Кольцевая камера сгорания газотурбинного двигателя



Кольцевая камера сгорания газотурбинного двигателя
Кольцевая камера сгорания газотурбинного двигателя
Кольцевая камера сгорания газотурбинного двигателя
Кольцевая камера сгорания газотурбинного двигателя
Кольцевая камера сгорания газотурбинного двигателя

 


Владельцы патента RU 2476774:

СНЕКМА (FR)

Кольцевая камера сгорания газотурбинного двигателя содержит: корпус, по меньшей мере, с одним отверстием отбора воздуха, которое размещается на входе в камеру; устройство подачи топлива в камеру. Устройство подачи топлива в камеру включает в себя множество расположенных по окружности инжекторов, среди которых, по меньшей мере, один расположен рядом с данным отверстием отбора. Устройство подачи топлива содержит средство уменьшения количества поступающего топлива в инжектор, расположенный рядом с отверстием отбора, чем другие топливные инжекторы. Изобретение позволяет уменьшить горячие точки в зоне после камеры сгорания, образуемые в результате отбора. 2 н. и 7 з.п. ф-лы, 5 ил.

 

Настоящее изобретение относится к области газотурбинных двигателей и направлено, в частности, на функционирование камер сгорания с целью улучшения, в частности, температурного профиля на выходе из камеры сгорания.

Газотурбинный двигатель, такой как двигатель, формирующий газы, приводящие в движение летательный аппарат, содержит средство сжатия поступающего в камеру сгорания воздуха, в которой воздух смешивается с топливом и сгорает. Образованные в камере сгорания газы проходят через рабочие колеса турбины, в которых происходит снижение давления газов, а затем их удаление. Турбины приводят в движение различные колеса компрессора, в том числе вентилятор турбореактивного двигателя. В летательном аппарате отбор мощности и сжатого воздуха происходит для выполнения многочисленных вспомогательных функций. В частности, отбор воздуха осуществляется в расположенном непосредственно после диффузора сжатого воздуха пространстве, выходящем в камеру сгорания.

Воздух удаляется через отверстия отбора, расположенные на корпусе камеры сгорания, в многочисленных точках этого кольцеобразного пространства.

Теперь на двигатель возлагается функция обеспечения летательного аппарата воздухом для осуществления широкого спектра задач, вплоть до работы на полную мощность. Такой отбор оказывает влияние на качество топлива.

В связи с этим на выходе камеры сгорания отмечается появление горячих точек. Анализ проблемы показал, что эти зоны повышенных температур располагаются в задней части, в спутном следе отверстий отбора. Явление связано с установкой всех топливных инжекторов вокруг оси. Действительно, процесс сгорания в кольцевой камере распадается на множество очагов горения, которые располагаются вслед за топливными инжекторами. Топливо впрыскивается в переднюю часть камеры инжекторами через отверстия, выполненные в основании камеры, а сгорание является результатом смешения воздуха, поступающего через эти отверстия, с топливом. Было отмечено, что отбор воздуха посредством отверстий отбора, поскольку они в необходимой степени локализованы, оказывал влияние на качество горения в очагах, расположенных сразу после этих отверстий отбора. Воздуха, удаляемого через эти отверстия отбора, не хватает для очагов горения, расположенных в этой же зоне. Из этого следует образование чрезмерной насыщенности топлива в этих зонах, что приводит к повышению температуры топочных газов, в связи с чем отмечается неоднородный температурный профиль после камеры.

Задача изобретения - улучшение температурного профиля газов на выходе из камеры сгорания и уменьшение горячих точек, которые ухудшают прочность конструктивных элементов, расположенных в этой зоне, в частности направляющих сопловых аппаратов высокого давления.

Согласно изобретению данная задача решается путем использования кольцевой камеры сгорания газотурбинного двигателя, которая содержит корпус, по меньшей мере, с одним отверстием отбора воздуха, расположенным на входе в камеру, устройство подачи топлива в камеру посредством множества топливных инжекторов, расположенных по окружности, при этом, по меньшей мере, один инжектор расположен рядом с данным отверстием отбора, отличающейся тем, что устройство подачи топлива содержит устройство подачи меньшего количества топлива в инжектор, расположенный рядом с отверстием отбора, по сравнению с другими топливными инжекторами.

