота применяют в период снижения величины pH ниже нейтральной величины. Изобретение позволяет повысить эксплуатационную надежность парогенератора «натрий-вода». 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к атомной энергетике и может быть использовано в технологиях жидкометаллического (натрий) и водного теплоносителей атомных электрических станций (АЭС) с реакторами на быстрых нейтронах (РБН).

Известен способ снижения коррозии стальных труб парогенератора [Патент ФРГ №3227191, МКИ C23F 7/04. Опубликован 20.09.1984 г. Способ образования антикоррозионной оксидной пленки на стали].

Способ заключается в непрерывной дозировке в питательную воду и/или конденсатный тракт электростанции водного раствора гидразина N2H4, который попадает в парогенератор с питательной водой и там разлагается при нагревании до высокой температуры. Сущностью данного способа является то обстоятельство, что при непрерывной длительной дозировке в водяной контур гидразин постепенно стабилизирует защитную оксидную пленку магнетитовой структуры на стальных поверхностях, снижая тем самым скорость коррозии.

Недостатком известного способа применительно к парогенератору «натрий-вода» является усиление диффузии атомарного водорода коррозионного происхождения через стенки труб из пароводяного в натриевый контур, что приводит к загрязнению натриевого теплоносителя водородом до концентрации 0,8-1,0 ррm (мг/кг) [1].

На непрерывном измерении содержания водорода в натрии (как продукте взаимодействия натрия с водой) работает система аварийной защиты парогенератора (САЗ-ПГ) от течей воды в натрий. При превышении определенной концентрации водорода в натрии (0,35-0,40 ррm) САЗ-ПГ должна выключить из эксплуатации дефектную секцию парогенератора по натрию и по воде, не позволяя развития аварии парогенератора типа «натрий-вода». Следовательно, поступление диффузионного водорода в натрий снижает эксплуатационную надежность парогенератора «натрий-вода», так как может вызвать ложное срабатывание САЗ-ПГ по сигналу «течь воды». С другой стороны, рост содержания диффузионного водорода в натрии при недопущении ложного срабатывания САЗ-ПГ может замаскировать вероятную течь воды через дефектную трубку парогенератора. Не будучи своевременно обнаруженной и идентифицированной, течь воды (пара) в натрий может привести к разрушению секции парогенератора, а это является аварийной ситуацией, требующей немедленной остановки и отключения парогенератора и снижению мощности реактора с последующей длительной очистки натриевого контура от продуктов взаимодействия воды с натрием.

Наиболее близким к заявляемому способу является способ защиты от коррозии на электростанциях [Патент США №4564499. Method of inhibiting corrosion of carbon steel piping of condensate and feed water systems in power generating plants. Заявлен 29.10.1984 г., опубликован 14.01.1986 г. МКИ G21C 9/00]. Этот способ для защиты от коррозии сталей теплообменного оборудования в водной среде при простое энергоблока ТЭС или АЭС (при температуре 30-40°С) включает дозировку газообразного кислорода в чистую воду, циркулирующую в конденсатно-питательном тракте, минуя парогенератор или реактор. Растворенный в чистой воде кислород пассивирует стальные поверхности конденсатно-питательного тракта водяного контура, предотвращая тем самым коррозию при простое энергоблока ТЭС или АЭС. Данный способ позволяет не сливать водный теплоноситель из водяного контура при стоянке и тем самым не использовать дополнительные консерванты - ингибиторы коррозии, что дает экономию на химических реагентах и повышает экологичность электростанции.

Недостатком данного способа является то обстоятельство, что при пуске электростанции (то есть при подключении к водяному контуру парогенератора или реактора) циркулирующая вода в водяном контуре подвергается глубокому деаэрированию в деаэраторе и растворенный кислород удаляется из водяного контура с выпаром из деаэратора. Растворенный кислород не допускается в парогенератор или реактор из опасения снижения его эксплуатационной надежности парогенерирующих стальных поверхностей в водопаровой среде. Поэтому применительно к способу эксплуатации парогенератора «натрий-вода» данный способ обладает тем же недостатком, что и вышеприведенный аналог, а именно - в пусковых условиях при повышении температуры в процессе коррозии парогенерирующих поверхностей генерируется коррозионный водород, который диффундирует в натриевый теплоноситель через стенки труб.

Целью изобретения является исключение указанного недостатка, а именно снижение загрязнения натриевого контура водородом.

