Способ обработки детали с гальваническим покрытием

Изобретение относится к технологии обработки деталей с гальваническими покрытиями для повышения износостойкости покрытий. Способ обработки детали с гальваническим покрытием включает покрытие детали радикалообразующим веществом и последующее обезводороживание покрытия. Обезводораживание осуществляют с одновременным диффузионным молекулярным армированием путем размещения детали в печи, нагрева до температуры начала термодеструкции радикалобразующего вещества и выдержки при данной температуре до завершения процесса обезводораживания покрытия. Технический результат заключается в повышении износостойкости гальванических покрытий, подвергаемых обезводороживанию, без дополнительных затрат времени на упрочняющую обработку деталей. 1 пр.

 

Изобретение относится к технологии обработки деталей с гальваническими покрытиями и может быть использовано для повышения износостойкости покрытий.

Известен стандартный способ обработки гальванических покрытий, являющийся аналогом заявляемого изобретения, заключающийся в том, что после нанесения покрытия детали помещают в сушильный шкаф и прогревают их в воздушной среде при температурах 140-200°С в течение двух-трех часов. Конкретные технологические режимы, рекомендованные для процесса обезводороживания различных покрытий, прописаны в стандарте [1]. Целью обезводороживания является уменьшение хрупкости материалов покрытия и основы за счет удаления водорода, выделившегося на катоде и диффундировавшего в металл в процессе осаждения покрытия. Недостатками данного способа являются большая длительность обработки и снижение твердости покрытия.

Известен способ повышения прочности поверхностных слоев путем диффузионного молекулярного армирования (ДМА) [2], заключающийся в том, что обрабатываемую поверхность сначала активируют путем холодной пластической деформации, а затем производят химико-термическую обработку. Пластическую деформацию поверхности осуществляют при непрерывной подаче радикалообразующего вещества в зону деформации до достижения заданной величины наклепа материала поверхностного слоя. Химико-термическая обработка заключается в нагреве детали до температуры химической модификации радикалообразующего вещества, при которой начинается деструкция его молекул, и выдержке в печи при данной температуре при непрерывной подаче радикалообразующего вещества в течение времени, необходимого для предельного насыщения радикалами упрочняемого поверхностного слоя. В качестве радикалообразующих веществ предложено использовать минеральные масла. Для уменьшения окисления радикалообразующего вещества предложено добавлять в него антиокислительные присадки. Обработанные таким способом поверхностные слои характеризуются повышенной твердостью, износостойкостью и коррозионной устойчивостью.

В качестве прототипа выбран способ обработки детали с гальваническим покрытием, включающий покрытие детали радикалообразующим веществом, в частности веретенным маслом, бензином, спиртом, и его последующее обезводороживание [3].

Недостатком известного способа и аналога является длительность обработки, а также необходимость выполнения предварительной активации поверхности.

Технический результат настоящего изобретения заключается в повышении износостойкости гальванических покрытий, подвергаемых обезводороживанию, без дополнительных затрат времени на упрочняющую обработку деталей.

Технический результат достигается тем, что способ обработки детали с гальваническим покрытием включает покрытие детали радикалообразующим веществом и последующее обезводороживание покрытия, при этом обезводороживание покрытия осуществляют с его одновременным диффузионным молекулярным армированием путем размещения детали в печи, нагрева до температуры начала термодеструкции радикалобразующего вещества и выдержки при данной температуре до завершения процесса обезводораживания покрытия.