Преимуществом предлагаемого в изобретении решения является возможность при помощи простого устройства добиться одинаковой насыщенности топливом по всех точках камеры сгорания. Из этого следует ограничение отмечаемых спутных следов и улучшение температурного графика в режиме работы на полную мощность. Следствием этого является повышение срока эксплуатации направляющих сопловых аппаратов высокого давления, установленных непосредственно после камеры сгорания.

Согласно другому отличительному признаку средство уменьшения количества подаваемого топлива устанавливается для подачи в инжектор, расположенный рядом с отверстием отбора воздуха, топлива меньше на 3-10%, чем в другие инжекторы.

Согласно одному варианту осуществления изобретения данное средство уменьшения количества подаваемого топлива является мембраной в питательной линии инжектора.

Согласно другому варианту осуществления изобретения топливные инжекторы содержат питательные линии для работы в режиме малого газа и питательные линии для работы в режиме на полную мощность с устройством управления подачи в питательную линию, обеспечивающую работу на полную мощность, при этом средство уменьшения количества подаваемого топлива установлено для оказания воздействия на данное средство управления.

В частности, устройством управления является заслонка клапана, возвращаемая в исходное положение пружиной, при этом средство уменьшения количества подаваемого топлива образовано пружиной, обладающей определенным коэффициентом упругости.

Согласно другому варианту осуществления изобретения устройство подачи содержит коллектор, с которым соединены отдельные питательные линии инжекторов, при этом питательная линия инжектора, расположенного рядом с отверстием отбора, управляется посредством клапана, положение которого определено таким образом, чтобы обеспечивалась подача меньшего количества топлива по сравнению с другими инжекторами.

Другие отличительные признаки и преимущества станут яснее после изучения прилагаемого описания способов осуществления изобретения, которые не носят ограничительного характера, со ссылкой на прилагаемые фигуры чертежа, на которых:

Фиг.1 изображает выполненный в осевом разрезе вид половины камеры сгорания газотурбинного двигателя;

Фиг.2 изображает кольцевую камеру сгорания двигателя со стороны поступления воздуха в направлении задней части относительно движения потока газов;

Фиг.3 - инжектор аэромеханического типа с двумя параллельными трубками подачи топлива;

Фиг.4 - инжектор с одной трубкой подачи топлива;

Фиг.5 изображает вариант осуществления изобретения.

На фиг.1 изображен в разрезе частичный вид половины камеры сгорания 11 турбореактивного двигателя 10 самолета. Камера сгорания, имеющая в целом кольцевую геометрическую форму, содержит основание 12 камеры с отверстиями, внутри которых располагаются распылительные головки 14 определенного количества инжекторов 15, закрепленных на корпусе 16, окружающем камеру сгорания. Инжекторы 15 равномерно размещены по окружности. Сжатый воздух, который подается из компрессора высокого давления, расположенного в передней части (не показан), поступает в корпус через кольцеобразный диффузор 18. Направляющими листами 19, которые покрывают основание камеры 12, горячий воздух разделяется на два потока, при этом один поток проходит сквозь корпус 16, огибая камеру сгорания 11, перед тем как попасть в ее заднюю часть, а другой поток поступает в камеру сгорания через отверстия между направляющим листом и отверстиями основания камеры 12, после чего смешивается с топливом, которое посредством распылительных головок впрыскивается в камеру сгорания. Топливо воспламеняется в результате замыкания свечи зажигания 17, расположенной в углу конуса, распыляющего топливо, что приводит к образованию газов, подаваемых в турбину высокого давления, расположенную в задней части (не показана). Каждый инжектор 15 содержит рукав инжектора, удерживающего и обеспечивающего подачу в распылительную головку 14. Рукав изогнут таким образом, чтобы он мог удерживать распылительную головку в положении, перпендикулярном основанию камеры. В конструкции камеры сгорания, к которой применимо предлагаемое изобретение, отверстия 20 отбора воздуха выполняются в корпусе 16. Отверстия отбора воздуха соединены с кольцевой зоной, расположенной между диффузором 18 и направляющими листами 19.