Для исключения указанного недостатка в способе эксплуатации парогенератора типа «натрий-вода» атомной электростанции, включающем прокачку по замкнутым контурам водного и натрийсодержащего теплоносителей и подачу в водяной теплоноситель летучего окислителя, предлагается:

- в контур циркуляции водного теплоносителя включить парогенератор «натрий-вода»;

- в контур циркуляции водного теплоносителя дополнительно подавать летучую щелочь;

- в период пуска парогенератора концентрацию окислителя и щелочи в питательной воде парогенератора повышать до определенного уровня, а в период его эксплуатации на номинальной мощности их концентрацию снижают до заданного уровня;

- в контур циркуляции водного теплоносителя дополнительно подавать летучую щелочь;

- в период пуска атомной электростанции концентрацию окислителя и щелочи в питательной воде парогенератора повышать до 0,5-1,0 мг окислителя/кг и 2-3 мг щелочи/кг, а в период его эксплуатации на номинальной мощности их концентрацию снижают до заданного уровня.

В частных случаях реализации способа предлагается:

- в качестве летучего окислителя использовать газообразный кислород, перекись водорода или газообразную закись азота, а в качестве щелочи применять аммиак;

- в период пуска атомной электростанции концентрацию окислителя и щелочи в водном теплоносителе повышать соответственно до 0,5-1,0 мг окислителя/кг и до 2-3 мг щелочи/кг, а при выходе на номинальный уровень мощности парогенератора концентрацию окислителя и щелочи в водном теплоносителе снижать соответственно до 0,1 мг окислителя/кг и 0,05-0,08 мг щелочи/кг;

- газообразную закись азота применять в период случайного снижения величины водородного показателя pH водного теплоносителя ниже нейтральной величины.

Сущность способа эксплуатации парогенератора типа «натрий-вода» атомной электростанции заключается в следующем.

Прокачивают по замкнутым контурам парогенератора водяной и натрийсодержащий теплоносители. Подают в водный теплоноситель летучий окислитель. В период пуска АЭС в контур циркуляции водного теплоносителя включают парогенератор и дополнительно в водный теплоноситель подают летучую щелочь. В период пуска АЭС концентрацию летучих окислителя и щелочи в питательной воде парогенератора повышают до 0,5-1,0 мг окислителя/кг и 2-3 мг щелочи/кг, а в период эксплуатации парогенератора «натрий-вода» на номинальной мощности концентрацию летучих окислителя и щелочи снижают до заданного уровня. В качестве летучего окислителя используют газообразный кислород, перекись водорода или газообразную закись азота, а в качестве щелочи применяют аммиак. При выходе на номинальный уровень мощности парогенератора концентрацию окислителя и щелочи в водном теплоносителе снижают соответственно до 0,1 мг окислителя/кг и 0,05-0,08 мг щелочи/кг. В период снижения величины pH водного теплоносителя ниже нейтральной величины (7,0) в качестве летучего окислителя применяют газообразную закись азота.

При пуске АЭС с РБН и дальнейшей эксплуатации на мощности, если в питательную воду парогенератора после деаэратора не добавляют летучий окислитель, то в парогенераторе существует источник поступления водорода в натриевый теплоноситель - катодный процесс с водородной деполяризацией при электрохимической коррозии парогенераторной стали в водном теплоносителе:

.

Если в питательную воду добавляют гидразин (в виде водного раствора гидразин-гидрата N2H4*H2O), то, по данным [1], в гидразин-содержащей водной среде дополнительным катодным деполяризатором электрохимической коррозии является ион гидразония N2H5+:

N2H4*H2O<-->N2H5++ОН-

.

Образующийся на поверхности стальных труб в водном теплоносителе катодный водород Hkat растворяется в стали и диффундирует через стенки труб в натриевый теплоноситель по механизму, описанному в [2]. В итоге натриевый теплоноситель загрязняется водородом.

При осуществлении предлагаемого способа в питательную воду парогенератора после деаэратора при пуске и дальнейшей эксплуатации парогенератора на мощности (то есть при прокачке натрий-содержащего и водного теплоносителей по контурам циркуляции) добавляют смесь летучих окислителя и щелочи, например аммиак и кислород, что ликвидирует источник поступления водорода в натриевый теплоноситель - катодный процесс с водородной или с гидразониевой деполяризацией при электрохимической коррозии парогенераторной стали в водном теплоносителе. Вместо кислорода можно использовать перекись водорода H2O2, так как водный раствор перекиси водорода при нагревании разлагается на воду и кислород.

