Способ обнаружения и селекции радиолокационных сигналов по поляризационному признаку и устройство для его осуществления



Способ обнаружения и селекции радиолокационных сигналов по поляризационному признаку и устройство для его осуществления
Способ обнаружения и селекции радиолокационных сигналов по поляризационному признаку и устройство для его осуществления
Способ обнаружения и селекции радиолокационных сигналов по поляризационному признаку и устройство для его осуществления
Способ обнаружения и селекции радиолокационных сигналов по поляризационному признаку и устройство для его осуществления
Способ обнаружения и селекции радиолокационных сигналов по поляризационному признаку и устройство для его осуществления
Способ обнаружения и селекции радиолокационных сигналов по поляризационному признаку и устройство для его осуществления
Способ обнаружения и селекции радиолокационных сигналов по поляризационному признаку и устройство для его осуществления
Способ обнаружения и селекции радиолокационных сигналов по поляризационному признаку и устройство для его осуществления
Способ обнаружения и селекции радиолокационных сигналов по поляризационному признаку и устройство для его осуществления

 


Владельцы патента RU 2476903:

Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники (ТУСУР) (RU)

Изобретение может быть использовано в пассивном поляризационном (поляриметрическом) радиолокаторе для обнаружения и селекции радиолокационных сигналов. Сущность изобретения заключается в приеме двух ортогональных компонент сигнала, преобразование аналоговых сигналов в цифровую форму, запоминание их в устройствах памяти, интерполирование цифровых сигналов, запоминание интерполированных цифровых сигналов, последующие определения отношения амплитуд и разности фаз ортогональных компонент селектируемого сигнала, вычисление совокупного поляризационного параметра принимаемого сигнала - угла эллиптичности и принятие решения о наличии или отсутствии селектируемого сигнала в соответствии с критерием Неймана-Пирсона. Сущность изобретения состоит также в том, что в устройстве обнаружения и селекции радиолокационных сигналов по поляризационному признаку, содержащем двухполяризационную антенну, двухканальный приемник, имеющий два входа, соединенные с выходами двухполяризационной антенны, и два выхода, при этом первый канал состоит из каскадно соединенных первого фильтра нижних частот, первого аналого-цифрового преобразователя, первого устройства памяти, первого устройства интерполяции сигнала и второго устройства памяти, а второй канал - из каскадно соединенных второго фильтра нижних частот, второго аналого-цифрового преобразователя, третьего устройства памяти, второго устройства интерполяции сигнала и четвертого устройства памяти, и устройство обработки сигналов, имеющее два входа, первый из которых соединен с выходом второго устройства памяти, а второй - с выходом четвертого устройства памяти, и два выхода, введены блок принятия решения о наличии или отсутствии селектируемого сигнала по поляризационному признаку, два выхода которого соединены с выходами устройства обработки сигналов, и индикатор, вход которого соединен с выходом блока принятия решения о наличии или отсутствии селектируемого сигнала по поляризационному признаку. Достигаемый технический результат изобретения - расширение функциональных возможностей. 2 н.п. ф-лы, 6 ил., 3 табл.

 

Изобретение относится к области радиолокации и может быть использовано в пассивном поляризационном (поляриметрическом) радиолокаторе для обнаружения и селекции радиолокационных сигналов.

Известен способ обнаружения радиолокационных целей на фоне шумов и устройство для его реализации, приведенные в [1]. Способ обнаружения заключается в облучении цели двумя ортогональными по поляризации сигналами, приеме отраженных от цели сигналов, вычислении поляризационных параметров Стокса принятых сигналов, вычислении совокупного параметра обнаружения из поляризационных параметров Стокса и сравнении его с заданным порогом обнаружения.

Недостатком такого способа является то, что обнаружение радиолокационных целей производится по энергетическому совокупному параметру (при этом не учитываются априорные вероятности о поляризации отраженного сигнала), что не позволяет произвести согласованное по поляризации обнаружение и селекцию отраженных сигналов.

Наиболее близким к заявленному изобретению относится способ и устройство для обнаружения и селекции радиолокационных сигналов, приведенные в [2]. Способ для обнаружения и селекции радиолокационных сигналов заключается в приеме двух ортогональных компонент сигнала, преобразование аналоговых сигналов приемных устройств в цифровую форму, запоминание их в устройствах памяти, интерполирование цифровых сигналов, запоминание интерполированных цифровых сигналов и последующие определения отношения амплитуд и разности фаз ортогональных компонент селектируемого сигнала.