На фиг.2 изображена камера сгорания, расположенная соосно с двигателем, от входа к выходу согласно направлению движения потока газов. Инжекторы 15 равномерно располагаются вокруг камеры. В данном случае они образованы трубками 151, соединенными индивидуальными регуляторами подачи 152 с кольцевым трубопроводом 153, по которому топливо распределяется по трубкам 152, обеспечивающим подачу топлива в различные инжекторы. Инжекторы располагаются в предназначенных для каждого из них отверстиях, выполненных в листах 19, для подачи топлива внутрь камеры сгорания. На данной фигуре чертежа изображена трубка отбора 21, которая включает в себя два участка трубки 21а и 21b, каждый из которых соединен соответственно с отверстиями отбора 20а и 20b, которые оба выполнены на корпусе камеры сгорания. Два участка трубки соединяются в одну трубку 21, которая направляет удаляемый воздух в различные зоны применения.

На данной фигуре чертежа отчетливо видно, что два отверстия 20а и 20b располагаются непосредственно перед определенной частью инжекторов. В данном случае речь идет об инжекторах 15а и 15b, с одной стороны, и инжекторах 15с и 15d, с другой стороны. Поступающий из диффузора 18 воздух образует кольцеобразный поток, который подразделяется на потоки первичного воздуха, попадающие в каждое из отверстий 19а обтекателя 19 на входе в камеру 11 и с которыми соединены инжекторы 15. В процессе работы топливо, подаваемое каждым из инжекторов, смешивается с потоком первичного воздуха и образует такое же количество очагов горения, которые рассредоточены по окружности.

Поскольку подача топлива в инжекторы осуществляется одним и тем же способом из общей топливной системы, качество горения в каждом из очагов зависит от соотношения количества топлива и первичного воздуха. В частности, отбор воздуха через отводящие отверстия 20а и 20b приводит к изменению соотношения воздуха и топлива в зоне после инжекторов 15а, 15b и 15c, 15d. Возникающая в результате этого чрезмерная насыщенность топлива выражается в более высокой температуре топочных газов в очагах горения, которые взаимосвязаны с этими инжекторами, чем в других очагах. Из этого следует кольцеобразный температурный профиль после камеры сгорания, который содержит более горячие точки.

Согласно предлагаемому изобретению данная проблема решается путем уменьшения подачи топлива в вышеупомянутые инжекторы, который позволяет добиться того, чтобы соотношение воздух/топливо было аналогичным, как и в других очагах.

Необходимые для решения этой задачи средства приведены в соответствие с устройствами впрыска.

Как это известно, инжекторы обеспечивают подачу топлива в камеру сгорания во время запуска двигателя и его нормальной работы. В основном существуют два типа инжекторов, а именно: так называемые «аэромеханические» инжекторы, разработанные для двух топливных систем (первичная и вторичная схемы подачи топлива), которые зависят от режимов работы двигателя (пуск, переход от работы в режиме холостого хода к работе на полную мощность), и так называемые «аэродинамические» инжекторы, которые содержат только одну топливную систему, используемую на всех режимах работы.

В случае применения аэромеханического двухсоплового устройства инжектор содержит рукав, который крепится к корпусу камеры сгорания и завершается распылительной головкой. Пример аэромеханического устройства впрыска изображен на фиг.3. Каждый рукав 151 содержит, например, две трубки, как и в устройстве, описание которого приведено в патенте ЕР 1770333 от имени заявителя, в том числе первую внешнюю трубку 24, вокруг которой располагается защитный кожух 25, и вторую внутреннюю трубку 26, устанавливаемую соосно во внешней трубке таким образом, чтобы образовались два коаксиальных канала, в том числе центральный канал 28, ограниченный данной внутренней трубкой, и периферийный, имеющий кольцеобразное сечение канал 29, располагаемый вокруг центрального канала и ограниченный двумя, внутренней и внешней, трубками 24, 26. Каждый рукав инжектора 151 соединен с двумя топливными системами, что позволяет привести подачу топлива в соответствие с различными рабочими режимами двигателя. Выделяется первичный контур подачи топлива для работы в режиме торможения и на малой мощности, в которых подача топлива осуществляется в малых количествах и постоянно независимо от режима работы двигателя, и вторичный контур подачи топлива, в котором количество подаваемого топлива в основном меняется от малых, даже нулевых, до максимальных значений.

Два топливных канала 28 и 29 соединены, например, с дозатором 152, описание типа которого приведено в патенте FR 2540186 или также ЕР 1209338.

