Малогабаритный длинноходовой станок-качалка

Изобретение относится к нефтяной промышленности и может быть использовано в составе штанговой глубиннонасосной установки преимущественно для подъема нефти или для откачки пластовых вод. Станок-качалка (СК) содержит двигатель, редуктор с кривошипно-шатунным механизмом, двойной маятник, коромысло и раму. Маятник имеет две пары рычагов, одна из которых шарнирно соединена с шатунами, другая - с коромыслом. На одном конце коромысла есть головка для подвески полированного штока и колонны штанг, а на другом - ролик, катящийся по рельсу. При горизонтальном положении коромысла СК имеет наименьший размер по высоте. В этом положении с застопоренным коромыслом СК транспортируется в полностью собранном виде с завода-изготовителя до скважины. Кинематическая схема «точного прямила» позволяет иметь длину хода точки подвеса штанг 9-12 м при габаритном размере по высоте 2,5-3,0 м. 4 з.п. ф-лы, 4 ил.

 

Изобретение относится к нефтяной промышленности и может быть использовано в составе штанговой глубиннонасосной установки преимущественно для подъема нефти или для откачки пластовых вод.

Известен станок-качалка, содержащий раму, установленные на ней пирамиду, редуктор и связанный с ним клиноременной передачей двигатель. На тихоходный вал редуктора насажены с двух сторон кривошипы. На пирамиде установлено с возможностью качания коромысло, на одном конце которого имеется головка для подвески штанг, а на другом на шарнире траверса, расположенная поперек коромысла. Траверса и кривошипы связаны, также с помощью шарниров, шатунами (патент РФ №2107187, F04B 47/02, 1996 г.).

Этот станок-качалка (СК) имеет ограниченную длину хода (высоту подъема) точки подвеса штанг (ТПШ) в пределах 1,5-3,5 м, редко до 4,5 м, что создает с учетом упругого растяжения колонны штанг ограничение в длине хода плунжера глубинного насоса, т.е. в производительности глубиннонасосной установки. Малая длина хода СК требует для обеспечения необходимой производительности увеличения частоты качаний, а это приводит к возрастанию динамических нагрузок на штанги, которые в совокупности с переменными статическими нагрузками снижают порог усталости материала штанг. В результате уменьшается межремонтный период работы скважины, увеличиваются расходы на эксплуатацию скважины.

Известен СК, в котором увеличена длина хода ТПШ (А.С. СССР №1541408, F04B 47/02, 1987 г.). Увеличение длины хода достигается тем, что используется система канатной оснастки, связывающей колонну штанг, головку коромысла, само коромысло, дополнительные траверсы и кривошипы. Канатная оснастка рассчитана на применение ее в СК известной конструкции четырехзвенного механизма (например, в СК по патенту №2107187). Это ограничивает возможность увеличения длины хода ТПШ только до 1,5-2,0-кратной величины. Другим недостатком этого технического решения является большой габаритный размер по высоте (5-7 м) и ширине (2,8-3,0 м), что требует транспортировать СК в разобранном виде, производить сборку, наладку (особенно канатной оснастки) и юстировку в полевых условиях. Возникают сложности при демонтаже и монтаже канатной оснастки во время подземных ремонтов скважины, а также при обслуживании ее в связи с «жестким» регламентом эксплуатации канатов. Размеры по ширине СК по А.С. №1541408 также оказываются увеличенными по сравнению с известными СК из-за необходимости разместить струны канатов за пределами вращающихся противовесов.

Целью изобретения является повышение эффективности использования станка-качалки за счет снижения расходов на транспортировку, монтаж на скважине и эксплуатацию, а также более существенного увеличения длины хода ТПШ. Предложенный СК полностью собирается на заводе-изготовителе и, имея малые габариты, доставляется на скважину в собранном виде, где устанавливается на подготовленный фундамент.

На фиг.1 изображена кинематическая схема станка-качалки; на фиг.2 схематично представлен общий вид СК (вид сбоку); на фиг.3 - вид сверху; на фиг.4 - вид на поперечное сечение по стр.А.

Станок-качалка содержит (фиг.2, 3): двигатель 1, редуктор 2, кривошипы 3, насаженные на концы тихоходного вала редуктора и имеющие рычаги 4 для противовесов 5; шатуны 6, соединенные шарнирами 7 с кривошипами; двойной маятник 8, качающийся на двухстоечной пирамиде 9 и имеющий две пары рычагов 10 и 11, одна из которых шарнирами 12 соединена с шатунами; коромысло 13, размещенное между стойками пирамиды и соединенное с другой парой рычагов шарнирами 14. На одном конце коромысла имеется головка 15 с отверстием 16 для подвески полированного штока и колонны штанг, а на другом - ролик 17, контактирующий с горизонтально расположенным рельсом 18 и имеющий возможность по нему катиться.

