Способ контроля прочности на сдвиг колец подшипников на шейке оси и устройство для его осуществления


 


Владельцы патента RU 2476839:

Учреждение образования "Белорусский государственный университет транспорта" (BY)

Изобретение относится к области машиностроения и транспорта. Сущность: тензометрический чувствительный элемент размещают соосно между напрессованным контролируемым кольцом подшипника и корпусом рабочего гидроцилиндра концентрично относительно последнего. Гидроцилиндр неподвижно скрепляют соосно с шейкой оси и соединяют с контролируемым кольцом продольными жесткими связями, для осуществления сжатия чувствительного элемента между последним и корпусом рабочего гидроцилиндра. Устройство содержит чувствительный тензометрический элемент и элементы для механического нагружения напрессованного контролируемого кольца. Чувствительный элемент, выполненный в виде месдозы, вмонтирован в стаканообразный ступенчатый корпус рабочего гидроцилиндра и размещен во внутренней полости меньшей его ступени. Внутри полости большей ступени размещены два свободно устанавливающихся расходящихся поршня. Поршень, расположенный со стороны открытого торца корпуса гидроцилиндра, выполнен с внутренней резьбовой частью для соосного закрепления последнего на торце шейки оси колесной пары. Второй внутренний поршень передает аксиальное усилие на торец месдозы через центрирующую шариковую опору, при этом второй торец месдозы упирается в донную часть меньшей ступени стаканообразного корпуса рабочего гидроцилиндра, который скрепляют с контролируемым кольцом при помощи продольных тяг и зажимных элементов. Технический результат: обеспечение стабильных метрологических характеристик и высокой точности измерений. 2 н. и 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области машиностроения и транспорта, а именно к механосборочному производству, в частности к сборке с натягом деталей типа вал-втулка тепловым способом, и предназначено для оценки прочности сопряжения внутренних колец двух рядом стоящих буксовых роликовых подшипников, напрессованных на шейку оси, при ремонте вагонов с полной ревизией буксовых узлов колесных пар их ходовых частей.

Известно применение способа контроля прочности напрессовки колец подшипников на шейки осей, заключающегося в определении разности величин диаметров посадочных поверхностей охватывающей и охватываемой деталей перед сборкой, не обеспечивает возможности получения вполне достоверных оценок фактической величины сопротивления посадки относительному сдвигу [1]. Кроме того, из-за дискретности контакта на отдельных участках сопряженных поверхностей фактические величины удельного давления в зоне сопряжения могут отличаться. Известно применение оценки прочности напрессовки колец, подшипников на шейках осей при помощи механического нагружения соединений с помощью простейшей технологической оснастки в виде простых кузнечных клещей [2].

Способ прямого контроля прочности сопряжения посадок по величине нормированного усилия относительного сдвига позволяет с большей достоверностью оценивать несущую способность соединений с гарантированным натягом. При увеличении сдвигающего усилия упругое деформирование микропрофилей поверхностей деталей в зоне их действительного контакта нарушается, происходит микроперемещение, которое в производственных условиях не учитывается, за счет частичного среза микронеровностей контактирующих поверхностей охватывающей и охватываемой деталей соединения.

Известна оценка качества металлоконструкций [3] с помощью тензодатчика измерения сил и напряжений в деталях и узлах машин и механизмов. Тензодатчик состоит из чувствительных элементов с тензорезисторами, включенными в электрический мост тензорезисторного усилителя, и содержит упругий элемент, выполненный в виде цилиндра, на наружной поверхности которого вдоль и поперек оси симметрии наклеены тензорезисторы «T», соединенные в мостовую измерительную схему. Наиболее близким к предлагаемому способу оценки прочности напрессовки колец буксовых подшипников на шейке оси колесной пары является техническое решение [4].