Вместо водородной (1) или гидразониевой деполяризации (2) происходит процесс кислородной деполяризации в щелочной среде:

.

Добавка в водный теплоноситель летучей щелочи необходима для постоянного поддержания в воде щелочной среды, так как в реальных условиях эксплуатации пароводяного контура вероятно случайное поступление в конденсатную часть тракта потенциально-кислых веществ, например углекислоты из воздуха или продуктов истирания ионообменных смол из БОУ. Последние при их поступлении с водой в высокотемпературную часть водяного контура термически разлагаются до низкомолекулярных органических кислот, вызывающих снижение величины pH воды в кислую область, в которой растворенный в воде окислитель, например кислород или перекись водорода являются уже активатором коррозии стали парогенератора в воде ухудшенного качества. Присутствие аммиака предотвращает это нежелательное явление, так как аммиак химически нейтрализует кислые вещества. Временное ухудшение качества воды наиболее вероятно в переходные периоды работы энергоустановки, например при пуске АЭС на воде первичного заполнения пароводяного контура, а также при подключении БОУ. В период пуска атомной электростанции концентрацию окислителя и щелочи в контуре водного теплоносителя повышают до 0,5-1,0 мг окислителя/кг и 2-3 мг щелочи/кг, а в период его эксплуатации на номинальной мощности их концентрацию снижают до заданного уровня.

Концентрация в водном теплоносителе летучего окислителя (кислород, перекись водорода, закись азота) при пуске и эксплуатации парогенератора «натрий-вода» может быть высокой, но следует учитывать, что подпитка пароводяного контура летучим окислителем без верхнего ограничения его концентрации может вызвать при эксплуатации АЭС трудности.

Во-первых, в пусковых условиях и при эксплуатации оборудования пароводяного контура эжектора могут не обеспечить проектный вакуум в конденсаторе турбины при отсосе большого количества неконденсирующихся газов (т.н. «срыв вакуума»), что неизбежно приводит к снижению экономичности турбоустановки и АЭС в целом. Поэтому, например, для кислорода верхняя граница концентрации кислорода в водном теплоносителе не должна превышать его растворимости в водной фазе при температуре конденсации пара в конденсаторе (20-30°C), что составляет около 1 мг O2/кг (давление, или проектный вакуум, в конденсаторе турбоустановки поддерживается эжекторами на уровне 0,025 ата). А при использовании перекиси водорода следует учитывать, что, по данным работы [4], высокая концентрация летучего окислителя (например, перекиси водорода) может приводить к окислению ионитов БОУ и ухудшению качества конденсата по солям (контроль их содержания осуществляется по удельной электропроводимости) и органическим веществам. Поэтому, по данным работы [4], верхняя граница концентрации H2O2 должна быть не выше 1,0 мг/кг в течение не более 10 суток, то есть в период пуска и выхода на номинальный уровень мощности АЭС.

Во-вторых, длительное поддержание вышеуказанной концентрации летучих окислителей в водном теплоносителе на входе в парогенератор может привести к нежелательным процессам в пароперегревателе (в нем водяной пар после испарителя перегревается до 500°C), который изготавливается либо из феррито-перлитной стали типа 10Х2М (пароперегреватель в парогенераторе ПГН-272 на БН-800), либо из нержавеющей нестабилизированной стали типа Х18Н9 (пароперегреватель ПГН-200М на БН-600), а именно к окалинообразованию на поверхности феррито-перлитной стали [5], либо к коррозионному растрескиванию нержавеющей стали, что известно из практики эксплуатации [6]. Поэтому верхняя граница концентрации окислителя в воде-паре парогенератора (1,0 мг/кг) допустима только в пусковой период (2-3 суток) для быстрой и эффективной химической пассивации стальных парогенерирующих поверхностей и подавления образования коррозионного водорода. Затем, по мере набора мощности АЭС до номинального значения, концентрация летучего окислителя в воде-паре парогенератора должна постепенно снижаться до минимально необходимой величины, при которой не происходит повышения содержания водорода в натриевом теплоносителе. По эксплуатационным данным, полученным в тепловой энергетике [7], для подавления процесса коррозии пароперегревательных поверхностей парогенераторов, выполненных из легированных перлитных сталей, при длительной работе на номинальном режиме мощности достаточно поддерживать концентрацию окислителя в водном теплоносителе на уровне около 0,1 мг/кг.

