Способ получения пористого керамического материала


 


Владельцы патента RU 2476406:

Учреждение Российской академии наук Институт физики прочности и материаловедения Сибирского отделения РАН (ИФПМ СО РАН) (RU)

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Способ получения пористого керамического материала включает приготовление смеси из керамического порошка и добавки, выполняющей функцию пластификатора и порообразователя, формование из порошковой смеси изделия требуемой конфигурации и последующее спекание. В качестве керамического порошка используют ультрадисперсный порошок Аl2О3 или ультрадисперсный порошок твердых растворов на основе ZrO2 с растворенными в нем компонентами MgO или Y2O3, а в качестве пластификатора и порообразователя используют гидрозоль Аl(ОН)3 или Zr(OH)4 в количестве от 1 до 50 об.% от объема смеси. Для придания смеси формовочных свойств добавляют дистиллированную воду. Формование изделия требуемой конфигурации проводят прессованием при давлении 12-25 кН, спекают при температуре 1450-1600°С с изотермической выдержкой в течение 1-5 часов. Технический результат изобретения - повышение прочностных характеристик материала, обладающего развитой пористостью. При пористости 20-45% предел прочности на сжатие керамического материала на основе Аl2О3 достигает 1000-800 МПа, а керамического материала на основе ZrO2(Mg,Y) 800-650 МПа. 5 пр.

 

Изобретение относится к технологии получения пористого керамического материала из ультрадисперсного порошка Аl2О3 или ультрадисперсного порошка твердых растворов на основе ZrO2 (Mg, Y) и гидрозолей [Аl(OН)3] или [Zr(OH)4]. Изобретение предназначено для получения пористых керамических материалов для искусственных эндопротезов костной ткани.

Известен способ получения пористых керамических изделий (ЕР 1348681, С04 38/10, опубл. 01.10.2003)[1], в котором используют порошок оксида циркония или оксида алюминия, в том числе и субмикронного размера, смешанный с гидрозолем гидроксида алюминия. В способе используется гидрозоль гидроксида алюминия с концентрацией 0,2-5 мас.% (в пересчете на оксид алюминия).

Недостатком известного способа является то, что известный способ, во-первых, направлен на изготовление крупногабаритных изделий сложной формы методом литья и, во-вторых, не может быть использован для изготовления искусственных эндопротезов костной ткани, так как из описания способа следует, что для его реализации использованы химические соединения, вредные организму человека (см. [1], абзац [0027], [0030]).

Также известен способ приготовления суспензии, содержащей золь диоксида циркония и пористые керамические изделия, полученные с использованием указанной суспензии (US5275759, B01J 13/00, опубл. 04.01.1994) [2], в частности приготовление формовочной массы из мелких огнеупорных частиц оксида циркония (стабилизированного оксидом магния или оксидом иттрия), смешанных с золем гидроксида циркония. Рекомендуемое соотношение огнеупорных частиц и гидрозоля (1-5) : 1.

Недостатком известного способа является то, что золь диоксида циркония, полученный известным способом, предназначен для получения пористых керамических материалов для изготовления пресс-формы для литья титана и титановых сплавов. Известная суспензия, содержащая золь диоксида циркония, не может быть использована для изготовления искусственных эндопротезов костной ткани, так как также содержит химические соединения, вредные организму человека (см. пункты 7 и 8 формулы изобретения [2]).

Наиболее близким аналогом заявленного изобретения по совокупности существенных признаков является способ получения пористого керамического материала для использования в качестве заменителя твердой костной ткани, известный из US 2005/0239628, С04 В 38/06, опубл. 27.10.2005 [3]. В известном способе спекаемый керамический материал, например оксид алюминия или оксид циркония, смешивают с вязким полимерным золем, полученную смесь формуют, сушат и спекают.

Недостатком известного пористого керамического материала является присутствие в нем после спекания углеводородов - продуктов выгорания полимера, что делает его не очень пригодным для изготовления медицинских эндопротезов.

Задачей предлагаемого изобретения является разработка способа получения пористого керамического материала с высокими прочностными свойствами для применения его в медицинских целях, в частности для изготовления эндопротезов костной ткани.

Материалы, используемые в медицине для изготовления эндопротезов, должны обладать химической чистотой, химической и коррозионной стойкостью в биологической среде, износостойкостью, термостойкостью, механической совместимостью с замещаемой тканью. В ряде случаев, для обеспечения жесткого контакта эндопротеза с костью за счет ее прорастания внутрь имплантата, эндопротезы костной ткани должны обладать развитой пористостью (не менее 20%). Однако присутствие пор в структуре керамического материала сопровождается катастрофическим снижением прочности. Известные пористые керамические материалы не обладают сочетанием развитой пористости и высокой прочности.