Пирамида, редуктор и двигатель установлены на раме 19. Ось 20 качания маятника и ось 21 качения ролика находятся в одной горизонтальной плоскости 22.

Хорды 23, соединяющие крайние точки дуги качания оси шарниров 14 коромысла расположены вертикально, а хорды 24, соединяющие крайние точки дуги качания оси шарниров 12 - горизонтально.

На предложенном СК могут быть установлены дополнительные противовесы 25 и 26, также рассчитанные на уравновешивание веса колонны штанг в жидкости и половины веса поднимаемого столба жидкости. Они могут снять с редуктора часть нагрузки от крутящего момента. Противовесы 25 могут быть выполнены в виде приливов на рычагах 10, а противовес 26 в виде груза с возможностью его перестановки вдоль заднего плеча коромысла.

Рельс находится над редуктором и прикреплен к раме с помощью стоек 27. Ролик и рельс могут быть выполнены с одной дорожкой качения, как показано на фиг.4, или с двумя, расположенными по обе стороны коромысла (не показано).

Головка коромысла с помощью шарнира 28 откидывается назад на время транспортировки и подземного ремонта скважины.

Кинематическая схема качания коромысла 13 (фиг.1) симметрична относительно горизонтали 22.

Малогабаритный длинноходовой станок-качалка работает следующим образом.

Вращение от двигателя 1 через клиноременную передачу передается редуктору 2, а от него через кривошипы 3 и шатуны 6 движение передается рычагами 10 маятнику 8. Качание маятника через рычаги 11 передается коромыслу 13. Коромысло одновременно перемещается по вертикали, поворачивается вокруг оси ролика 17 и перемещается осью ролика 17 по горизонтали 22.

При правильном подборе длины коромысла, длины его заднего плеча, радиуса поворота рычага 11 и расстояния от оси качания маятника до вертикали, по которой перемещается ТПШ, это перемещение ТПШ будет прямолинейным без бокового отклонения от вертикали или с минимальным допустимым отклонением по всей длине хода ТПШ.

При повороте кривошипа 3 на угол αi (фиг.1) маятник 8 повернется на угол

- шаговый угол поворота маятника, град,

где - половина полного угла качания маятника, град;

Ro - радиус кривошипа, мм;

R1 - радиус качания оси шарнира 12, мм.

Коромысло 13 при этом повернется на угол

- шаговый угол поворота коромысла, град,

где - половина полного угла поворота коромысла вокруг оси ролика 17, град;

m=ℓ3·sin(β-βi)=R·sin(γ-γi) - половина хорды 23, мм;

R - расстояние от оси качания маятника до оси шарнира, соединяющего коромысло с рычагами маятника, мм;

3 -длина заднего плеча коромысла от оси шарнира 14 коромысла до оси ролика 17, мм.

Точка подвеса штанг поднимется на высоту Si=0,5S-ℓ·sin(β-βi),

где - полная длина хода станка-качалки, мм;

ℓ - длина коромысла от ТПШ до оси ролика 17, мм.

Верхняя половина хода ТПШ вверх будет проходить с таким же темпом увеличения угла поворота коромысла относительно горизонтали 22. При ходе ТПШ вниз все повторится в обратном порядке.

Прямолинейность перемещения ТПШ по вертикали оценивается по формуле

Δxi=Δℓi·cos(β-βi), - боковое отклонение ТПШ, мм,

где: Δℓi=ℓ-λi; ℓ=λ+R+ℓ3; ℓi={λ+R·cos(γ-γi)+ ℓ3cos(β-βi)}·sec(β-βi)

λ - расстояние от вертикали, по которой перемещается ТПШ, до оси качания маятника, мм.

Соотношение размеров кинематических элементов СК и их взаимное расположение, обеспечивающее прямолинейность перемещения ТПШ, определяется уравнением

ℓ-{λ+R·cos(γ-γi)+ ℓ3·cos(β-βi)}·sec(β-βi)≈0

В частном случае для параметров S=9000 мм; ℓ=8400 мм; λ=400 мм; R=3911 мм; ℓ3=4089 мм, подобранных методом итерации, определены γ=34°04'; β=32°24'; Ro=0,5582 R1.

Для этого случая боковое отклонение Δxi находится в пределах 0,0-1,7 мм. Максимальное отклонение 1,7 мм возникает при углах поворота кривошипа 30°, 150°, 210°, 350°.