Концентрация в водном теплоносителе летучей щелочи, например аммиака, может быть высокой - до величины pH=9,5-9,6 (2-3 мг NH3/кг), что также благоприятно для подавления коррозии стали с водородной деполяризацией в парогенераторе, особенно при пуске. Однако длительное поддержание такой концентрации аммиака неэкономично из-за непроизводительного балластирования катионита аммиаком в фильтрах БОУ, предназначенной для очистки конденсата турбины от присосов технической (циркуляционной) воды в конденсаторе. По мере балластирования катионита аммиаком катионит в фильтрах БОУ теряет ионообменную емкость, которая необходима для поглощения солей из присосов технической воды при вероятном разрыве трубки конденсатора. Кроме того, требуется его частая регенерация, что также неэкономично из-за повышенного расхода реагентов на регенерации и ведет к увеличению объема сточных вод АЭС, требующих нейтрализации и переработки. Результаты стендовых испытаний способа эксплуатации парогенератора «натрий-вода» показывают, что концентрация аммиака в воде может не превышать 0,05-0,08 мг NH3/кг (pH=8,0-8,5), что достаточно для совместного с летучим окислителем подавления коррозии с водородной деполяризацией конструкционных сталей парогенератора со стороны пароводяного контура и не вызывает трудностей в работе БОУ на АЭС.

В период пуска атомной электростанции концентрацию окислителя и щелочи в питательной воде парогенератора повышают соответственно до 0,5-1,0 мг окислителя/кг и 2-3 мг щелочи/кг.

При выходе на номинальный уровень мощности парогенератора концентрацию окислителя и щелочи в водном теплоносителе снижают соответственно до 0,1 мг окислителя/кг и 0,05-0,08 мг щелочи/кг.

При необходимости вместо кислорода и перекиси водорода можно использовать другой летучий окислитель - газообразную закись азота N2O, которая, также как и кислород, хорошо растворима в воде, но, в отличие от высших окислов азота, с водой не реагирует. Газообразную закись азота применяют в период снижения величины водородного показателя pH ниже нейтральной величины 7,0. При использовании закиси азота в качестве окислителя, процесс катодной деполяризации без образования водорода может происходить даже в кислой среде [3]:

,

что не происходит при использовании кислорода. Тем самым предотвращается процесс водородной деполяризации при случайном попадании в водный теплоноситель кислых и потенциально-кислых веществ, например CO2 при присосах воздуха в вакуумной части пароводяного тракта (конденсатор турбины). Растворимость закиси азота в воде при 25-30°C существенно выше растворимости кислорода (приблизительно в 25 раз), поэтому теоретически допустимая (по условиям поддержания вакуума) концентрация N2O в водном теплоносителе может быть высокой - до 25 мг N2O/кг. Но практически, в отличие от кислорода, постоянный сброс эжекторами турбины неконденсирующихся газов с примесью N2O в атмосферу негативно влияет на экологию [3] окружающей среды. Поэтому, исходя из практических соображений, концентрацию растворенной N2O в водном теплоносителе для гарантированного минимально-возможного отсоса ее из конденсатора эжекторами, желательно держать как минимум на порядок величины ниже ее теоретической растворимости в водяной фазе при конденсации пара в конденсаторе, то есть ниже 2,0-2,5 мг N2O/кг. Кроме того, испытания заявляемого способа эксплуатации парогенератора «натрий-вода» показали практически одинаковую эффективность окислителей при их одинаковой концентрации в водном теплоносителе в диапазоне 1,0-3,0 мг/кг. Поэтому, исходя из более высокой стоимости N2O по сравнению с кислородом (приблизительно в 40 раз), и во избежание непроизводительных потерь N2O с выхлопом эжекторов, целесообразно в пусковой период поддерживать концентрацию N2O в водном теплоносителе так же, как и при применении кислорода, не выше 1,0 мг N2O/кг.

Положительный эффект при осуществлении предлагаемого способа достигается за счет того, что процесс катодной деполяризации при использовании растворенного в воде окислителя идет без образования водорода, следовательно, снижается поступление водорода путем диффузии через стенки парогенератора в натрий.

Повышается надежность эксплуатации парогенератора и АЭС с РБН в целом, так как при пуске с пониженным содержанием водорода в натриевом теплоносителе более надежно работают системы защиты парогенератора от вероятных течей воды в натрий при разгерметизации парогенератора.