Разработанный керамический материал обладает высокими прочностными характеристиками и развитой пористостью. Так при пористости 20-45% предел прочности на сжатие керамического материала на основе Аl2О3 достигает 800-1000 МПа, а керамического материала на основе ZrO2 (Mg, Y) 800-650 МПа.

Указанный технический результат достигается тем, что способ получения пористого керамического материала включает приготовление смеси из керамического порошка и добавки, выполняющей функцию пластификатора и порообразователя, формование из порошковой смеси изделия требуемой конфигурации и последующее спекание. В качестве керамического порошка используют ультрадисперсный порошок Аl2О3, или ультрадисперсный порошок твердых растворов на основе ZrO2 с растворенными в нем компонентами MgO или Y2O3, а в качестве пластификатора и порообразователя используют гидрозоль А1(ОН)3 или Zr(OH)4 в количестве от 1 до 50 об.% в объеме смеси. Формование изделия требуемой конфигурации проводят при давлении 12-25 кН. Термообработку изделия проводят в интервале температур 1450-1600°С с изотермической выдержкой в течение 1-5 часов.

Сущность изобретения заключается в том, что сначала готовят смесь. Для этого исходный керамический порошок, содержащий оксиды Zr, Mg, Y или Аl, смешивают с гидрозолем Аl(ОН)3 или Zr(OH)4, формуют изделие и подвергают термообработке на воздухе по заданному режиму в области температур 1450-1600°С. Термообработка приводит к переходу гидрозоля Аl(OН)3 в Аl2О3,(Zr(OH)4 в ZrO2 Мелкодисперсный гомогенно распределенный между частицами ультрадисперсного порошка гидрозоль алюминия Аl(ОН)3 или циркония Zr(OH)4 является естественным пластификатором и порообразователем, который нет необходимости удалять, так как он становится одним из компонентов пористой керамики. Наличие таких пластификаторов, как гидрозоль Аl(ОН)3 или Zr(OH)4, позволяет применять различные методы формования, что открывает возможность получать компактные керамические изделия требуемых формы и размеров. Использование гидрозолей Аl(ОН)3 или Zr(OH)4 в качестве порообразователей исключает вредное влияние углерода, а также других примесей, которые остаются в керамических изделиях после удаления известных органических пластификаторов и порообразующих добавок.

При применении керамического материала в медицинских целях следует учитывать, что организм человека представляет собой агрессивную среду с различными значениями рН, особенно после травм и оперативных вмешательств, и многочисленные имплантируемые материалы не могут бесконечно оставаться хорошо переносимыми организмом. Коррозия, напряжения и процессы химической деградации, возникающие вследствие воздействия на эндопротез жидкостей и тканей организма, не только изменяют свойства имплантата - образующиеся продукты могут быть токсичными. Все это, в свою очередь, может спровоцировать возникновение реакции отторжения трансплантата, поэтому чистота применяемого керамического материала стоит на первом месте.

Объемная доля гидрозоля Аl(ОН)3 или Zr(OH)4 в порошковой смеси от 1 до 50 об.% обеспечивает получение пористости в готовом изделии от 20 до 45%.

При введении в порошковую керамическую смесь больше 50 об.% гидрозоля Аl(ОН)3 или Zr(OH)4 прочность керамического изделия становится недостаточной для использования в медицинских или технических целях. А при введении в порошковую смесь меньше 1 об.% гидрозоля Аl(ОН)3 или Zr(OH)4 не достигается требуемая пористость керамического изделия.

Примеры конкретного выполнения

Пример 1

Для проведения эксперимента использовалась смесь ультрадисперсного порошка с размером частиц 0.2-0.5 мкм твердого раствора ZrO2, стабилизированного 5 вес.% Y2О3 и гидрозоля Zr(OH)4. Было взято содержание гидрозоля Zr(OH)4 в объеме смеси 50% (50 см3), при этом ультрадисперсный порошок ZrO2 (Y) взят для указанного соотношения в количестве 64.0 г (при насыпной плотности 1.28 г/см3, объем ультрадисперсного порошка составляет 50 см3). Для смачивания смеси использовалась дистиллированная вода для придания смеси формовочных свойств. Более тщательное перемешивание жидкой смеси осуществлялось магнитной мешалкой. Сушка смеси проводилась при необходимости естественным образом в чаше Петри до влажности 10-20%. Из высушенных порошков прессованием под давлением 12 кН формировались изделия в виде цилиндров d=13 мм. Готовые изделия спекались на воздухе при температуре 1600°С в течение 1 часа. Проведенные измерения после спекания изделия показали: пористость 30%, прочность на сжатие 650 МПа, средний размер пор 2,2 мкм.