При помощи насоса топливо подается под давлением в устройство 152 через впускной топливозаборник 31. Этот заборник соединен с запорным клапаном 32, который открывается, когда давление топлива превышает первый порог, и остается открытым во время работы двигателя. После запорного клапана топливо непрерывно подается по переходному каналу 32а к первому каналу 28, вплоть до распылительной головки. Управление другой частью топлива, образующей вторичный поток, осуществляется посредством дозирующего клапана. Таким образом, вторичный поток контролируется устанавливаемым после запорного клапана 32 дозирующим клапаном 34, который предназначен для открывания и дозировки топлива после достижения давления, превышающего первый порог. После клапана 34 топливо подается по переходному каналу 34а до канала 29, откуда оно направляется к распылительной головке. Клапан 34 открывается в результате давления топлива на возвратную силу пружины 35.

Решения, базирующиеся на достигнутом уровне техники, направлены на регулировку вспомогательного дозирующего клапана топлива таким образом, чтобы количество подаваемого топлива было, по возможности, максимально одинаковым во всех инжекторах одной и той же камеры сгорания. В соответствии с изобретением осуществляется усовершенствование регулировки дозирующих клапанов, соединенных с инжекторами 15а-15d, таким образом, чтобы количество подаваемого в них топлива было меньше на определенную величину, а именно на 3-10%, по сравнению с количеством подачи в другие инжекторы камеры сгорания. В результате уменьшения количества подаваемого топлива снижается насыщенность топливной смеси в очагах горения, расположенных в районе отверстий отвода воздуха.

Средство регулировки дозирующих клапанов 34 заключается в регулировке пружин 35, которые с ними сопряжены.

Подача топлива в инжектор 15' аэродинамического типа, как это было показано на фиг.4, осуществляется, в частности, через дозирующий клапан, который устанавливается для открытия под определенным давлением подачи топлива и остается открытым в случае увеличения этого давления подачи для обеспечения подачи топлива, а затем его выброса к носику инжектора, на уровне которого топливо распыляется в камере сгорания.

В питательной линии 152' рукавов инжектора 151' определение количества подачи осуществляется посредством неподвижно установленной мембраны. Эти мембраны в обычном исполнении идентичны и обеспечивают подачу одинакового количества топлива в различные инжекторы. Такая мембрана изображена на фиг.4. Монотрубчатый рукав инжектора 15' соединен с трубопроводом подачи топлива, дозированное поступление в который осуществляется посредством заборника 40, содержащего мембрану 41, имеющую выверенные размеры сечения. Согласно изобретению выбирается мембрана, имеющая соответствующие выверенные размеры и позволяющая, чтобы количество топлива, поступающего в инжекторы 15'а-15'd, положение которых соответствует положению инжекторов 15а-15d, изображенных на фиг.2, было меньше, чем количество топлива, поступающего в другие инжекторы.

Согласно одному варианту осуществления изобретения топливные инжекторы 15а-15d или 15'-15'd снабжаются по каналам, отличающимся от каналов подачи топлива в другие инжекторы, которые управляются посредством электроклапанов или регулируемых клапанов.

Как это показано на фиг.5, трубопровод, по которому осуществляется подача топлива в инжекторы 15а-15d, управляется посредством электроклапана или клапана 50. Электроклапан принимает два возможных положения: положение открытия и положение ограниченного пропуска, позволяющее создать потерю нагрузки в соответствующем канале. Когда через отверстия отбора не производится отбор воздуха, электроклапан открыт. Совокупность инжекторов функционирует аналогичным образом. Когда происходит отбор, электроклапан находится в положении, обеспечивающем создание потери нагрузки в канале подачи топлива в инжекторы 15а-15d. В результате такой потери нагрузки происходит существенное уменьшение поступающего в инжекторы топлива.

В случае если порядок регулировки функционирования отбора носит более сложный характер, то устанавливается регулируемый клапан, который регулируется в зависимости от количества отбираемого воздуха с целью оптимизации выравнивания насыщенности инжекторов на всех этапах полета.

Представленные примеры не носят ограничительного характера, и возможны другие варианты осуществления изобретения. Таким образом, предлагаемое изобретение не ограничивается отбором посредством выполненных на корпусе двух отверстий, возможны другие варианты компоновки.

1. Кольцевая камера сгорания газотурбинного двигателя содержит: корпус, по меньшей мере, с одним отверстием отбора воздуха, которое размещается на входе в камеру; устройство подачи топлива в камеру, которое включает в себя множество расположенных по окружности инжекторов, среди которых, по меньшей мере, один расположен рядом с данным отверстием отбора, отличающаяся тем, что устройство подачи топлива содержит средство уменьшения количества поступающего топлива в инжектор, расположенный рядом с отверстием отбора, чем другие топливные инжекторы.

