Вихревая установка для газоразделения

Изобретение относится к вихревым установкам для газоразделения. Вихревая установка для газоразделения содержит входное сопло для ввода сжатого воздуха в рабочую камеру энергетического разделения, вентиль для регулирования расхода горячего потока и диафрагму с центральным отверстием для отвода охлажденного потока газа. Диафрагма соединена с патрубком для отвода охлажденного потока. На выходе горячего потока из рабочей камеры вихревой трубы и на конце патрубка для отвода охлажденного потока установлены улитки. Изобретение направлено на повышение термодинамической эффективности. 3 ил.

 

Изобретение относится к установкам, использующим вихревой эффект Ранка, и может быть использовано в различных отраслях промышленности (нефтяной, газовой, химической и др.)

Известна вихревая холодильная камера для получения низких температур в замкнутом объеме с лопастями на «горячем» конце вихревой трубы, раскручивающими поток при его движении в щели диффузора (А.с. №152469, М.Кл. F25В 9/02).

Известны также вихревые трубы, у которых на «горячем» конце устанавливается крестовина для преобразования вращающегося периферийного потока в осевой А.П.Меркулов. Вихревой эффект и его применение в технике. Изд. 2 перераб. и доп. - Самара. Оптима. 1997.

Недостатком указанных конструкций являются высокие гидравлические сопротивления при преобразовании вращающегося трехмерного потока газа в одномерный.

Техническим результатом заявляемого изобретения является снижение гидравлических сопротивлений при преобразовании вращательного трехмерного движения газа в одномерное при выходе из вихревой трубы подогретого и охлажденного потоков газа.

Указанный технический результат достигается тем, что в вихревой установке для газоразделения, содержащей входное сопло для ввода сжатого воздуха в рабочую камеру энергетического разделения, вентиль для регулирования расхода горячего потока, диафрагму с центральным отверстием для отвода охлажденного потока газа, согласно заявляемому изобретению диафрагма соединена с патрубком для отвода охлажденного потока, на выходе горячего потока из рабочей камеры вихревой установки и на конце патрубка для отвода охлажденного потока установлены улитки.

Расчеты показали, что преобразование вращающегося трехмерного потока в одномерный с помощью улитки приводит к снижению гидравлических сопротивлений и повышению термодинамической эффективности вихревого эффекта.

На фиг.1 представлена схема вихревой установки для газоразделения, на фиг.2 и 3 - сечение А-А и Б-Б соответственно.

Вихревая установка состоит из входного тангенциального сопла 1, корпуса камеры энергетического разделения 2, вентиля 3, диафрагмы 4 и патрубка 5 для отвода охлажденного потока газа с улиткой 6 на конце для преобразования трехмерного вращательного движения газа в одномерное. На выходе горячего потока из рабочей камеры вихревой трубы также установлена улитка 7.

Отвод газов при работе вихревой трубы осуществляется следующим образом. Через входное тангенциальное сопло 1 сжатый газ поступает в корпус камеры энергетического разделения 2 и, если площадь сечения вентиля 3 достаточна для прохода всей массы газа, вошедшей в тангенциальное сопло 1, то весь газ выходит через вентиль 3. При прикрытии вентиля 3 часть газа переходит на меньший радиус и этот приосевой вращающийся поток движется к диафрагме 4. Из диафрагмы 4 газ попадает в патрубок для отвода охлажденного потока газа 5 с улиткой 6 на конце и из нее поступает в технологическую цепь.

Для снижения гидравлических сопротивлений на выходе из вентиля 3 для отвода подогретого потока газа также установлена улитка 7, в которой трехмерный вращающийся поток газа преобразуются в одномерный.

Технический результат, достигаемый при решении поставленной задачи, состоит в снижении гидравлических сопротивлений при преобразовании трехмерного вращательного движения в одномерное при истечении подогретого газа из вентиля и охлажденного газа из патрубка для его отвода в технологическую цепь.

Технико-экономический эффект от реализации данного изобретения заключается в повышении термодинамической эффективности вихревой установки и за счет этого снижении стоимости подогрева и охлаждения потоков газа на выходе из вентиля и патрубка для отвода охлажденного потока.

Вихревая установка для газоразделения, содержащая входное сопло для ввода сжатого воздуха в рабочую камеру энергетического разделения, вентиль для регулирования расхода горячего потока, диафрагму с центральным отверстием для отвода охлажденного потока газа, отличающаяся тем, что диафрагма соединена с патрубком для отвода охлажденного потока, на выходе горячего потока из рабочей камеры вихревой трубы и на конце патрубка для отвода охлажденного потока установлены улитки.



