Электролитический способ нанесения покрытий

Изобретение относится к области металлургии и может быть использовано при разработке и изготовлении износостойких покрытий. Способ включает осаждение покрытия из электролита, содержащего ионы осаждаемого металла и упрочняющие добавки во взвешенном состоянии, при этом упрочняющие добавки вводят в количестве, которое определяют по уравнению:

где z - количество твердых включений в покрытии, %, f1 - коэффициент трения покрытия без включений, f2 - коэффициент трения покрытия с включениями, λ1 - теплопроводность покрытия без включений, Вт/м·К, λ2 - теплопроводность покрытия с включениями, Вт/м·К. Технический результат: повышение износостойкости электролитических покрытий и сокращение трудоемкости получения покрытий за счет снижения числа исследований. 2 табл., 1 пр.

 

Изобретение относится к области металлургии, в частности к способу нанесения электролитических покрытий с включенными в них частицами, и может быть использовано при разработке и изготовлении износостойких покрытий.

Известен способ [Справочник по конструкционным материалам. / Под ред. Б.Н.Арзамасова; Т.В.Соловьевой. - М: Изд-во МГТУ, 2005, с.160-162] получения электролитических покрытий, заключающийся в введении в состав покрытий порошков карбидов, боридов, оксидов, алмаза, корунда и т.п., что позволяет существенно повысить износостойкость покрытий.

Известен электролитический способ [патент РФ 2224055 C1, кл. C25D 11/02, 20.02.2004] нанесения анодных покрытий, заключающийся в обработке поверхности изделия в струе электролита, создании от внешнего источника тока разности потенциалов 100-1000 B между участком обрабатываемой поверхности изделия, являющимся анодом и вторым электродом противоположного знака с инициированием микроискровых и микроплазменных разрядов, введении в электролит 3-20 вес.% мелкодисперсного порошка карбида, нитрида, окисла металлов или металлоидов, не растворимых в электролите, при этом в струю электролита дополнительно вводят мелкодисперсный порошок титана, и/или углерода, и/или гидрида титана и/или углеводородных соединений в качестве добавки с экзотермическим эффектом окисления, с дисперсностью смеси порошков 1-5 мкм, но не более половины толщины слоя наносимого покрытия, при этом порошки вводят в струю электролита одновременно при равном их соотношении, а сумма обоих порошков в электролите составляет 3-20 вес.%.

Такие способы требуют проведения дополнительных испытаний по определению оптимального количества упрочняющих добавок в электролитических покрытиях для обеспечения их лучшей износостойкости.

Известен способ [патент РФ 95102405 A1, кл. C25D 11/02, 20.11.1996] электролитического микродугового нанесения покрытия на изделия из углеродистой стали, заключающийся в нанесении на изделие из углеродистой стали композиции (алюмопудра ПАП-1 или ПАП-2 25-35 мас.%, Al2O3 (порошок) 25-35 мас.%, [CrAl3(H3PO4)8,8-9,6] до 100 мас.%), предварительно разведенной в воде в соотношении 3:1, и последующей электролитической микродуговой обработке в щелочном электролите при плотности тока 5-25 А/дм2.

Недостатком известного способа является широкий интервал определения оптимального количества входящих компонентов для обеспечения максимальной прочности и износостойкости покрытия, что требует проведения дополнительных испытаний.

Наиболее близким к предлагаемому является электролитический способ [патент РФ 2109855 C1, кл. C25D 15/00, C25D 5/20, 27.04.1998] получения композиционных покрытий, заключающийся в проведении процесса осаждения из электролита, содержащего ионы осаждаемого металла и нерастворимые частицы во взвешенном состоянии при наложении на ванну ультразвуковых колебаний, направленных параллельно и перпендикулярно катодной поверхности.

Недостатком известного способа является проведение дополнительных испытаний по определению оптимального количества упрочняющих добавок (мелкодисперсного порошка карбида, нитрида, окисла металлов или металлоидов), обеспечивающих максимальную износостойкость покрытий.

Задача изобретения - повышение износостойкости электролитических покрытий за счет оптимизации количества упрочняющих добавок, а также сокращение трудоемкости получения покрытий за счет снижения количества испытаний.

Задача решается тем, что в способе нанесения электролитических покрытий с включенными в них частицами, по которому проводят процесс осаждения из электролита, содержащего ионы осаждаемого металла и упрочняющие добавки во взвешенном состоянии, согласно изобретению количество упрочняющих добавок определяют по уравнению:

где z - количество твердых включений в покрытии, %,

f1 - коэффициент трения покрытия без включений,

f2 - коэффициент трения покрытия с включениями,

λ1 - теплопроводность покрытия без включений,

λ2 - теплопроводность покрытия с включениями.

В качестве упрочняющих добавок используют порошки карбидов, боридов, оксидов, алмаза, корунда и т.п.

В результате использования предлагаемого способа обеспечивается максимальная износостойкость электролитических покрытий с упрочняющими добавками, сокращение числа исследований при разработке и изготовлении покрытий.

Пример конкретной реализации способа

Для получения износостойких никель-фосфорных покрытий с добавками карбидов кремния проводят электролитическое осаждение покрытий на вертикальных электродах с магнитным перемешиванием электролита. Состав электролита и параметры электролитического осаждения представлены в таблице 1.