Указанные способы контроля не позволяют осуществить в ремонтной практике оценку прочности напрессовки колец подшипников на шейках осей колесных пар грузовых и пассажирских вагонов. Это обусловливает возникновение в роликовых буксовых узлах колесных пар вагонов таких неисправностей, как проворот кольца подшипника на шейке оси при малой величине фактического натяга в соединении по сравнению с нормативным значением, трещинообразование и отколы частиц металла из-за больших напряжений во внутреннем кольце подшипника при завышенных натягах посадок, разрыв внутреннего кольца роликового подшипника при напряжениях в нем, превышающих предел прочности материала при больших значениях фактического натяга в сопряжении.

При отсутствии эффективного контроля сборки рассматриваемых соединений неизбежны отцепки вагонов в ремонт из-за нагрева буксовых узлов, разрушение роликовых буксовых подшипников и изломы шеек колесных пар в эксплуатации.

Задачей изобретения является повышение надежности и технического ресурса колесных пар вагонов и их буксовых узлов за счет обеспечения эффективного контроля прочности на сдвиг на шейке оси напрессованных внутренних колец роликовых буксовых подшипников.

Технический результат достигается при реализации способа контроля прочности на сдвиг колец подшипников на шейке оси, при котором одно из контактирующих с шейкой оси кольцо соединяют с тензометрическим чувствительным элементом, а затем воздействуют на указанное кольцо механической нагрузкой, передаваемой на упомянутый чувствительный элемент. Контролируют прочность посадки на сдвиг по величине минимально допускаемых техническими условиями напряжений в чувствительном элементе устройства. Чувствительный элемент с наклеенными на нем тензорезисторами размещают соосно между контролируемым кольцом подшипника и корпусом рабочего гидроцилиндра концентрично относительно него. При измерениях поршень указанного гидроцилиндра неподвижно скрепляют соосно с шейкой оси, а корпус соединяют с контролируемым кольцом продольными жесткими связями. Механическое нагружение контролируемого соединения с натягом осуществляют продольным сдвигающим усилием, создаваемым давлением нагнетаемого в замкнутую изолированную полость рабочего гидроцилиндра масла (осуществляется аксиальное сжатия чувствительного элемента между кольцом подшипника и корпусом рабочего гидроцилиндра). Величину создаваемого рабочим гидроцилиндром продольного сдвигающего усилия, воздействующего на контролируемое кольцо подшипника через тензометрический чувствительный элемент, дополнительно проверяют по величине давления нагнетаемого масла в замкнутую изолированную полость высокого давления рабочего гидроцилиндра. Контролируют положение нагружаемого кольца подшипника на шейке оси при помощи индикатора часового типа (цена деления не более 0,002 мм), который неподвижно закрепляют на поршне рабочего гидроцилиндра, жестко скрепленного с шейкой оси, с упором измерительного стержня в торец контролируемого кольца подшипника (смещение кольца подшипника относительно шейки оси не допускается).

Таким образом, при реализации описанного выше технического решения определяют уровень напряжений на наружной поверхности чувствительного элемента путем тензометрирования, а прочность посадки кольца подшипника на сдвиг устанавливают путем пересчета измеренных напряжений по известным из теории упругости зависимостям (с помощью номограмм или обработки полученных данных на ЭВМ по разработанной программе с выводом результата на контрольный переносной прибор). Дополнительно контролируют допустимый уровень максимального давления масла в рабочей полости используемого гидроцилиндра устройства с помощью манометра.