Недостатком способа-прототипа является то, что он не позволяет осуществлять селекцию сигналов по поляризационному признаку и принимать решение о наличии или отсутствии обнаруживаемого сигнала. Недостатком устройства-прототипа является то, что в этом устройстве отсутствует блок, осуществляющий принятие решения о наличии или отсутствии обнаруживаемого, селектируемого сигнала по поляризационному признаку.

Устройство-прототип для обнаружения и селекции радиолокационных сигналов содержит двухполяризационную антенну, два выхода которой соединены с двумя входами двухканального приемника, имеющего два выхода, которые соединены с двумя идентичными, соединенными с выходами двухканального приемника, каналами, первый из которых состоит из каскадно соединенных первого фильтра нижних частот, первого аналого-цифрового преобразователя, первого устройства памяти, первого устройства интерполяции сигнала и второго устройства памяти, а второй канал - из каскадно соединенных второго фильтра нижних частот, второго аналого-цифрового преобразователя, третьего устройства памяти, второго устройства интерполяции сигнала и четвертого устройства памяти, выход второго и четвертого устройства памяти соединены с первым и вторым входом устройства обработки сигналов, имеющего два выхода.

Задача, на достижение которой направленно предлагаемое решение, - расширение функциональных возможностей способа-прототипа и устройства-прототипа (создание возможности принятия решения о наличии или отсутствии селектируемого сигнала по поляризационному признаку).

Решение поставленной задачи осуществляется тем, что в способе-прототипе, включающем прием двух ортогональных компонент сигнала - горизонтальной компоненты Ex и вертикальной компоненты Ey, преобразование аналоговых сигналов приемных устройств в цифровую форму, запоминание их в устройствах памяти, интерполирование цифровых сигналов, запоминание интерполированных цифровых сигналов, последующие определения отношения амплитуд и разности фаз ортогональных компонент селектируемого сигнала, дополнительно производят вычисление совокупного поляризационного параметра принимаемого сигнала - угла эллиптичности и принятие решения о наличии селектируемого сигнала осуществляют при выполнении условия: εЛ≤ε≤εП, где εЛ и εП - левая и правая граница интервала обнаружения,

- вычисленный угол эллиптичности принимаемого сигнала, , , , А - амплитуда горизонтальной компоненты сигнала Ex, В - амплитуда вертикальной компоненты сигнала Ey, α - разность фаз между этими компонентами, при этом границы интервала обнаружения εЛ и εП определяются с использованием критерия Неймана-Пирсона из уравнения: , где PЛТ - вероятность ложной тревоги, у(х) - функция плотности вероятности угла эллиптичности при отсутствии селектируемого сигнала, если же вычисленный угол эллиптичности ε не принадлежит интервалу обнаружения εЛ≤ε≤εП, то принимается решение о том, что сигнал не обнаружен.

Решение поставленной задачи также осуществляется тем, что в устройстве-прототипе, содержащем двухполяризационную антенну, двухканальный приемник, имеющий два входа, соединенные с выходами двухполяризационной антенны, и два выхода, два идентичных, соединенных с выходами двухканального приемника, канала, первый из которых состоит из каскадно соединенных первого фильтра нижних частот, первого аналого-цифрового преобразователя, первого устройства памяти, первого устройства интерполяции сигнала и второго устройства памяти, а второй канал - из каскадно соединенных второго фильтра нижних частот, второго аналого-цифрового преобразователя, третьего устройства памяти, второго устройства интерполяции сигнала и четвертого устройства памяти, и устройство обработки сигналов, имеющее два входа, первый из которых соединен с выходом второго устройства памяти, а второй - с выходом четвертого устройства памяти, и два выхода, при этом в него дополнительно введены блок принятия решения о наличии или отсутствии селектируемого сигнала по поляризационному признаку, имеющий два входа, соединенных с выходами устройства обработки сигналов, и индикатор, вход которого соединен с выходом блока принятия решения о наличии или отсутствии селектируемого сигнала по поляризационному признаку, при этом поляризационный признак представляет собой угол эллиптичности ε, а принятие решения о наличии или отсутствии селектируемого сигнала осуществляется в соответствии с условием: εЛ≤ε≤εП, где εЛ и εП - левая и правая граница интервала обнаружения Δε, причем, если ε принадлежит интервалу обнаружения Δε, принимается решение, что обнаружен сигнал с углом эллиптичности ε с заданной вероятностью ложной тревоги, если же ε не принадлежит интервалу обнаружения Δε, принимается решение, что сигнал не обнаружен.