2. Камера сгорания по п.1, в которой вышеупомянутое средство уменьшения количества поступающего топлива устанавливается для подачи топлива в инжектор, расположенный рядом с отверстием отбора воздуха, меньше на 3-10%, чем в другие инжекторы.

3. Камера сгорания по п.1, в которой средство уменьшения количества подаваемого топлива является неподвижно установленной в питательной линии инжектора мембраной.

4. Камера сгорания по п.1, в которой топливные инжекторы содержат источник питания для работы в режиме холостого хода и источник питания для работы в режиме на полную мощность с устройством управления подачи в источник питания в режиме работы на полную мощность, при этом средство уменьшения количества подаваемого топлива установлено для оказания воздействия на данное средство управления.

5. Камера сгорания по п.4, в которой устройством управления является клапан, возвращаемый в исходное положение пружиной, при этом средство уменьшения количества подаваемого топлива образовано пружиной, обладающей заданным коэффициентом упругости.

6. Камера сгорания по п.1, в которой устройство подачи содержит коллектор, с которым соединены отдельные питательные линии инжекторов, при этом питательная линия инжектора, расположенного рядом с отверстием отбора, управляется посредством клапана, положение которого определено таким образом, чтобы сократить подачу топлива по сравнению с другими инжекторами.

7. Камера сгорания по п.6, в которой клапаном является электроклапан.

8. Камера сгорания по п.6, в которой клапан отрегулирован в зависимости от количества отбираемого воздуха.

9. Газотурбинный двигатель содержит камеру сгорания по любому из пп.1-8.



 

Похожие патенты:

Горелка // 2470229

Изобретение относится к распределителю топлива, в частности, для горелки и завихрителя. .

Изобретение относится к огнеупорной амбразуре горелки. .

Изобретение относится к ракетным и к воздушным двухконтурным турбореактивным и прямоточным двигателям и предназначено для использования в авиации и космонавтике.

Изобретение относится к узлу сгорания для газотурбинного двигателя

Изобретение относится к области авиационной техники. Сверхзвуковой плазмохимический стабилизатор горения для прямоточной камеры сгорания состоит из установленных в проточной части камеры сгорания двух последовательно расположенных по потоку электродов, выполненных в виде обтекаемых пилонов с симметричными аэродинамическими профилями, один из которых - анод, электрически изолирован от металлической стенки камеры сгорания и оборудован трубкой для подвода топлива и инжекторами для впрыска топлива в поток, при этом анод имеет излом так, что корневая часть анода имеет отрицательную стреловидность относительно направления потока, а концевая - нулевую стреловидность, а второй электрод - катод расположен в следе за первым и непосредственно закреплен на стенке камеры сгорания, в анод дополнительно встроены трубка и инжекторы для впрыска в поток одновременно с топливом химически активных добавок, торец концевой части анода со стороны набегающего потока имеет выступ в виде тонкой прямоугольной пластины, расположенной в плоскости симметрии пилона, задняя кромка пластины скошена и имеет скругления в угловых точках, при этом угол между торцевой поверхностью и задней кромкой анода также скруглен. Кроме того, на задней кромке концевой части анода в зоне формирования области пониженного давления может быть расположен зубец, например, треугольной или иной формы для обеспечения привязки к нему канала разряда. Изобретение позволяет обеспечить надежное воспламенение и стабилизацию горения углеводородных топлив в прямоточных сверхзвуковых камерах сгорания в условиях, когда традиционные газодинамические методы не позволяют этого сделать (низкие статические температуры и давления, бедные смеси). 1 з.п. ф-лы, 2 ил.