Устройство для контроля прочности на сдвиг напрессованных колец подшипников на шейке оси колесной пары содержит чувствительный тензометрический элемент для определения аксиального сдвигающего усилия и элементы для механического нагружения охватывающей детали соединения. Чувствительный элемент выполнен в виде месдозы и вмонтирован в стаканообразный ступенчатый корпус рабочего гидроцилиндра, размещен во внутренней полости меньшей его ступени. В полости большей ступени размещены два расходящихся поршня, снабженные кольцевыми уплотнениями по своим наружным поверхностям. Поршень, расположенный со стороны открытого торца корпуса гидроцилиндра, выполнен с внутренней резьбовой частью для соосного закрепления его на торце шейки оси. Второй (внутренний) поршень передает аксиальное усилие от давления масла, нагнетаемого в гидроцилиндр между упомянутыми расходящимися поршнями на торец месдозы через центрирующую шариковую опору. Оппозитно расположенный второй торец месдозы упирается в донную часть меньшей ступени стаканообразного корпуса рабочего гидроцилиндра. Указанный корпус при осуществлении контроля жестко скрепляют с кольцом наружного или внутреннего буксовых подшипников продольными тягами с зажимными элементами. Последние изготовлены в виде разрезных колец, закрепляемых поочередно на наружных поверхностях колец переднего и заднего подшипников с помощью болтовых соединений, при этом выполнены зажимные элементы в одном блоке.

На чертеже изображено устройство для контроля прочности на сдвиг напрессованных колец подшипников на шейке оси колесной пары, продольный его разрез.

Устройство содержит выполненный в виде месдозы 1 чувствительный элемент с тензорезисторами «T», вмонтированный в стаканообразный ступенчатый корпус 2 рабочего гидроцилиндра и размещенный во внутренней полости меньшей его ступени 3, а внутри полости большей ступени 4 размещены два свободно установленных расходящихся поршня, снабженных кольцевыми уплотнениями 5 по своим наружным поверхностям, при этом поршень 6 выполнен с внутренней резьбовой частью для соосного своего закрепления на торце шейки оси 7 колесной пары, а второй внутренний поршень 8 передает аксиальное усилие, создаваемое давлением нагнетаемого через боковой штуцер 9 масла во внутреннюю полость 4 рабочего гидроцилиндра между упомянутыми расходящимися поршнями, на торец месдозы 1 через центрирующую шариковую опору 10, при этом второй торец месдозы упирается в донную часть меньшей ступени 3 стаканообразного корпуса 2 рабочего гидроцилиндра, который при осуществлении контроля жестко скрепляют с кольцом наружного 11 или внутреннего 12 буксовых подшипников при помощи продольных тяг 13, центрирующей плиты 14 и зажимных элементов 15 и 16. Зажимные элементы изготовлены в виде полуколец, закрепляемых на наружных поверхностях контролируемых колец подшипников поочередно при помощи болтовых соединений 17, при этом выполнены упомянутые зажимные элементы в одном жестко скрепленном блоке 18.

Контроль прочности напрессовки на продольный сдвиг осуществляется следующим образом. Устанавливают на наружную поверхность контролируемых колец подшипников 11 и 12 блок 18 зажимных элементов. Скрепляют на резьбе (М 110×4) поршень 6 и шейку оси 7 колесной пары, устанавливают кольцо 11 и жестко соединяют плиту 14 продольными тягами 13 с блоком 18. Затем при помощи болтовых соединений 17 закрепляют зажимной элемент 16 на конусной поверхности кольца 11 переднего подшипника. Подают масло под давлением Рм в полость 4 и фиксируют величину создаваемого аксиального распрессовочного (сдвигающего) усилия по показаниям, снимаемым с месдозы 1, и контролируют эти показания по величине давления Рм по манометру (на чертеже условно не показан). При проведении испытания соединения на сдвиг наблюдают за показаниями жестко закрепленного на поршне рабочего гидроцилиндра индикатора часового типа (условно не показан на чертеже), с упором измерительного стержня последнего в торец контролируемого подшипника. При минимальных допустимых нормативной документацией значениях измеряемых величин относительный сдвиг кольца на шейке оси не должен происходить. Допустимые минимальные значения усилия на сдвиг кольца подшипника определяются требованиями действующих НТПА (нормативно-технических и правовых актов) для сборки данных тепловых напрессовок роликовых колесных пар вагонов. Аналогично проверяют прочность напрессовки кольца 12 при его закреплении при помощи зажимного элемента 15. Контрольное усилие аксиального сдвига не должно превышать минимально допустимой прочности сопряжения, установленной НТПА для двух колец подшипников при минимальном значении допускаемого натяга в сопряжении. Данное устройство контроля позволяет оценивать прочность напрессовки на сдвиг и одного напрессованного на шейку оси кольца 12 заднего подшипника.