 

Похожие патенты:

Изобретение относится к вентиляционным устройствам и может быть использовано для создания перемещающихся воздушных потоков с одновременным охлаждением в технических объектах и помещениях.

Изобретение относится к системам охлаждения воздуха с применением вихревых труб и может быть использовано в системах кондиционирования воздуха в производственных помещений и салонах транспортных средств, в холодильных установках, эксплуатируемых в производственных помещениях и в транспортных средствах, в системах охлаждения режущего инструмента и других устройствах, для функционирования которых необходимо или желательно охлаждение воздуха, а условия их эксплуатации некритичны к повышенным уровням шума.

Изобретение относится к акустическим способам тепломассоэнергообмена жидких, газовых, газожидкостных смесей, взвесей и дисперсий. .

Изобретение относится к вихревым аппаратам и может применяться для получения холода и тепла и очистки газовых смесей от конденсирующихся примесей. .

Изобретение относится к теплофизике, газодинамике, энергетике и касается способа вихревого энергоразделения потока газа. .

Изобретение относится к вихревым трубам для получения охлажденного и подогретого потоков газа

Изобретение относится к холодильной технике

Изобретение относится к технологии подготовки и переработки попутного газа в товарную продукцию. Способ заключается в том, что попутный нефтяной газ после охлаждения в рекуперативном теплообменнике сепарируют в многоступенчатом центробежном сепараторе от нефтебензиновых жидких фракций, водного конденсата и механических примесей, которые выводят для дальнейшей переработки на газофракционирующую установку, а газообразную фракцию направляют на двухступенчатое компремирование. На первую ступень совместно с отсепарированной газообразной фракцией подают паровую фазу из наземного изотермического хранилища для повторного сжижения, а сжатый после первой ступени газ направляют на сжижение в трехпоточную вихревую трубу с образованием холодного, горячего газообразных и жидкого потоков. На вторую ступень компремирования направляют смесь горячего потока из вихревой трубы и холодного потока после рекуперативных теплообменников. Сжатый на второй ступени поток газа после рекуперативного охлаждения направляют в сепаратор, после чего газообразную фракцию направляют в магистральный газопровод или топливную сеть, а сжиженный газ совместно с отсепарированной из горячего потока вихревой трубы жидкой фазой в наземное изотермическое хранилище. Использование изобретения позволит повысить эффективность технологических процессов для выделения целевых углеводородных фракций. 1 ил.

Изобретение относится к технологии подготовки и переработки попутного газа в товарную продукцию. Попутный газ, после отделения от него конденсата (нефтяных и бензиновых фракций), представляющий легкие фракции газа, охлаждают в теплообменнике, подвергают сепарации в центробежном сепараторе, в результате которой выделенный конденсат вместе с конденсатом после первичной сепарации поступает на разделение ректификацией на нефть и бензин, а легкие фракции подвергают двухступенчатому компремированию. После первой ступени газ разделяют на два потока. Первый поток направляют в трехпоточную вихревую трубу для энергетического разделения с образованием холодного, горячего газообразных и жидкого потоков. Второй поток охлаждают в рекуперативном теплообменнике холодным потоком вихревой трубы и разделяют сепарацией на газ и жидкость. Газ поступает на вторую ступень компремирования, а жидкость, представляющая собой газовый бензин, затем поступает на дальнейшую переработку. Компремированный во второй ступени газ охлаждается в рекуперативном теплообменнике дросселируемой жидкой фазой, отсепарированной из горячего потока вихревой трубы, и поступает в расходный сепаратор для разделения на сухой и сжиженный газ, которые выводятся с установки в качестве товарных. Использование изобретения позволит повысить эффективность сепарации газовой смеси. 1 з.п. ф-лы, 1 ил.

Изобретение относится к технологии подготовки и переработки природного или попутного нефтяного газов в сжиженный газ, представляющий собой пропан-бутановую фракцию. Исходный поток охлаждают, сепарируют и выделяют легкую часть низкомолекулярного углеводородного сырья с последующим его сжижением с выделением жидкой пропан-бутановой фракции в вихревом энергетическом разделителе. Вихревой энергетический разделитель представляет собой трехсекционную емкость, в которой вертикально размещена вихревая труба таким образом, что разделена на три секции горизонтальными перегородками - верхнюю, среднюю и нижнюю. При этом в верхней секции размещен холодный конец с теплообменником-змеевиком вихревой трубы, в средней - горячий конец, а в нижней - регулирующее устройство расхода горячего потока и сепарационное устройство по отделению из горячего потока жидкой фазы, содержащее клапан. Изобретение направлено на повышение ресурсов чистого углеводородного сырья, используемого во многих отраслях промышленности, когда исходное сырье содержит много нежелательных примесей. 2 ил.