Пример 2

Для проведения эксперимента использовалась смесь ультрадисперсного порошка с размером частиц 0.2-0.5 мкм твердого раствора ZrO2, стабилизированного 3 вес.% MgO и гидрозоля Аl(ОН)3. Было взято содержание гидрозоля Аl(ОН)3 в объеме смеси 1% (1 см3), при этом ультрадисперсный порошок ZrO2 (Mg) взят для указанного соотношения в количестве 126.72 г (при насыпной плотности 1.28 г/см3, объем ультрадисперсного порошка составляет 99 см3). Для смачивания смеси использовалась дистиллированная вода для придания смеси формовочных свойств. Более тщательное перемешивание жидкой смеси осуществлялось магнитной мешалкой. Сушка смеси проводилась при необходимости естественным образом в чаше Петри до влажности 10-20%. Из высушенных порошков прессованием под давлением 16 кН формировались изделия в виде цилиндров d=13 мм. Готовые изделия спекались на воздухе при температуре 1520°С в течение 3 часов. Проведенные измерения после спекания изделия показали прочность на сжатие 650 МПа, пористость 28%, средний размер пор 1,8 мкм.

Пример 3

Для проведения эксперимента использовалась смесь ультрадисперсного порошка с размером частиц 0.2-0.5 мкм твердого раствора ZrO2, стабилизированного 20 вес.% MgO и гидрозоля Zr(OH)4. Было взято содержание гидрозоля Zr(OH)4 в объеме смеси 10% (10 см3), при этом ультрадисперсный порошок ZrO2 (Mg) взят для указанного соотношения в количестве 115.2 г (при насыпной плотности 1.28 г/см3, объем ультрадисперсного порошка составляет 90 см3). Для смачивания смеси использовалась дистиллированная вода для придания смеси формовочных свойств. Более тщательное перемешивание жидкой смеси осуществлялось магнитной мешалкой. Сушка смеси проводилась при необходимости естественным образом в чаше Петри до влажности 10-20%. Из высушенных порошков прессованием под давлением 18 кН формировались изделия в виде цилиндров d=13 мм. Готовые изделия спекались на воздухе при температуре 1500°С в течение 1 часа. Проведенные измерения после спекания изделия показали: пористость 25%, прочность на сжатие 670 МПа, средний размер пор 1,4 мкм.

Пример 4

Для проведения эксперимента использовалась смесь ультрадисперсного порошка Аl2О3 с размером частиц 0.2-0.5 мкм и гидрозоль Аl(ОН)3. Было взято содержание гидрозоля Аl(ОН)3 в объеме смеси 25% (25 см3), при этом ультрадисперсный порошок Аl2О3 взят для указанного соотношения в количестве 43.5 г (при насыпной плотности 0.58 г/см3, объем ультрадисперсного порошка составляет 75 см3). Для смачивания смеси использовалась дистиллированная вода для придания смеси формовочных свойств. Более тщательное перемешивание жидкой смеси осуществлялось магнитной мешалкой. Сушка смеси проводилась при необходимости естественным образом в чаше Петри до влажности 10-20%. Из высушенных порошков прессованием под давлением 20 кН формировались изделия в виде цилиндров d=13 мм. Готовые изделия спекались на воздухе при температуре 1450°С в течение 5 часов. Проведенные измерения после спекания изделия показали: пористость 40%, прочность на сжатие 900 МПа, средний размер пор 1,4 мкм.

Пример 5

Для проведения эксперимента использовалась смесь ультрадисперсного порошка Аl2О3 размером 0.2-0.5 мкм и гидрозоля Zr(OH)4. Было взято содержание гидрозоля Zr(OH)4 в объеме смеси 5% (5 см3), при этом ультрадисперсный порошок Аl2О3 взят для указанного соотношения в количестве 55.1 г (при насыпной плотности 0.58 г/см3, объем ультрадисперсного порошка составляет 95 см3). Для смачивания смеси использовалась дистиллированная вода для придания смеси формовочных свойств. Более тщательное перемешивание жидкой смеси осуществлялось магнитной мешалкой. Сушка смеси проводилась при необходимости естественным образом в чаше Петри до влажности 10-20%. Из высушенных порошков прессованием под давлением 25 кН формировались изделия в виде цилиндров d=13 мм. Готовые изделия спекались на воздухе при температуре 1600°С в течение 4 часов. Проведенные измерения после спекания изделия показали: пористость 25%, прочность на сжатие 800 МПа, средний размер пор 1,9 мкм.