Отпадает необходимость длительной очистки натриевого теплоносителя в холодных ловушках, что связано с потерей тепла.

Предлагаемый способ может быть реализован на любом парогенераторе, обогреваемом натрий-содержащим теплоносителем на АЭС с РБН.

Применение именно летучих добавок (не осаждающихся в парогенераторе) к питательной воде парогенератора обусловлено прямоточной конструкцией парогенератора типа «натрий-вода» АЭС с РБН. На входе в парогенератор - вода, на выходе из парогенератора - перегретый пар, поэтому все нелетучие примеси, присутствующие в воде, в процессе парообразования концентрируются в водной фазе и отлагаются на греющих поверхностях, образуя слой отложений. Отложения нелетучих примесей ухудшают теплоотдачу и приводят к ряду других негативных последствий с точки зрения эксплуатационной надежности парогенератора - например, к локальной коррозии стали труб под отложениями.

Применение, кроме аммиака, других летучих щелочных веществ (морфолин, циклогексиламин, моноэтаноламин и других аминопроизводных) нежелательно, так как при высокой температуре в парогенераторе «натрий-вода» (до 500-550°C) они разлагаются (продуктами разложения являются CO2, CO, муравьиная кислота, водород и др. посторонние химические вещества), приводя к повышению электропроводимости водного теплоносителя, что ведет к усилению коррозии стали пароводяного контура.

Пример конкретного осуществления способа эксплуатации парогенератора типа «натрий-вода».

Предлагаемый способ был испытан на стенде с однотрубной прямоточной моделью парогенератора типа «натрий-вода», обогреваемом натриевым теплоносителем, см. Фиг.1.

Стенд состоит из: 1 - циркуляционный электромагнитный натриевый насос, 2 - нагреватель для натрия (аналог промежуточного теплообменника «натрий 1 контура - натрий 2 контура» АЭС с РБН), 3 - однотрубная модель парогенератора «натрий-вода» из стали 10Х2М, 4 - буферная емкость (компенсатор объема натрия), 5 - сливной бак, 6 - холодная ловушка для очистки натрия от гидридов и других примесей, 7 - система аварийной защиты, 8 - система измерения водорода в натрии (ИВА-1), 9 - проточный холодильник для ИВА-1, 10 - проточная емкость с натрием, 11 - циркуляционный водяной насос, 12 - подогреватель воды, 13 - система холодильников, 14 - ионообменные фильтры внутриконтурной очистки воды (аналог блочной обессоливающей установки БОУ), 15 - бак-дозатор химических реагентов в воду, 16 - насос-дозатор химических реагентов, 17 - насос промывочного контура рабочего участка, 18 - холодильник, 19 - компенсатор объема воды, 20 - защитный газ (аргон), 21 - бак подпитки водяного контура, 22 - насос подпитки водой водяного контура, 23 - газосборник со сбросом в атмосферу, I, II, III - пробоотборные точки водяного контура. Движение сред в рабочем участке противоточное (вода - снизу вверх, натрий - сверху вниз: как в реальном парогенераторе). Стенд оснащен необходимым количеством натриевых и водяных высокотемпературных вентилей и регулировочной арматурой. Стенд с рабочим участком пускается и выводится на номинальную мощность таким же способом, как и парогенератор «натрий-вода»: в исходном состоянии по натриевому и водяному контуру рабочего участка (модели парогенератора) циркулируют натрий и вода (давление воды Р=14,0 МПа) соответственно при температуре 250°C (по водяной стороне контур химической промывки отсечен вентилями). После доведения качества воды по примесям (очисткой на фильтрах 14) до пусковых нормативов в водяной контур дозируют водный раствор аммиака и перекиси водорода из бака 15 насосом 16 для создания в контуре необходимых их концентраций. Контроль их концентраций осуществляют отбором проб воды из пробоотборных точек I, II, III. Одновременно холодной ловушкой 6 устанавливается необходимая чистота натрия по водороду и другим примесям, контроль осуществляется по показаниям автоматического анализатора водорода в натрии ИВА-1 (поз.8). После очистки натрия до фонового значения концентрации водорода (приблизительно 0,04±0,01 ppm) производится непосредственно пусковое измерение при повышении мощности: включается дополнительный источник тепла 2 и начинается повышение температуры циркулирующего натрия и, через модель парогенератора, циркулирующего водного теплоносителя до номинальных параметров: натрия до 550°C, водяного пара до 500°C. Производится непрерывный контроль содержания водорода прибором ИВА-1 (поз.8). Испытания продолжаются до установления показаний ИВА-1.