Источники информации

1. Гречищев Е.С., Ильяшенко А.А. Соединения с натягом: Расчеты, проектирование, изготовление. - М.: Машиностроение, 1981.

2. Инструктивные указание по эксплуатации и ремонту вагонных букс с роликовыми подшипниками. 3 - ЦВРК, М.: 2001. - с.77 (пп. 5.3.4.2).

3. Авторское свид. СССР №1656361, МПК7 G01L 1/22. Тензодатчик усилий / Зевельев С.Я., Галембиовский A.M., 1991. Бюл. №22.

4. Патент RU 2329478 C1, G01L 1/22. Способ неразрушающего контроля прочности напрессовки колец подшипников на шейке оси колесной пары и устройство для его осуществления / Сенько В.И., Чернин И.Л., Чернин Р.И., Сенько Н.Г. - 2008. - Бюл. №20 - прототип.

1. Способ контроля прочности на сдвиг колец подшипников на шейке оси, при котором одно из напрессованных на шейку оси колесной пары колец соединяют с тензометрическим чувствительным элементом, воздействуют на указанное кольцо внешней механической нагрузкой, передаваемой на упомянутый чувствительный элемент, и по замеряемому уровню напряженно-деформированного состояния последнего оценивают прочность посадки, отличающийся тем, что при измерении напряженного состояния используемого чувствительного цилиндрического элемента с тензорезисторами, наклеенными на его наружной поверхности, последний размещают соосно между напрессованным контролируемым кольцом подшипника и корпусом рабочего гидроцилиндра концентрично относительно последнего, при этом указанный гидроцилиндр неподвижно скрепляют соосно с шейкой оси и соединяют с контролируемым кольцом продольными жесткими связями для осуществления сжатия чувствительного элемента между последним и корпусом рабочего гидроцилиндра от продольного сдвигающего усилия, создаваемого в этом гидроцилиндре давлением нагнетаемого в него масла.

2. Способ контроля прочности на сдвиг колец подшипников на шейке оси по п.1, отличающийся тем, что величину создаваемого рабочим гидроцилиндром продольного сдвигающего усилия, воздействующего на контролируемое напрессованное кольцо подшипника через тензометрический чувствительный элемент, проверяют по величине давления нагнетаемого масла в замкнутую изолированную полость высокого давления рабочего гидроцилиндра.

3. Устройство для контроля прочности на сдвиг подшипников на шейке оси, содержащее чувствительный тензометрический элемент для определения величины аксиального сдвигающего усилия, воздействующего на проверяемое соединение с гарантированным натягом колесной пары, и элементы для механического нагружения напрессованного контролируемого кольца, отличающееся тем, что чувствительный элемент выполнен в виде месдозы и вмонтирован в стаканообразный ступенчатый корпус рабочего гидроцилиндра и размещен во внутренней полости меньшей его ступени, а внутри полости большей ступени размещены два свободно устанавливающихся расходящихся поршня, снабженные кольцевыми уплотнениями по своим наружным поверхностям, при этом поршень, расположенный со стороны открытого торца корпуса гидроцилиндра, выполнен с внутренней резьбовой частью для соосного закрепления последнего на торце шейки оси колесной пары, а второй внутренний поршень передает аксиальное усилие, создаваемое давлением нагнетаемого в гидроцилиндр масла во внутреннюю его полость между упомянутыми расходящимися поршнями, на торец месдозы через центрирующую шариковую опору, при этом второй торец месдозы упирается в донную часть меньшей ступени стаканообразного корпуса рабочего гидроцилиндра, который при осуществлении контроля жесткости скрепляют с кольцом наружного или внутреннего буксовых подшипников при помощи продольных тяг и зажимных элементов.