Практически можно допустить некоторое боковое отклонение ТПШ от вертикали, если изгибающие напряжения в полированном штоке будут меньше допустимых при многоцикловом нагружении.

Если принять расстояние от вертикали, по которой перемещается ТПШ, до оси качания маятника равным нулю, а расстояние от оси качания маятника до оси шарнира, соединяющего коромысло с рычагами маятника, равным длине заднего плеча коромысла от оси шарнира коромысла до оси вращения ролика, то боковое отклонение Δxi на всем протяжении пути от НМТ до ВМТ и обратно будет равно нулю. Например, при λ=0; R=ℓ3 для ℓ=8400 мм; S=9000 мм имеем γ=β=32°24' и Δxi=0. В этом случае на время подземного ремонта скважины станок-качалку придется отодвигать (откатывать) от устья скважины. Надобность в откидной головке коромысла отпадает.

Станок-качалка с рассмотренной кинематической схемой может иметь длину хода 9-12 м.

Наименьший габаритный размер по высоте предложенный станок-качалка имеет при горизонтальном положении коромысла. Этот габарит равен в сумме высоте редуктора, толщине рамы, диаметру ролика и толщине рельса, что составляет приблизительно 2,5-3,0 м. С застопоренным в горизонтальном положении коромыслом станок-качалка транспортируется. Габаритный размер по ширине - такой же, как у известных СК (≈2,3 м), но меньший, чем у прототипа по А.С. №1541408, имеющего канатную оснастку. Длина СК с длиной хода ТПШ S=9 м по экспертной оценке составляет 8,8-9,2 м, а с длиной хода S=12 м не более 12 м, что не является препятствием для транспортировки СК в собранном виде.

1. Малогабаритный длинноходовой станок-качалка для откачки нефти из скважины, содержащий редуктор с двумя кривошипами и противовесами на них и пирамиду, установленные на раме, а также коромысло с головкой для присоединения колонны штанг, и шатуны, соединенные одним концом с кривошипами, отличающийся тем, что, с целью уменьшения его габарита по высоте, увеличения длины хода головки коромысла и повышения этим эффективности работы глубинно-насосной установки, станок-качалка снабжен двойным маятником с двумя парами рычагов качания, установленным на пирамиде, роликом, установленным на коромысле и рельсом, контактирующим с роликом и прикрепленным к раме; коромысло шарнирно соединено с одной из пар маятника, а другая пара рычагов маятника шарнирно соединена с шатунами.

2. Станок-качалка по п.1, отличающийся тем, что ось качания маятника и ось вращения ролика при любом положении коромысла лежат в одной горизонтальной плоскости; хорда, соединяющая крайние точки дуги качания оси шарнира коромысла, расположена вертикально, а соотношение размеров коромысла, рычагов маятника, их взаимное расположение и расстояние от вертикали, по которой перемещается точка подвеса штанг, до оси качания маятника определяется уравнением
l-{λ+R·cos(γ-γi)+l3·cos(β-βi)}·sec(β-βi)≈0,
где l - длина коромысла от точки подвеса штанг до оси ролика, мм;
λ - расстояние от вертикали, по которой перемещается точка подвеса штанг, до оси качания маятника, мм;
R - расстояние от оси качания маятника до оси шарнира, соединяющего коромысло с рычагами маятника, мм;
l3 - длина заднего плеча коромысла от оси шарнира коромысла до оси вращения ролика, мм;
γ и β - половина полного угла качания маятника и поворота коромысла вокруг оси ролика, град;
γi и βi - шаговый угол поворота маятника и поворота коромысла, град.

3. Станок-качалка по п.1 или 2, отличающийся тем, что расстояние от вертикали, по которой перемещается точка подвеса штанг, до оси качания маятника равно нулю, а расстояние от оси качания маятника до оси шарнира, соединяющего коромысло с рычагами маятника, равно длине заднего плеча коромысла от оси шарнира коромысла до оси вращения ролика.

4. Станок-качалка по п.1 или 2, отличающийся тем, что он снабжен дополнительными противовесами, выполненными в виде приливов на маятнике.

5. Станок-качалка по п.1 или 2, отличающийся тем, что он снабжен дополнительным противовесом, закрепленным на заднем плече коромысла с возможностью перестановки его вдоль коромысла.



 

Похожие патенты:

Изобретение относится к насосной технике, используемой при добыче нефти, в частности, к погружным скважинным насосам со штанговым приводом для одновременного и раздельного подъема пластовой жидкости при эксплуатации двух пластов одной скважины.

Изобретение относится к электротехнике, к устройствам выработки электрической энергии и может найти применение в конструкции добывающих скважин, имеющих станки-качалки (СК).