На Фиг.2 приведены основные результаты испытаний при пуске и выходе на мощность модели парогенератора «натрий-вода».

Приведенная на Фиг.2 кривая изменения концентрации водорода в натрии демонстрирует достижение стационарной концентрации водорода в натрии (рост концентрации водорода за 15 часов только до 0,2 ppm) при дозировании в водный теплоноситель летучего окислителя (концентрация кислорода в питательной воде парогенератора 1,0±0,5 мг/кг) и летучей щелочи (концентрация аммиака в питательной воде парогенератора 2,5±0,5 мг/кг). Подавляется процесс водородной деполяризации при коррозии стали в водном теплоносителе. На пониженном фоне содержания водорода в натрии САЗ-ПГ от вероятной течи работает эффективно.

При вводе в водный теплоноситель смеси летучих окислителя и щелочи содержание водорода в натрии стабилизируется в течение 15 часов на величине 0,2 ppm. Причем стендовые испытания показали, что в период пуска парогенератора при концентрации летучего окислителя в питательной воде ниже 0,5 мг/кг снижается эффективность предлагаемого способа эксплуатации парогенератора «натрий-вода».

Стабилизация содержания водорода в натрии на данной величине свидетельствует о значительном снижении скорости коррозии и, как следствие, поступления диффузионного водорода коррозионного происхождения в натриевый теплоноситель, что позволяет надежно регистрировать вероятную течь воды в парогенераторе, своевременно выключая из эксплуатации дефектную секцию парогенератора.

Технический результат заявленного технического решения состоит в повышении эксплуатационной надежности парогенератора «натрий-вода».

ЛИТЕРАТУРА

1. Ермолаев Н.П., Смыков В.Б., Мосеева И.Л. Особенности поведения гидразина в водяном контуре парогенератора «натрий-вода». Теплоэнергетика, 1998, №7, с.25-29.

2. Смыков В.Б., Ермолаев Н.П. Массоперенос коррозионного водорода в парогенераторе типа натрий-вода. / Вопросы атомной науки и техники. Серия: Атомное материаловедение. Научно-технический сборник. Выпуск 1 (24), 1987 год. Москва: ГК по ИАЭ СССР, ЦНИИатоминформ, ДСП, вх. № В-СП-33, с.3-13.

3. Леонтьев А.В., Фомичева О.А., Проскурин М.Н., Зефиров Н.С. Современная химия оксида азота (1). / Успехи химии, т.70, №2, 2001, с.107-12.

4. Martinola F. Wasserstoffperoxid und lonenaustauscher im Kraftwerksbetrieb. "VGB Kraftwerkstechnik", 1978, 58, № 6, 436-439 / Опубликовано в: Экспресс-информация ВИНИТИ. Серия: Теплоэнергетика, Москва, 1978, №46, с.32-38.

5. Ляшевич Н.А. О надежности работы поверхностей нагрева энергоблоков при водном режиме с дозированием окислителя. / Теплоэнергетика, 1983, №7, с.11-13.

6. Груздев Н.И., Деева З.В., Школьникова Б.Э. и др. О возможности развития хрупких разрушений поверхностей нагрева котлов при нейтрально-окислительном водном режиме. / Теплоэнергетика, 1983, №7, с.8-11.

7. Маргулова Т.Х., Акользин П.А., Разумовская Е.Д. О концентрациях газообразного кислорода при дозировании его в конденсат энергоблоков с.к.д. / Теплоэнергетика, 1983, №7, с.3-5.

1. Способ эксплуатации парогенератора типа «натрий-вода» атомной электростанции, включающий прокачку по замкнутым контурам водного и натрийсодержащего теплоносителей и подачу в водный теплоноситель летучего окислителя, отличающийся тем, что в период пуска атомной электростанции в контур циркуляции водного теплоносителя включают парогенератор «натрий-вода», а в водный теплоноситель дополнительно подают летучую щелочь, причем концентрацию летучих окислителя и щелочи в питательной воде парогенератора повышают до 0,5-1,0 мг окислителя/кг и 2-3 мг щелочи/кг, а в период эксплуатации парогенератора «натрий-вода» на номинальной мощности концентрацию летучих окислителя и щелочи снижают до заданного уровня.