4. Устройство для контроля прочности на сдвиг колец подшипников на шейке оси по п.3, отличающееся тем, что зажимные элементы изготовлены в виде разрезных колец, которые поочередно закрепляют на наружных поверхностях напрессованных контролируемых колец переднего и заднего буксовых подшипников колесной пары с помощью болтовых соединений, при этом выполнены зажимные элементы в одном жестком блоке.



 

Похожие патенты:

Изобретение относится к области измерительной техники, а именно к многоканальным измерительным устройствам для измерения сил и моментов, действующих на модель летательных аппаратов в аэродинамической трубе.

Изобретение относится к контрольно-измерительной технике, в частности, для измерения деформаций в различных конструкциях посредством поляризационно-оптических преобразователей и может быть использовано в строительстве, на транспорте, в промышленных производствах, в контрольно-измерительной аппаратуре.

Изобретение относится к приборостроению, в частности к измерительным устройствам для измерения и регистрации сил взаимодействия колеса с рельсом. .

Изобретение относится к силоизмерительной технике и может быть использовано при изготовлении весоизмерительных приборов. .

Изобретение относится к области измерительной техники, в частности к тензорезисторным преобразователям силы, и может быть использовано в разработке и изготовлении датчиков для измерения диапазонов малых давлений.

Изобретение относится к области машиностроения и транспорта, а именно к механосборочному производству, в частности к сборке с гарантированным натягом деталей типа вал-втулка тепловым способом, и предназначено для оценки прочности сопряжения внутренних колец двух рядом стоящих буксовых роликовых подшипников, напрессованных на шейку оси колесной пары.

Изобретение относится к измерительной технике и может быть использовано в устройствах для защиты грузоподъемных машин и механизмов от перегрузок, в высокоточных тензометрических весах, а также в качестве преобразователя механических величин (давления, перемещения, деформации, усилия) в электрический сигнал в различных отраслях промышленности.

Изобретение относится к медицинской технике, а именно к устройствам для измерения усилий и/или моментов. .

Изобретение относится к области измерительной техники и может быть использовано для взвешивания, например, проката. .

Изобретение относится к силоизмерительной технике и может быть использовано для измерения усилий при контроле технологических процессов или при поверке рабочих датчиков силы.

Изобретение относится к области измерительной техники и может быть использовано для измерения усилий в подъемных устройствах

Изобретение относится к горному делу, в частности к приборам измерения проявления горного давления, а именно к датчикам для измерения натяжения анкера

Изобретение может быть использовано для измерения малых давлений с повышенной чувствительностью и точностью. Тензорезисторный преобразователь силы содержит упругий элемент, выполненный за одно целое с опорном кольцом. Упругий элемент выполнен с четырьмя сквозными отверстиями с поперечными прорезями в боковой грани. На плоской поверхности упругого элемента над сквозными отверстиями размещены тензорезисторы. Ширина плоской поверхности упругого элемента в местах расположения тензорезисторов выполнена переменной и определяется соответствующим математическим выражением. где b - максимальная ширина плоской поверхности упругого элемента; hmin - минимальная толщина поверхности упругого элемента над сквозным отверстием; l - длина рабочей части упругого элемента; ХT - текущая координата тензорезистора; r - радиус сквозного отверстия. Техническим результатом является увеличение чувствительности тензорезисторного преобразователя силы и повышение точности измерения малых давлений. 3 ил.

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, нагруженных осевой силой. Способ заключается в следующем. Спаренные тяги фиксируют относительно основания технологическими штырями, после чего натягивают одну тягу с контролем усилия, затем без контроля усилия вторую тягу до полного освобождения технологических штырей от зажима. Для обеспечения равномерной передачи управляющего момента необходимо, чтобы оси, проходящие через оси вращения и тяги рычагов, были перпендикулярны плоскости симметрии системы. Технический результат заключается в обеспечении заданного усилия натяжения тяг. 4 ил.