Изобретение относится к устройству сгорания, в частности газотурбинному двигателю, содержащему: трубопровод подачи топлива в устройство сгорания для обеспечения подачи всего топлива в устройство сгорания; по меньшей мере одну горелку, включающую множество трубопроводов подачи топлива по меньшей мере в одну горелку, при этом подача топлива в множество трубопроводов подачи топлива по меньшей мере в одну горелку соответствует общей подаче топлива в трубопровод подачи топлива в устройство; объем сгорания, связанный по меньшей мере с одной горелкой; датчик температуры, расположенный в устройстве с возможностью передачи информации о температуре, относящейся к части устройства, которая подлежит защите от перегрева; датчик давления, предназначенный для передачи информации о давлении внутри объема сгорания; и систему управления. Система управления предназначена для изменения подачи топлива в одну или более горелок на основе информации о температуре и информации о давлении и дополнительной информации, при этом дополнительная информация указывает ход изменения во времени сигнала в интервале времени, заданном с помощью информации времени. Технический результат - сохранение температуры подлежащей защите части ниже заданного предела максимальной температуры и удерживание изменений давления внутри объема сгорания ниже заданного предела максимального изменения давления, при одновременном сохранении общей подачи топлива в трубопроводе подачи топлива в устройство по существу постоянной. 17з.п. ф-лы, 6 ил.

Изобретение относится к энергетическому, химическому и транспортному машиностроению и может быть использовано в камерах сгорания газотурбинных установок. Предложен способ сжигания топлива, заключающийся в предварительном разделении потока воздуха на коаксиальные кольцевые струи, закрутке соседних смежных струй в противоположных направлениях, причем ближайшие одна к другой части соседних закрученных в противоположном направлении струй подают в радиальном направлении навстречу одна другой с образованием турбулентного сдвигового слоя, при этом подачу топлива осуществляют в этот слой для последующего воспламенения образовавшейся топливовоздушной смеси. Одну часть топлива предварительно, непосредственно после разделения потока воздуха на коаксиальные кольцевые струи, подают в образовавшиеся вращающиеся коаксиальные кольцевые струи тангенциально, противоположно направлению вращения коаксиальной кольцевой струи воздуха предпочтительно в сторону, противоположную ее осевому движению. Оставшуюся часть подают в образованный турбулентный сдвиговой слой, по направлению к зоне горения предпочтительно в виде полой кольцевой струи, образованной из нескольких сплошных одиночных струй топлива. Тангенциально подают 40-50% общего расхода топлива, а оставшуюся часть расхода топлива подают в образованный турбулентный сдвиговый слой. 1 з.п. ф-лы, 1 ил.

Кольцевая малоэмиссионная камера сгорания газотурбинного двигателя содержит корпус с расположенной в нем кольцевой жаровой трубой, включающей две отстоящие друг от друга кольцевые оболочки, соединенные между собой в передней по потоку части жаровой трубы фронтовым устройством, систему подачи топлива и, по меньшей мере, две запальные свечи. Фронтовое устройство снабжено горелочными модулями, расположенными в наружном и внутреннем концентричных рядах, каждый из которых снабжен топливной форсункой и осевым завихрителем воздуха. Фронтовое устройство дополнительно снабжено кольцевым стабилизатором пламени с топливовоздушными патрубками, равнорасположенными по окружности, размещенным между концентричными рядами модулей, кольцевыми щелевыми отверстиями подачи воздуха, расположенными между кольцевым стабилизатором пламени и концентричными рядами модулей. Система подачи топлива снабжена тремя каналами, где первый канал соединен с наружным рядом модулей, второй канал соединен с внутренним рядом модулей, а третий канал соединен с топливными форсунками патрубков кольцевого стабилизатора пламени. Запальные свечи размещены над наружным рядом модулей. Осевой завихритель воздуха каждого модуля выполнен с возможностью обеспечения закрутки воздушного потока в одну сторону, кроме осевых завихрителей модулей соседних с каждой запальной свечой, которые выполнены с возможностью обеспечения противоположной закрутки потока воздуха. Изобретение позволяет снизить уровень эмиссии вредных веществ, улучшить условия зажигания в камере сгорания и повысить компактность камеры сгорания. 4 з.п. ф-лы, 4 ил.

Камера сгорания содержит торцевую крышку, камеру воспламенения, расположенную за торцевой крышкой, форсунки, расположенные радиально в торцевой крышке и содержащие первое подмножество форсунок и второе подмножество форсунок. Камера сгорания содержит также закрепленный колпак, окружающий каждую форсунку из второго подмножества форсунок и проходящий за указанную форсунку в камеру воспламенения. В режиме пониженной мощности топливо, подаваемое в форсунки первого подмножества, воспламеняется, а подача топлива к каждой форсунке второго подмножества прекращена. Изобретение позволяет подавить преждевременное подавление горения и увеличение выбросов оксида углерода. 2 н. и 11 з.п. ф-лы, 9 ил.