На фиг.1 изображена функциональная схема предложенного устройства, осуществляющего обнаружение и селекцию радиолокационных сигналов по поляризационному признаку, на которой обозначено:

1 - двухполяризационная антенна; 2 - двухканальный приемник; 3 - первый фильтр нижних частот (ФНЧ); 4 - первый аналого-цифровой преобразователь (АЦП); 5 - первое устройство памяти; 6 - первое устройство интерполяции; 7 - второе устройство памяти; 8 - второй ФНЧ; 9 - второй АЦП; 10 - третье устройство памяти; 11 - второе устройство интерполяции; 12 - четвертое устройство памяти; 13 - устройство обработки сигналов; 14 - блок принятия решения о наличии или отсутствии селектируемого сигнала по поляризационному признаку; 15 - индикатор.

Предлагаемое устройство включает двухполяризационную антенну 1, два выхода которой соединены с двумя входами двухканального приемника 2, имеющего два выхода, которые соединены с двумя идентичными, соединенными с выходами двухканального приемника 2, каналами, первый из которых состоит из каскадно соединенных первого ФНЧ 3, первого АЦП 4, первого устройства памяти 5, первого устройства интерполяции сигнала 6, второго устройства памяти 7, а второй канал - из каскадно соединенных второго ФНЧ 8, второго АЦП 9, третьего устройства памяти 10, второго устройства интерполяции сигнала 11, четвертого устройства памяти 12, выходы второго устройства памяти 7 и четвертого устройства памяти 12 соединены с первым и вторым входом устройством обработки сигналов 13, два выхода устройства обработки сигналов 13 соединены с двумя входами блока принятия решения о наличии или отсутствии селектируемого сигнала по поляризационному признаку 14, выход которого соединен с входом индикатора 15.

Предлагаемое устройство работает следующим образом. Двухполяризационная антенна 1 принимает одновременно две ортогональные поляризационные составляющие радиолокационного сигнала. Сигналы с выходов двухполяризационной антенны 1 поступают на входы двухканального приемника 2 супергетеродинного типа, в котором производится перенос сигнала с высокой несущей частоты на промежуточную. С выходов двухканального приемника 2 сигналы одновременно поступают на входы ФНЧ 3 и 8. ФНЧ 3 и 8 отфильтровывают верхние частоты и пропускают промежуточную частоту сигналов. С выходов ФНЧ 3 и 8 сигналы поступают на входы АЦП 4 и 9, которые производят преобразование аналоговых сигналов в цифровые. С выходов АЦП 4 и 9 сигналы поступают на входы устройств памяти 5 и 10, которые запоминают принятые сигналы. С выходов устройств памяти 5 и 10 сигналы поступают на входы устройств интерполяции 6 и 11, которые производят передискритизацию принимаемых сигналов с целью более точного определения параметров сигнала. С выходов устройств интерполяции 6 и 11 сигналы поступают на входы устройств памяти 7 и 12. С выходов устройств памяти 7 и 12 сигналы поступают на входы устройства обработки сигналов 13. Устройство обработки сигналов 13 определяет отношение ортогональных амплитуд принятого сигнала и их разность фаз. С выходов устройства обработки 13 сигналы поступают на входы блока принятия решения о наличии или отсутствии селектируемого сигнала по поляризационному признаку 14, который по вычисленным в устройстве обработке 13 отношению ортогональных амплитуд принятого сигнала и их разности фаз вычисляет угол эллиптичности принятого сигнала и осуществляет принятие решения о наличии или отсутствии селектируемого сигнала по поляризационному признаку - углу эллиптичности в соответствии с критерием Неймана-Пирсона. С выхода блока принятия решения о наличии или отсутствии селектируемого сигнала по поляризационному признаку 14 сигнал поступает на индикатор 15, который отображает результаты наличия или отсутствия селектируемого сигнала и значение совокупного поляризационного параметра обнаружения - угла эллиптичности.

Для понимания особенностей работы предлагаемого устройства ниже описан способ селекции сигналов по поляризационному признаку и способ принятия решения о наличии или отсутствии селектируемого сигнала по поляризационному параметру в соответствии с критерием Неймана-Пирсона.

В плоской электромагнитной волне векторы электрического и магнитного полей в каждый момент времени определенным образом ориентированы в пространстве. Кривые, описываемые с течением времени концами векторов полей в фиксированной точке пространства, могут иметь произвольный вид. Считают, что волна обладает той или иной поляризацией в зависимости от вида годографов векторов и [3]. Поляризация электромагнитной волны является ее пространственно-временная характеристикой и определяется видом траектории, описываемой концом вектора электрического (или магнитного) поля в фиксированной точке пространства [3].