Поставленная задача решается за счет того, что предлагается совместить операции обезводороживания и упрочнения покрытий методом ДМА. Возможность совмещения вышеописанных способов обработки деталей с покрытиями (обезводороживания и ДМА) обусловлена тем, что режимы обработки деталей (температура нагрева, длительность) при выполнении обоих способов совпадают, а целесообразность этого совмещения обусловлена отсутствием необходимости дополнительных затрат времени на упрочняющую обработку покрытий. Так, например, температуры, указанные в ГОСТе [1], при которых осуществляется обезводораживание поверхностей (150…250°С), охватывают диапазон температур термодеструкции радикалообразующих веществ (для минеральных масел (200…250°С). А длительность обезводороживания (несколько часов), указанная в ГОСТе [1], несколько превышает длительность, необходимую для процесса ДМА (наиболее интенсивно армирование протекает на протяжении около 1 часа). Поэтому температуру нагрева при заявленной обработке выбирают как температуру начала термодеструкции радикалообразующего вещества, а длительность обработки выбирают как время, необходимое для завершения процесса обезводороживания покрытия. При этом для упрочнения гальванических покрытий не требуется предварительной механической обработки поверхности, цель которой - активировать поверхность за счет образования на поверхности дефектов (ядер дислокации, микротрещин), по которым радикалы могут проникать вглубь поверхности, так как в процессе нанесения гальванических покрытий в них образуется большое количество дислокации, микротрещин и пор, которые могут служить каналами проникновения радикалов внутрь покрытия.

Заявленный способ ресурсоповышающей обработки деталей с гальваническими покрытиями осуществляется по следующим этапам. После нанесения гальванического покрытия детали обезжиривают и покрывают слоем радикалообразующего вещества, например минерального масла, или погружают в ванну с радикалообразующим веществом. Помещают детали в печь или сушильный шкаф. Нагревают детали до температуры начала термодеструкции радикалообразующего вещества и выдерживают детали при данной температуре в течение времени, необходимого для завершения процесса обезводороживания покрытий. В результате описанного способа повышается износостойкость и коррозионная стойкость материала гальванических покрытий.

Пример реализации.

Партию образцов из бериллиевой бронзы БрБ2 с нанесенным серебряным покрытием толщиной 20 мкм (с медным подслоем, толщиной 1 мкм) в количестве 10 шт. разделили на две равные части. Первую часть образцов покрыли (окунанием) слоем минерального масла И-12А. Затем образцы поместили в сушильный шкаф и нагрели до температуры 200°С и выдержали при данной температуре 2 часа. Вторую часть образцов обработали аналогичным образом, но без окунаний в минеральное масло. После чего провели испытания образцов на изнашивания на торцевом трибометре (схема испытаний «кольцо-плоскость», давление 20 МПа, частота вращения кольца - 600 мин, смазка - «Циатим-201», длительность испытаний - 1 час). После завершения испытаний на изнашивание с помощью профилографа «Абрис-ПМ7» определили линейный износ серебряных покрытий для каждого образца, затем полученные результаты усреднили для каждой из частей. Установлено, что средняя скорость изнашивания серебряного покрытия первой части образцов составляет 6 мкм/час, а второй части образцов - 10 мкм/час, что подтверждает заявленный эффект.

Используемая литература

1. ГОСТ 9.305-84. Покрытия металлические и неметаллические неорганические. Операции технологических процессов получения покрытий.

2. Патент РФ №2198954. Способ упрочнения поверхностей деталей/ Громаковский Д.Г., Ковшов А.Г., Малышев В.П., Ибатуллин И.Д., Дынников А.В., Шигин СВ., Анучин Ю.Е., Маруженков К.И. Опубл. 20.02.2003.

3. Авторское свидетельство СССР №134954, опубл. 01.01.1961.

Способ обработки детали с гальваническим покрытием, включающий покрытие детали слоем радикалообразующего вещества и последующее обезводороживание гальванического покрытия, отличающийся тем, что обезводороживание гальванического покрытия осуществляют с одновременным диффузионным молекулярным армированием путем нагрева помещенной в печь детали до температуры начала термодеструкции радикалобразующего вещества и выдержки при данной температуре до завершения процесса обезводораживания покрытия.



 

Похожие патенты:
Изобретение относится к области машиностроения, а именно к способам получения комбинированных покрытий для защиты от коррозии деталей из низко- и среднелегированных сталей различной прочности.

Изобретение относится к области гальваностегии, в частности к способам получения изделий с гальваническими покрытиями, и может быть использовано в промышленности в качестве твердого износостойкого покрытия с целью замены твердого хромирования, вредного на сегодняшний день.
Изобретение относится к области гальваностегии, в частности к способам получения гальванического покрытия сплавами на основе никеля на изделия из хромсодержащего материала, которое используется в области техники, медицины, машиностроения, а в связке с алмазными зернами применяется для изготовления высокоточного абразивного инструмента.