Горелка газовой турбины содержит реакционную камеру (5) и множество выходящих в реакционную камеру (5) реактивных сопел (6). Реактивными соплами (6) с помощью струи (2) флюида через выпускное отверстие (22) флюид подается в реакционную камеру (5). Реакционная камера (5) предназначена для сжигания флюида с образованием горячего газа (4). В, по меньшей мере, одном реактивном сопле (6, 6а, 6b, 6с) кольцевой зазор (8) расположен вокруг струи (2) флюида. Часть горячего газа (4) засасывается из реакционной камеры (5) и против направления потока флюида поступает в кольцевой зазор (8) и внутри реактивного сопла (6, 6а, 6b, 6с) смешивается со струей (2) флюида. Кольцевой зазор (8) образован с помощью насадка (12, 12а, 12b). Насадок (12а) на конце, расположенном выше по течению, имеет утолщение (15). Изобретение позволяет стабилизировать пламя такой горелки. 2 н. и 23 з.п. ф-лы, 7 ил.

Камера сгорания для газовой турбины содержит группу радиально внешних сопел, по меньшей мере центральное сопло, первую и вторую камеры сгорания. Внешние сопла расположены по существу по кольцевой схеме и выпускной конец каждого из них расположен с возможностью подачи топлива и/или воздуха в первую камеру сгорания. Выпускной конец центрального сопла расположен в осевом направлении перед выпускными концами радиально внешних сопел и выполнен и размещен с возможностью подачи топлива и воздуха во вторую камеру сгорания. Вторая камера сгорания расположена в осевом направлении перед первой камерой сгорания, открыта в нее и имеет длину, достаточную для поддержания факела пламени центрального сопла ограниченным указанной второй камерой сгорания. Выпускные концы радиально внешних сопел удерживаются в кольцевой пластине. Вторая камера сгорания ограничена трубчатым элементом, проходящим от указанной кольцевой пластины в направлении вверх по течению. Изобретение позволяет уменьшить уровень СО в камере сгорания при низкой нагрузке или при ее отсутствии, а также увеличивает надежность оборудования. 3 н. и 15 з.п. ф-лы, 4 ил.

Камера сгорания в сборе содержит основной корпус, формируемый подающим коллектором с системой подачи топлива и топливными форсунками, продолжающимися от подающего коллектора и снабжаемыми топливом посредством системы подачи топлива подающего коллектора. Подающий коллектор имеет сандвич-конструкцию и сформирован из отдельных элементов. Количество отдельных элементов коллектора превышает количество типов топлива в системе подачи топлива. Система подачи топлива содержит по меньшей мере один газопроводный канал и по меньшей мере один жидкотопливный канал. Подающий коллектор сформирован из по меньшей мере трех отдельных элементов. Изобретение позволяет создать эффективную камеру сгорания в сборе при значительном снижении затрат на изготовление основного корпуса. 2 н. и 10 з.п. ф-лы, 6 ил.

Камера сгорания газовой турбины содержит пилотную топливную форсунку, расположенную в среднем участке цилиндра, открывающегося на одном конце в камеру сгорания. Пилотная топливная форсунка содержит топливную форсунку, а также радиально отстоящую вокруг внешнего периметра топливной форсунки цилиндрическую наружную обшивку. Между топливной форсункой и наружной обшивкой расположен пилотный турбулизирующий элемент. Несколько основных горелок расположены относительно радиального направления вокруг пилотной топливной форсунки. Пилотный конус выполнен с внутренней стороной и внешней стороной и расположен со стороны камеры сгорания на пилотной топливной форсунке и со стороны камеры сгорания имеет отверстие, так что при смешивании воздуха и пилотного топлива в пилотном конусе (4) образуется пилотное пламя для воспламенения впрыскиваемого от основных горелок топлива. Пилотный конус имеет на своей внутренней стороне и внешней стороне турбулизирующие генераторы. Турбулизирующие генераторы являются трапециевидными и/или треугольными полосами, расположенными в отверстии пилотного конуса по всей окружности отверстия. Трапециевидные и/или треугольные полосы расположены на пилотном конусе попеременно под углом +/-30°. Изобретение направлено на создание камеры сгорания, которая может эксплуатироваться с повышенной температурой пламени, и, следовательно, с увеличенным кпд. 3 н. и 2 з.п. ф-лы, 9 ил.
Наверх