Изобретение относится к энергетике. Вихревая труба состоит из соплового ввода, камеры энергоразделения, дросселя для торможения горячего потока и диффузора. Сопловой ввод содержит направляющие лопатки каплевидной формы, симметричные относительно оси, проходящей через кромку лопатки. Проточная часть соплового ввода, расположенная за направляющими лопатками, выполнена в виде поворота, ограниченного двумя поверхностями вращения, образующие которых представляют собой дуги. Направляющие лопатки соплового ввода выполнены с возможностью поворота относительно оси, перпендикулярной к плоскостям прилегания лопаток. Изобретение направлено на увеличение энергетической эффективности вихревой трубы, работающей как в дозвуковом, так и в сверхзвуковом режимах. 2 з.п. ф-лы, 3 ил.

Изобретение относится к газовой промышленности, в частности к вихревым преобразователям энергии перепада давлений на газораспределительных и газоперекачивающих станциях магистральных трубопроводов. Сущность изобретения состоит в том, что в способе вихревого редуцирования давления газа отбор части горячего потока осуществляется за конусной поверхностью регулирующего конуса, при этом смешивание оставшейся части горячего потока и холодного осевого потока осуществляется через отверстие в центральной части регулирующего конуса, а подача части горячего потока в осевую зону через центральное отверстие может осуществляться как напрямую, так и через дополнительный тангенциальный сопловый ввод для этого потока, при этом центральное отверстие выполнено конусным, а ввод газа в камеру разделения осуществляется наклонным к оси ввода. Изобретение позволяет обеспечить понижение давления газа без понижения его температуры. Происходит значительная экономия газа при его транспортировании и распределении на магистральных трубопроводах и газораспределительных и газоперекачивающих станциях. 2 ил.

Изобретение относится к газовой промышленности, в частности к вихревым преобразователям энергии перепада давлений на газораспределительных и газоперекачивающих станциях магистральных трубопроводов. В способе вихревого редуцирования газа часть "горячего" потока из камеры разделения эжектируется основным входным потоком и смешанный подогретый поток направляется в тангенциальное сопло ввода газа в камеру разделения. Изобретение позволяет обеспечить понижение давления газа без понижения его температуры. Происходит значительная экономия газа при его транспортировании и распределении на магистральных трубопроводах и газораспределительных и газоперекачивающих станциях. 2 ил.

Изобретение относится к криогенной технике, в частности к газовой промышленности, и может быть использовано для охлаждения любых газов. Охлаждающий комплекс каскадной холодильной установки содержит корпус с размещенными в нем двумя теплообменниками, основным и дополнительным с вихревым охладителем, имеющим отвод газа низкого давления. Отвод газа низкого давления соединен со входом в межтрубное пространство дополнительного теплообменника. Площадь сечения трубки дополнительного теплообменника и площадь сечения отвода газа низкого давления одинаковы. При использовании изобретения повышается эффективность охлаждения за счет обеспечения ее полноты между прямым потоком газа (газа условно высокого давления) и движущимся ему навстречу охлажденным обратным потоком (условно низкого давления). 1 табл., 1 ил.

Изобретение относится к устройствам для выделения жидкости из газового потока и может быть применено в газовой, нефтедобывающей, химической и других областях промышленности для осушки и очистки газов от дисперсной влаги, например, перед подачей углеводородных газов в магистральный газопровод для транспорта или для сжигания на энергетических установках. Устройство содержит корпус с входным и выходным патрубками, соосно установленную с ним вихревую камеру и закручивающее устройство с входными тангенциальными окнами, расположенное соосно с вихревой камерой. Входные окна закручивающего устройства выполнены в виде щелевых вводов, искривленных вдоль продольной оси, сужающихся к выпускному отверстию. Вихревая камера одним концом сообщена с камерой энергоразделения, выполненной в виде сопла Лаваля, в диффузорной части которого размещен с сепарационным зазором открытый конец цилиндрического участка камеры энергоразделения, второй открытый конец которого снабжен развихрителем в виде пластин, собранных крестообразно. Концы корпуса устройства для осушки сжатого газа жестко и разъемно сообщены с приемным блоком и блоком приема конденсата. Приемный блок содержит входной патрубок, вихревую камеру и патрубок отвода охлажденного потока газа, отделенный от вихревой камеры диафрагмой. Техническим результатом является устранение оседания и стекания обратно к сопловой коробке с дальнейшим затоплением ее конденсирующейся влагой, снижение диссипативных потерь теплового градиента и повышение эффективности конденсации в вихревом аппарате. 3 ил.
Наверх