Изобретение относится к области получения диффузионных коррозионно-стойких покрытий и может быть использовано в пищевом машиностроении, в производстве жестяной консервной тары.

Изобретение относится к способам обработки металлов и может использоваться в гальваностегии и гальванопластике для улучшения свойств электроосажденных металлов.

Изобретение относится к области машиностроения и используется при изготовлении стальных или чугунных деталей и инструмента с твердым хромовым покрытием. .
Изобретение относится к получению электрохимическим методом углеродсодержащих хромовых покрытий, твердость которых возрастает после термообработки. .
Изобретение относится к области металлургии, в частности к обработке изделий из алюминия и его сплавов для придания им функциональных свойств и может быть использовано в различных областях техники, например в пищевой промышленности, авиации, транспортном машиностроении, а именно - в автомобилестроении.

Изобретение относится к металлургии, в частности к прокатному производству, предусматривает диффузионное хромирование прокатных валков, изготовленных из отбеленного чугуна, с целью повышения их работоспособности за счет высокой разгароустойчивости и износостойкости.

Изобретение относится к области машиностроения, преимущественно к изготовлению элементов проточной части энергетических установок, работающих в агрессивных средах.

Изобретение относится к электролитическому осаждению твердых износостойких покрытий, а именно композиционных электрохимических покрытий на основе железа с металлокерамическими частицами, применяемых для восстановления и упрочнения поверхностей деталей

Изобретение относится к области металлургии, в частности получению стального компонента с металлическим покрытием, который используют в качестве материала для кузовов транспортных средств. Для обеспечения хорошего сцепления покрытия и надежной защиты от коррозии на плоский стальной продукт, выполненный из стали, содержащей 0,3-3 мас.% марганца, имеющий предел текучести 150-1100 МПа и прочность на разрыв 300-1200 МПа, наносят антикоррозионное покрытие из сплава ZnNi электролитическим методом, которое состоит из единственной фазы γ-ZnNi и содержит, наряду с цинком и неизбежными примесями, 7-15 мас.% никеля. Затем из плоского стального продукта получают заготовку и сразу нагревают, по меньшей мере, до 800°C, а затем формуют в стальной компонент, или сначала формуют в стальной компонент, который затем нагревают, по меньшей мере, до 800°C. Стальной компонент, полученный в соответственных случаях, окончательно закаляют достаточно быстрым охлаждением от довольно высокой температуры. 3 н. и 18 з.п. ф-лы, 6 табл., 5 ил., 3 пр.
На передний выступ ствольной коробки наносят никелевое покрытие. Подвергают передний выступ ствольной коробки термической обработке с нагревом и дальнейшим охлаждением в вакууме. Термическую обработку проводят при температуре 700-710°C с выдержкой 30-35 минут со скоростью нагрева и охлаждения 15-20°C в минуту. Достигается снижение отдачи и колебаний, передающихся на ложе стрелкового оружия при стрельбе, повышается долговечность ложи.

Изобретение относится к области гальванотехники и может быть использовано в авиационной промышленности. Способ изготовления теплового барьера, содержащего слой керамического покрытия, покрывающего по меньшей мере одну часть поверхности подложки, включает катодное электроосаждение слоя покрытия на подложку, причем подложка выполнена из материала с электронной проводимостью и образует катод. Электролит (24) содержит по меньшей мере одну соль, выбранную из группы, включающей соли лантанида, иттрия, циркония и гафния, так что в результате процесса электроосаждения слой покрытия содержит по меньшей мере один оксид, выбранный из группы, содержащей оксиды лантанида, иттрия, циркония и гафния. Способ включает этап термообработки слоя керамического покрытия при температуре от 400°C до 2000°C в течение по меньшей мере 10 мин. Технический результат: упрощение создания однородного слоя теплового барьера на деталях сложной формы. 14 з.п. ф-лы, 11 ил., 5 пр.