Изобретение относится к измерительной технике, в частности к устройству многокомпонентных тензометрических динамометров с внутренним каналом, и может быть использовано в различных областях техники (например, в робототехнике, экспериментальной гидро- и аэродинамике). Задачей, на решение которой направлено изобретение, является повышение потребительских качеств динамометра за счет обеспечения максимально возможного проходного сечения его внутреннего канала, используемого для размещения коммуникаций. Это достигается тем, что в динамометре, содержащем симметричные относительно продольной оси два жестких кольцевых основания, две взаимно перпендикулярные пары продольных упругих балок с поперечными подрезами на внутренних поверхностях, промежуточное основание в виде двух дополнительных жестких колец, которые соединены между собой посредством четырех продольных упругих пластин, крестообразно расположенных в поперечном сечении вдоль боковых граней упругих балок, и выполнены с лысками напротив соответствующих пар упругих балок, связанных с кольцами промежуточного основания со стороны, противоположной соединенному с соответствующей парой упругих балок кольцевому основанию, и тензопреобразователи, размещенные на гранях упругих балок и упругих пластин, жесткие кольца промежуточного основания размещены напротив поперечных подрезов противолежащих продольных упругих балок, а на поверхности лысок этих колец выполнены поперечные выступы с профилем поверхности по форме подрезов соответствующих продольных упругих балок, отделенные от поверхности указанных подрезов зазором, величина которого выполнена превышающей величину деформации продольных упругих балок и пластин при максимальной измеряемой нагрузке. 10 ил.

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, и может быть использовано в любой отрасли народного хозяйства, и, в частности, в ракетной технике. Устройство работает следующим образом. В двуплечих рычагах делаются отверстия таким образом, чтобы центры отверстий и оси вращения лежали в одной плоскости. Аналогично выполняются ответные отверстия в основании. Систему тяг в «расслабленном» состоянии устанавливают на основание. В совмещенные отверстия на двуплечих рычагах вставляют технологические штыри. После чего одну из тяг при помощи талрепа натягивают до необходимого состояния. Натяжение одной тяги приводит к перекосу системы и зажатию одного из технологических штырей в отверстии. Далее при помощи талрепа начинаем натягивать вторую тягу до полного освобождения штыря от зажима («перекоса»), образовавшегося при натяжении первой тяги. Освобождение другого технологического штыря из отверстия будет свидетельствовать о том, что отверстия в двуплечих рычагах полностью совместились. Далее, на полностью собранную тягу устанавливают предварительно оттарированный съемный элемент с закрепленными на нем тензодатчиками, предварительно закрепляя его с помощью зажимов. Вращая талреп, поднатягивают тягу до момента появления сигналов с тензодатчиков, выбирают провис тяги. После чего полностью ослабляют зажимы и вновь закрепляют съемный элемент уже с усилием, предотвращающим проскальзывание поджатых друг к другу тяги и съемного элемента. С этого момента съемный элемент и тяга работают на растяжение совместно как единый элемент тяги. Таким образом, изменяя площадь поперечного сечения съемного элемента, не меняя при этом геометрических размеров самой тяги, можно изменить степень деформации и измеряемое усилие, а также равномерно распределить управляющий момент на тяге, и тем самым максимально совместить диапазон измерений с рабочим диапазоном используемых тензодатчиков, что автоматически повышает точность измерения и снижает трудоемкость изготовления и контроля. 6 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для постоянного измерения усилий в различных резьбовых соединениях строительных элементов и конструкций. Техническим результатом изобретения является повышение чувствительности и точности силоизмерительного датчика, повышение длительности эксплуатации. Силоизмерительный датчик содержит подкладную вогнутую и накладную выпуклую шайбы со сферической поверхностью сопряжения между ними, чувствительный элемент в виде обмотки тензорезистора, работающего на растяжение и жестко установленного на внешней цилиндрической поверхности подкладной шайбы. Накладная шайба снабжена вторым чувствительным элементом в виде обмотки тензорезистора, работающего на сжатие. 4 з.п. ф-лы, 5 ил.