Способ получения пористого керамического материала, включающий приготовление смеси из керамического порошка и добавки, выполняющей функцию пластификатора и порообразователя, формование из нее изделия требуемой конфигурации и последующее спекание, отличающийся тем, что в качестве керамического порошка используют ультрадисперсный порошок твердых растворов на основе ZrO2 (Mg, Y) или ультрадисперсный порошок Al2O3, а в качестве пластификатора и порообразователя используют гидрозоль А1(OН)3 или Zr(OH)4 в количестве от 1 до 50% в объеме смеси, добавляют, перемешивая, дистиллированную воду для придания смеси формовочных свойств, далее проводят формование изделия прессованием под давлением от 12 до 25 кН, а спекание изделия осуществляют при температуре 1450-1600°С.



 

Похожие патенты:
Изобретение относится к химической технологии высокопористых керамических изделий с ячеистой структурой, которые могут использоваться в качестве носителей катализаторов жидкофазных процессов, фильтров, насадки для массо- и теплообменных процессов, высокотемпературных теплоизоляционных материалов и т.д.
Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и предназначено для использования в процессах обращения с газообразными радиоактивными отходами (ГРО) и отработанным ядерным топливом (ОЯТ) на АЭС и радиохимических предприятиях атомной отрасли.

Изобретение относится к промышленности строительных материалов, а именно к производству пенобетонных блоков неавтоклавного твердения. .
Изобретение относится к промышленности строительных материалов и касается составов сырьевой смеси для изготовления теплоизоляционных изделий. .
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении легких бетонов и изделий теплоизоляционно-конструкционного назначения, в частности для производства стеновых блоков из легкого бетона для малоэтажного строительства.
Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении легких бетонов и изделий теплоизоляционного и теплоизоляционно-конструкционного назначения, в частности для производства стеновых блоков из легкого бетона для малоэтажного строительства.

Изобретение относится к способам получения легковесного пористого керамического теплоизоляционного и теплоизоляционно-конструкционного строительного материала «КОНПАЗИТ».
Изобретение относится к производству пористых заполнителей для бетонов. .
Изобретение относится к производству пористых заполнителей для бетонов. .
Изобретение относится к производству пористых заполнителей для бетонов. .
Изобретение относится к получению нанокристаллических порошков смешанных оксидов редкоземельных элементов (РЗЭ) и металлов подгруппы IVB и может быть использовано для изготовления нейтронопоглощающих и теплоизолирующих материалов, твердых электролитов для высокотемпературных твердооксидных топливных элементов.
Изобретение относится к керамическому материаловедению, в частности к получению керамического материала на основе тугоплавких бескислородных и оксидных соединений, характеризующегося высокой прочностью и трещиностойкостью, и может быть использовано для изготовления режущего инструмента, в нефте- и газодобывающей промышленности (клапанные устройства и уплотнительные кольца насосов), при изготовлении сопловых насадок для пескоструйных аппаратов и распылителей химических растворов.

Изобретение относится к порошкообразному оксиду циркония, способу его получения, а также применению в топливных ячейках, в частности для получения электролитных субстратов для керамических топливных ячеек.

Изобретение относится к способам получения микро- и нанопористой керамики и может быть использовано в машиностроении, химической промышленности, энергетике для получения фильтрующих материалов, носителей катализаторов и компонентов пористых систем со специальными свойствами.

Изобретение относится к способу изготовления износостойкой керамики на основе диоксида циркония, частично стабилизированного оксидом иттрия, и может быть использовано при изготовлении деталей трибологического применения в качестве фильер, волок, подшипников и т.д.

Изобретение относится к области получения огнеупорных и керамических изделий на основе циркона и может быть использовано в машиностроении, авиационной и электротехнической промышленности.
Изобретение относится к композитной мишени в форме стержня, образованной из керамических порошков и предназначенной для испарения под действием электронного луча, содержащей диоксид циркония и по меньшей мере один стабилизатор диоксида циркония.

Изобретение относится к способу изготовления керамики на основе диоксида циркония, стабилизированного оксидом иттрия, с небольшими добавками фторидов натрия и калия, получаемого химическим осаждением из растворов солей.

Изобретение относится к способам изготовления высокоплотной керамики для твердого электролита на основе диоксида циркония с небольшими добавками оксида алюминия, получаемого химическим осаждением из растворов хлористых солей циркония и алюминия.
Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и предназначено для использования в процессах обращения с газообразными радиоактивными отходами (ГРО) и отработанным ядерным топливом (ОЯТ) на АЭС и радиохимических предприятиях атомной отрасли.
Наверх