Изобретение относится к нефтедобывающей отрасли и может быть использовано для глубинно-насосных скважин со структурообразующей добываемой нефтью. .

Изобретение относится к области скважинной добычи жидких полезных ископаемых, в том числе нефти, и, в частности, к штанговым скважинным насосным установкам. .

Изобретение относится к нефтедобывающей промышленности, в частности к штанговой насосной установке при отборе жидкости из скважины, и может быть использовано и в других отраслях промышленности и сельского хозяйства.

Изобретение относится к нефтедобывающей промышленности, в частности к техническим средствам для подъема жидкости из скважин, и может быть использовано для добычи нефти из скважин штанговыми насосами.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для эксплуатации нефтяных скважин с высоковязкой продукцией. .

Изобретение относится к нефтедобывающей промышленности, в частности к скважинным насосным установкам, и может быть использовано для эксплуатации обводненных нефтяных скважин с раздельным подъемом на поверхность воды и нефти.

Изобретение относится к нефтедобывающей промышленности, в частности к техническим средствам для подъема жидкости из скважин, как при обычной, так и при одновременно-раздельной эксплуатации двух пластов двумя скважинными штанговыми насосами в одной скважине.

Изобретение относится к нефтяной промышленности и может найти применение для добычи нефти из высокодебитных скважин или из скважин малого диаметра. .

Изобретение относится к устройствам для добычи нефти битумов и может быть использовано в качестве привода штангового насоса

Изобретение относится к области насосостроения и может быть использовано для механизированной добычи нефти установками ШГН (штангового глубинного скважинного насоса)

Изобретение относится к нефтедобывающей промышленности и предназначено для диагностирования работы глубинно-насосното оборудования скважин, оборудованных установками штанговых скважинных насосов

Изобретение относится к нефтехимической отрасли машиностроения и может быть использовано при проектировании скважинно-насосных установок. Скважинно-насосная установка содержит станок-качалку для установки рядом со скважиной, имеющую балансир с поворотной головкой, насос для установки в скважине, включающий цилиндр со всасывающими клапанами и плунжер с нагнетательными клапанами, установленный внутри цилиндра с возможностью возвратно-поступательного движения. В верхней части плунжера образован устьевой шток, связанный посредством гибкой связи с поворотной головкой. На верхней части устьевого штока закреплена подвижная часть электромагнита, охватываемая статорной частью электромагнита с обмоткой. Балансир выполнен с возможностью замыкания электрической цепи обмотки электромагнита с возможностью возбуждения электромагнитной силы, воздействующей на подвижную часть электромагнита и направленной вдоль оси устьевого штока. Техническим результатом изобретения является повышение надежности работы установки, увеличение срока ее службы, сокращение скачков перегрузок, действующих на систему силовых узлов, обеспечение плавности хода устьевого штока. 2 з.п. ф-лы, 5 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для добычи углеводородов и проведения исследований и скважинных операций в скважине без подъема насосного оборудования. Байпасная система скважинной насосной установки для одновременно-раздельной эксплуатации скважины, имеющей, по меньшей мере, два пласта, состоит из установленного на колонне труб Y-образного блока, к нижней части которого параллельно присоединены насосная установка и колонна байпасных труб с посадочным ниппелем для установки съемной глухой пробки. Ловильная головка расположена при установке съемной глухой пробки в ниппель в Y-образном блоке над колонной байпасных труб, а последняя скреплена с насосной установкой при помощи хомутов. Посадочный ниппель выполнен с возможностью установки в нем геофизической пробки вместо съемной глухой пробки. В скважине ниже байпасной системы с насосной установкой установлены, по меньшей мере, два пакера механического, гидромеханического или гидравлического действия. Каждый из пакеров установлен над соответствующим пластом скважины, а между ними на уровне пластов установлено, по меньшей мере, по одной скважинной камере с установленным в ней штуцером или регулятором расхода, или стационарной оправкой или управляемым клапаном с гидравлическим, электрическим или механическим управлением с возможностью регулирования проходного сечения или имеющие две позиции открыто и закрыто. Над верхним пакером установлен разъединитель колонны труб, на который в разъединенном состоянии установлен адаптер. На нижнем конце колонны труб установлена заглушка или ниппель-воронка. Кроме того, в байпасной системе скважинной насосной установки посадочный ниппель выполнен с возможностью установки в нем геофизической пробки на место съемной глухой пробки, снизу на колонне байпасных труб закреплена ниппель-воронка. Выше последней колонна байпасных труб и насосная установка соединены между собой посредством опорного элемента. Под посадочным ниппелем на колонне байпасных труб установлен телескопический патрубок. Съемная глухая пробка выполнена в верхней части со сдвижной юбкой для выравнивания давления и в нижней части с наконечником для закрепления проволоки или каната. Способ байпасирования проводят путем спуска в скважину прибора на геофизическом кабеле с установленной на геофизическом кабеле геофизической пробкой. На геофизическом кабеле устанавливают два молотка с фрикционной вставкой или внутренней поверхностью с зубчатой насечкой. Нижний молоток устанавливают на 10-20 м выше геофизического прибора. Верхний - на расстоянии большем или равном расстоянии от места установки геофизической пробки в Y-образном блоке до нижней границы исследуемого пласта. Геофизическую пробку выполняют с внутренней сдвижной втулкой для выравнивания давления. В результате достигается повышение надежности работы скважинного оборудования при проведении исследований в скважинах в эксплуатационной колонне ниже насосной установки, за счет безаварийного извлечения съемной глухой и геофизической пробок в процессе проведения исследований. 3 н. и 2 з.п. ф-лы, 9 ил.