2. Способ по п.1, отличающийся тем, что в качестве летучего окислителя используют газообразный кислород, перекись водорода или газообразную закись азота, а в качестве щелочи применяют аммиак.

3. Способ по п.1, отличающийся тем, что при выходе на номинальный уровень мощности парогенератора концентрацию окислителя и щелочи в водном теплоносителе снижают до 0,1 мг окислителя/кг и 0,05-0,08 мг щелочи/кг.

4. Способ по п.2, отличающийся тем, что газообразную закись азота применяют в период снижения величины pH ниже нейтральной величины.



 

Похожие патенты:

Изобретение относится к системе аварийной защиты для ядерной установки, содержащей множество каталитических рекомбинаторных элементов, которые при увлекаемом приходящим газовым потоком водороде инициируют реакцию рекомбинации с кислородом.

Изобретение относится к катализаторам для рекомбинации водорода и кислорода. .

Изобретение относится к катализаторам для рекомбинации водорода и кислорода. .

Изобретение относится к области водородной безопасности и может быть использовано для предотвращения скопления пожаро- и взрывоопасного водорода в помещениях. .

Изобретение относится к области ядерной энергетики и может быть использовано при строительстве и модернизации АЭС, а также при управлении авариями в условиях промышленных и природных катаклизмов.

Изобретение относится к области энергетики, а именно к повышению безопасности эксплуатации атомных электростанций. .

Изобретение относится к рекомбинаторному элементу, в частности, для использования в системе безопасности для ядерно-технической установки. .

Изобретение относится к системам локализации аварии на АЭС для улавливания компонентов активной зоны ядерного реактора и их обломков из разрушенного корпуса. .

Изобретение относится к области обеспечения пожаровзрывобезопасности газовых сред, в частности к методам снижения пожаровзрывоопасности газовых сред, образующихся при деструкции органических конструкционных материалов в герметичных объемах в условиях пожара.

Изобретение относится к способам предотвращения воспламенения и взрыва при транспортировании и хранении материалов, выделяющих водород или водородосодержащую газовую смесь, преимущественно неосушенного коррозионно-поврежденного отработавшего ядерного топлива при его транспортировании и хранении в герметичном пенале.
Изобретение относится к технологии получения таблеток из шихты оксида цинка, к его промежуточной стадии прессования. .

Изобретение относится к атомной энергетике, а более конкретно к предотвращению выхода расплава активной зоны за пределы корпуса реактора в случае возникновения аварийной ситуации с плавлением активной зоны корпусного реактора с водяным теплоносителем.
Изобретение относится к области атомной энергетики. .

Изобретение относится к ядерным энергетическим высокотемпературным реакторам, охлаждаемым мелкодисперсным твердым теплоносителем. .

Изобретение относится к области атомной техники. .

Изобретение относится к области ядерной энергетики, в частности, к охлаждению каналов активной зоны ядерных уран-графитовых реакторов и может быть использовано для повышения уровня безопасности реакторов типа РБМК.

Изобретение относится к технологии атомных энергетических установок (АЭУ), прежде всего судовых ядерных энергетических установок ЯЭУ и установок малой энергетики, не использующих борную кислоту для регулирования мощности реактора за счет организации ВХР, обеспечивающего создание условий поддержания постоянного высокотемпературного значения рН выше величины 6,9 за счет поддержания постоянного соотношении низких концентраций борной кислоты и щелочного металла.

Изобретение относится к области теплоэнергетики, а именно к технологии энергетических установок (АЭС и ТЭЦ) с водным теплоносителем, и может быть использовано в технологии поддержания их водно-химического режима.

Изобретение относится к химической технологии регулирования качества теплоносителей АЭС, а именно к способам регулирования качества теплоносителя кипящих реакторов типа РБМК.

Изобретение относится к текучему теплоносителю и его применению. Текучий теплоноситель по изобретению состоит из коллоидного водного золя, содержащего воду и до 58,8 мас.% по отношению к общей массе текучего теплоносителя частиц α-Al2O3 в форме бляшек. Толщина указанных частиц α-Al2O3 является наименьшим размером и составляет от 15 до 25 нм. От 90 до 95% частиц α-Al2O3 имеют размер меньше или равный 210 нм, из которых 50% имеют размер меньше или равный 160 нм. Предложенный теплоноситель предназначен для охлаждения, в частности аварийного охлаждения ядерных реакторов. 2 н. и 8 з.п. ф-лы, 1 ил., 1 табл.
Наверх