Изобретение относится к весовой технике, в частности к упругим элементам датчиков силы, предназначенных для точного измерения силы небольшой величины в широком диапазоне. Заявленный упругий элемент тензорезисторного датчика силы выполнен за одно целое и содержит упругое кольцо, силовводящие рычаги, примыкающие к внутренней боковой поверхности упругого кольца по всей высоте, поперечные тяги, присоединенные к средней части упругого кольца вблизи плоскости симметрии, перпендикулярной к его оси, и эта плоскость симметрии упругого кольца совпадает с плоскостью симметрии тяг, расположенных симметрично второму диаметральному направлению упругого кольца, причем расстояние между осями тяг не больше половины диаметра внешней боковой поверхности кольца, а в средней части упругого кольца выполнены сквозные пазы, которые имеют высоту, равную толщине поперечных тяг, и расположены симметрично относительно их плоскости симметрии, при этом пазы в окружном направлении расположены между тягами и силовводящими рычагами. Технический результат заключается в повышении точности измерения усилий небольшой величины при малых габаритных размерах упругого элемента, обладающего меньшей жесткостью, что позволяет расширять диапазон измерения в сторону малых нагрузок. 2 ил.

Изобретение относится к весовой технике, в частности к тензорезисторным датчикам силы, предназначенным для точного измерения сил, в том числе в агрессивных средах. Тензорезисторный датчик силы содержит жесткий центр, силовводяшую оболочку, кольцевой силопреобразователь, ограниченный изнутри цилиндрической поверхностью, имеет в своей нижней части кольцевой выступ, ограниченный изнутри той же цилиндрической поверхностью, опорную оболочку большего диаметра и опорное кольцо, соединенные между собой последовательно и выполненные за одно целое. Силовводящая оболочка выполнена вогнутой и в средней части ограничена снаружи и изнутри цилиндрическими поверхностями и плавно изнутри сопрягается с участками конических поверхностей одинаковой конусности и сужающиеся части конусов направлены к средней части симметрично. Верхнее подрезисторное кольцо ограничено цилиндрическими поверхностями и снаружи имеет два симметричных выступа, ограниченных коническими поверхностями одинаковой конусности, а их сужающиеся части направлены к середине, и запрессовано по этим поверхностям в среднюю часть силовводящей оболочки. Кольцевой выступ кольцевого силопреобразователя также ограничен снаружи конической поверхностью и его сужающаяся часть конуса направлена к кольцевому силопреобразователю, и по ней запрессовано нижнее подрезисторное кольцо и упирается в кольцевой силопреобразователь. Техническим результатом изобретения является повышение надежности и точности измерений. 3ил.

Изобретение относится к весовой технике, в частности к датчикам силы, для точного измерения небольших усилий в широком диапазоне. Силочувствительный элемент содержит упругое кольцо с тензорезисторами, два жестких кольца меньшего и большего диаметров, радиальные рычаги по своим концам снабжены верхними и нижними балками равной толщины и длины, выполненными в виде трапеций с криволинейными основаниями. При этом ширина меньшего основания каждой нижней балки равна половине ширины также меньшего основания верхней балки. Жесткое кольцо меньшего диаметра соединено с верхними балками для каждого рычага, расположенного внутри упругого кольца. Нижние балки соединены с верхней частью внутри упругого кольца, а внизу снаружи оно соединено с верхними балками для каждого рычага, расположенного вне кольца. Нижние балки соединены с жестким кольцом внутри и все они изготовлены за одно целое. Техническим результатом изобретения является расширение диапазона измерения сил в сторону малых нагрузок с повышенной точностью. 4 ил.
Наверх