Способ добычи пластовой газированной и негазированной жидкости относится к области нефтедобычи и может быть использован для добычи газированной и негазированной пластовой жидкости из глубоких скважин. В скважинном насосе создают герметичное кольцо для движения закольцованной, снабженной рабочими поршнями 8, цепи 7. Для этого соединяют снизу направляющий трубопровод 12 и колонну насосно-компрессорных труб 4 с одним или несколькими рабочими цилиндрами 6, приемно-фильтрующей камерой 10 скважинного насоса с направляющим шкивом 9, а сверху с верхним корпусом со шкивами подъемным 22, опускающим 23 и натяжным 24. Техническим эффектом является непрерывный подъем жидкости с больших и малых глубин негазированной и газированной жидкости, с большим содержанием попутного газа, из скважин с малым дебетом, в том числе за счет постоянной скорости движения цепи с поршнями сквозь рабочие цилиндры, длина которых больше, чем расстояние между поршнями. 1 з.п. ф-лы, 5 ил.

Изобретение относится к нефтедобывающей промышленности, в частности к установкам для закачки необходимых объемов воды в пласт. Установка скважинная штанговая насосная для закачки воды в пласт включает пакер, установленный выше пласта, колонну труб с нагнетательным и всасывающим клапанами, плунжерный насос с цилиндром, спускаемым на колонне труб и установленным выше клапанов. Всасывающий клапан сообщен с надпакерным пространством. Герметизатор устьевого штока снабжен емкостью для смазки. Межтрубное пространство скважины сообщено с подводящим воду трубопроводом. Плунжер дополнительно снабжен устройством для его принудительного хода вниз. Ниже нагнетательного клапана установлен дополнительный нагнетательный клапан, сообщенный с подпакерным пространством и с выходом нагнетательного клапана через разъединительное устройство. Устройство для принудительного хода вниз плунжера может быть выполнено в виде соединенных с ним грузов или пневмоаккумулятора. Рабочей полостью пневмоаккумулятора является верхняя часть колонны труб. Технический результат заключается в расширении области применения установки в нагнетательных скважинах с высоким давлением закачки, повышении надежности работы за счет повышения надежности работы всасывающего и нагнетательного клапанов, также в повышении эффективности эксплуатации скважины за счет сокращения сроков ее ремонта. 3 з.п. ф-лы, 2 ил.

Изобретение относится к нефтехимической отрасли машиностроения и может быть использовано при проектировании скважинно-насосных установок. Скважинно-насосная установка содержит станок-качалку для установки рядом со скважиной 3. Насос с плунжером 15 установлен в скважине 3. С верхней частью плунжера 15 соединен устьевой шток 19, на верхней части которого закреплена подвижная часть электромагнита, охватываемая статорпой частью 22 электромагнита с обмоткой. Станок-качалка содержит балансир 7 с поворотной головкой, которая связана посредством гибкой связи с устьевым штоком 19. Балансир 7 связан с приводным двигателем 5. Установка снабжена устройством автоматического управления 24, связанным с приводным двигателем и электромагнитом с возможностью изменения угловой скорости вращения вала приводного двигателя и с возможностью возбуждения в подвижной части электромагнита, при каждом положении устьевого штока, соответствующей демпфирующей силы. Техническим результатом изобретения является повышение надежности работы установки, увеличение срока ее службы, сокращение скачков перегрузок, действующих на систему силовых узлов, обеспечение плавности хода устьевого штока при каждом его положении. 4 з.п. ф-лы, 3 ил.
Наверх