Таблица 1
Состав электролита и параметры процесса
Состав электролита Параметры электролитического осаждения
NiSO4 6H2O 300 г/л, pH 3,8
NiCl2 6H2O 45 г/л, температура 50°C
Н3ВО3 40 г/л, плотность тока 2 А/дм2
Н3РО3 20 г/л, время 75 мин
суспензия карбидов кремния 0,80 и 200 г/л Анод-никель

Коэффициенты трения покрытий, коэффициенты теплопроводности покрытий и результаты триботехнических испытаний электролитических NiP покрытий с различным содержанием карбидов кремния в суспензии при осаждении представлены в таблице 2.

Таблица 2
Результаты триботехнических испытаний
№ п/п Покрытие Количество добавок в матрице, % Коэффициент трения, f Коэффициент теплопроводности λ, Вт/(м·К) Величина износа, 106 мкм3
1. NiP 0 0,73 90,9 5,37
2. NiP-SiC, 80 г/л 26 0,65 120 5,15
3. NiP-SiC, 200 г/л 65 0,63 140 5,86

Для определения оптимального количества упрочняющих добавок карбидов кремния SiC, обеспечивающих максимальную износостойкость электролитических NiP покрытий, проводят расчет по уравнению:

Согласно проведенным расчетам, при содержании карбидов кремния в матрице в количестве около 30% износ покрытий должен быть минимальным. Как видно из таблицы, наименьшее изнашивание обеспечивает электролитическое NiP покрытие с содержанием карбидов кремния в 26%.

В результате использования предлагаемого способа обеспечивается сокращение числа исследований для определения оптимального количества упрочняющих добавок в электролитических покрытиях, обеспечивающих их максимальную износостойкость.

Итак, заявляемый способ позволяет определить оптимальное количество упрочняющих добавок в электролитических покрытиях с максимальной износостойкостью, сократить трудоемкость исследования покрытий.

Способ нанесения электролитических покрытий с включенными в них частицами, при котором проводят процесс осаждения из электролита, содержащего ионы осаждаемого металла и упрочняющие добавки во взвешенном состоянии, отличающийся тем, что упрочняющие добавки вводят в количестве, которое определяют по уравнению:

где z - количество твердых включений в покрытии, %,
f1 - коэффициент трения покрытия без включений,
f2 - коэффициент трения покрытия с включениями,
λ1 - теплопроводность покрытия без включений, Вт/м·К,
λ2 - теплопроводность покрытия с включениями, Вт/м·К.



 

Похожие патенты:

Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных электролитических покрытий из серебра, содержащих ультрадисперсные алмазы (УДА), на изделия из стали, бронзы и других металлов.

Изобретение относится к электролитическим способам обработки изделий из титановых сплавов для получения защитных покрытий и может быть использовано в нефтегазодобывающей, нефтеперерабатывающей, судостроительной и других отраслях промышленности.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, приборостроении для работы в узлах трения и для защиты изделий от атмосферной и электрохимической коррозии.
Изобретение относится к области электрохимии, в частности электрохимического нанесения композиционного материала цинк-фторопласт. .
Изобретение относится к области гальванотехники и может быть использовано в машиностроении и других отраслях промышленности при изготовлении деталей и инструментов с износостойкими покрытиями, а также для их восстановления.

Изобретение относится к области электрохимического нанесения оптически черных оксидно-керамических покрытий на алюминий и его сплавы и может быть использовано при изготовлении панелей радиаторов, приборов индикации в электронной и автомобильной промышленности, в строительной индустрии.
Изобретение относится к электролитическому нанесению покрытий на металлические изделия и может быть использовано в металлургии и машиностроении. .
Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных гальванических градиентных покрытий на основе хрома в машиностроении и других отраслях промышленности при изготовлении или восстановлении деталей и инструментов с износостойкими антифрикционными покрытиями, в частности, для повышения стойкости деформирующих инструментов.
Изобретение относится к области гальванотехники и может найти применение в авиационной, автомобильной и других отраслях промышленности. .
Изобретение относится к области гальванотехники. .
Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных покрытий

Изобретение относится к области гальванотехники и может быть использовано для повышения износостойкости инструмента, снижения трения в подшипниках и в качестве защитных несмачиваемых покрытий в различных отраслях промышленности, в частности, для предотвращения обледенения проводов линий электропередач

Изобретение относится к области гальванотехники и может быть использовано для получения никелевых композиционных покрытий

Изобретение относится к электролитическому осаждению твердых износостойких покрытий, а именно композиционных электрохимических покрытий на основе железа с металлокерамическими частицами, применяемых для восстановления и упрочнения поверхностей деталей
Изобретение относится к области гальванотехники, а именно к получению покрытий из электролитов никелирования с использованием в качестве второй фазы нанодисперсного порошка диборида хрома

Изобретение относится к области электрохимической обработки поверхности изделий из вентильных металлов и их сплавов и может быть использовано в машиностроении и других отраслях промышленности для получения гидрофобных покрытий, обладающих высокой износостойкостью, а также антифрикционными свойствами и коррозионной стойкостью
Изобретение относится к получению гальванических композиционных покрытий, в частности на основе никеля с дисперсной фазой в виде наноалмазных порошков

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, автомобилестроении, морском транспорте и в других отраслях промышленности для увеличения коррозионной стойкости покрытий на основе сплава олово-цинк
Изобретение относится к области гальванотехники и может быть использовано в различных отраслях промышленности
Изобретение относится к области гальванотехники и может быть использовано в различных областях промышленности
Наверх