Изобретение относится к способу получения слоя сплава железо-олово на подложке тароупаковочной стали, требующего малого количества олова, к подложке, снабженной упомянутым слоем, в которой одну и обе стороны подложки из SR- или DR-черной жести покрыты слоем сплава железо-олово, который содержит, по меньшей мере, 80 вес.% FeSn (50 ат.% олова и 50 ат.% железа), и к устройству для получения покрытия из сплава железо-олово. Технический результат: получение подложки с улучшенными механическими свойствами, с обеспечением хорошей адгезии к органическим покрытиям и экологической безопасности. 6 н. и 38 з.п. ф-лы, 6 ил., 1 пр.

Изобретение относится к покрытию деталей турбины, а именно к гидрофобному эрозионно-стойкому покрытию, нанесенному на деталь аксиально вращающегося механизма, используемую под воздействием насыщенного водой газа, и к способу нанесения этого покрытия. Упомянутое покрытие имеет металлическую матрицу с полисилоксановым наполнителем, распределенным по толщине покрытия. После нанесения упомянутого покрытия проводят отжиг наполнителя с обеспечением повышенной температуростойкости полисилоксанового наполнителя. Обеспечивается требуемый баланс температуростойкости и гидрофобности покрытия, и повышается его долговечность. 2 н. и 12 з.п. ф-лы, 3 ил.

Изобретение относится к области металлургии. Для повышения коррозионной стойкости упаковочной ленты способ включает получение сляба из стали, содержащей, мас.%: C 0,003 или менее, N 0,004 или менее, Mn от 0,05 до 0,5, P 0,02 или менее, Si 0,02 или менее, S 0,03 или менее, Al 0,1 или менее, железо и неизбежные примеси - остальное, горячую прокатку сляба при конечной температуре выше или равной температуре фазового перехода Ar3, однократную или двукратную холодную прокатку ленты, причем при двукратной холодной прокатке проводят рекристаллизационный отжиг между стадиями холодной прокатки, электроосаждение слоя олова по меньшей мере на одну сторону ленты, причем масса покрытия слоя олова или слоев на одной или обеих сторонах ленты составляет не более 1000 мг/м2; отжиг ленты с покрытием путем ее нагрева со скоростью, превышающей 300°C/с, до температуры Та от 513 до 645°C с выдержкой при Та в течение времени ta с обеспечением преобразования слоя олова в слой сплава железо-олово, который содержит по меньшей мере 90 мас.%, предпочтительно 95 мас.% FeSn с 50 ат.% железа и 50 ат.% олова, с получением восстановленной микроструктуры стали при отсутствии рекристаллизации стальной ленты, подвергнутой холодной прокатке, и быстрое охлаждение ленты с покрытием со скоростью по меньшей мере 100°C/с. 2 н. и 8 з.п. ф-лы, 3 табл.
Изобретение относится к области металлургии. Для повышения коррозионной стойкости стального листа способ включает получение сляба из стали, содержащей, мас.%: С 0,05 или менее, N 0,004 или менее, Mn от 0,05 до 0,5, P 0,02 или менее, Si 0,02 или менее, S 0,03 или менее, Al 0,1 или менее, при необходимости один или более элементов из: Nb от 0,001 до 0,1, Ti от 0,001 до 0,15, V от 0,001 до 0,2, Zr от 0,001 до 0,1, B от 5 до 50 ppm, Fe и неизбежные примеси - остальное, горячую прокатку при конечной температуре, большей или равной температуре превращения Ar3, однократную холодную прокатку с получением подложки, электроосаждение слоя олова на одну или обе стороны подложки с получением луженого стального листа для упаковочных применений, причем масса покрытия слоя олова или слоев составляет не более 1000 мг/м2, отжиг луженого упаковочного стального листа путем его нагрева со скоростью более 300°С/с до температуры Ta от 513°C до 645°C с выдержкой в течение времени ta с преобразованием слоя олова в слой железо-оловянного сплава, содержащего, по меньшей мере, 90, предпочтительно 95 мас.% FeSn с 50 ат.% Fe и 50 ат.% Sn, и охлаждение со скоростью по меньшей мере 100°С/с. 2 н. и 10 з.п. ф-лы, 3 табл.
Наверх