Вектор электрического поля может быть разложен на горизонтальную и вертикальную компоненты Ex и Ey по ортогональным осям х и y, перпендикулярным к направлению распространения электромагнитной волны. Для любой данной точки Ex и Ey меняются со временем. Например, для синусоидальной волны с частотой ω, Ex=Asin(ωt) и Ey=Bsin(ωt+α), где t - время, α - разность фаз, А и В - амплитуды Ex и Ey компонент. Когда компоненты Ex и Ey имеют разность фаз, равную 0, электрическое поле линейно поляризовано. В этом случае вектор электрического поля для данной точки всегда лежит в одной из плоскостей. Когда компоненты Ex и Ey имеют разность фаз, не равную 0, то волна обладает эллиптической поляризацией. В том случае, когда компоненты Ex и Ey эллиптически поляризованной электромагнитной волны имеют одинаковые амплитуды А, В и разность фаз 90 или 270 градусов, говорят, что сигнал имеет круговую поляризацию. Когда вектор обходит поляризационный эллипс по часовой стрелке, т.е. разность фаз между ортогональными компонентами Ex и Ey положительная, то волна называется правополяризованной, если разность фаз отрицательная, то волна называется левополяризованной [3].

Устройство-прототип [2] выполняет измерение следующих параметров принимаемого сигнала:

,

,

где А - амплитуда горизонтальной компоненты Ex, В - амплитуда вертикальной компоненты Ey, α - разность фаз между этими компонентами.

Угол γ определяет отношение ортогонально поляризованных компонент сигнала, а угол ϕ определяет разность фаз этих компонент. На основе этих двух параметров можно вычислить параметры, характеризующие поляризацию сигнала как угол ориентации θ и угол эллиптичности ε. На фиг.2 изображены углы ориентации и эллиптичности для случая эллиптической поляризации (общий случай).

Угол ориентации определен в пределах может быть вычислен по формуле [2]:

.

Угол эллиптичности определен в пределах и может быть вычислен формуле [4]:

где .

Абсолютная величина угла эллиптичности определена в пределах . В зависимости от направления вращения вектора могут быть выполнены следующие действия. При разности фаз ортогональных компонент сигнала α<0 (частный случай) волна будет левополяризованной, и угол эллиптичности будет находиться в пределах . При разности фаз ортогональных компонент сигнала α>0 (второй частный случай) волна будет правополяризованной, и угол эллиптичности будет находиться в пределах . При данных условиях угол эллиптичности будет находиться в пределах .

Способ обнаружения и селекции сигналов по поляризационному признаку и принятие решения о наличии или отсутствия селектируемого сигнала осуществляется следующим образом.

Пусть угол эллиптичности полезного радиолокационного сигнала ε0 известен, тогда обнаружение такого сигнала по измеренному значению угла эллиптичности ε производиться следующим образом. В окрестности ожидаемой величины ε0 по некоторому правилу определяется интервал обнаружения Δε=εПЛ. Если измеренный угол эллиптичности ε находится в пределах этого интервала, то принимается решение о наличии полезного сигнала, в противном случае принимается решение о его отсутствии. При использовании критерия Неймана-Пирсона интервал Δε выбирается таким, чтобы вероятность нахождения в нем значения ε «чистого» шума (без полезного сигнала) равнялась заданной вероятности ложной тревоги Pлт [5].

На фиг.3 приведен график плотности вероятности мгновенных значений угла эллиптичности шума W(ε), определенный путем численного моделирования. Значения ε определены по формуле (1) в предположении, что квадратурные компоненты шума в обоих каналах приема независимы и распределены по закону Гаусса с нулевыми средними значениями и единичными дисперсиями. Полученная функция плотности вероятности аппроксимирована кривой у(х), которая задается в аналитическом виде.

На фиг.4 показаны интервалы значений угла эллиптичности ε для обнаружения полезных сигналов с известными (заданными) углами эллиптичности ε0, равными, 0, 20 и -30 градусов. Площадь участков, ограниченных интервалом обнаружения и кривой плотности вероятности угла эллиптичности шума, соответствует вероятности ложной тревоги Pлт=0.1.

В табл.1 указаны границы интервалов обнаружения для некоторых заданных значениях вероятности ложной тревоги и углов эллиптичности полезного сигнала.

Таблица 1.
Интервалы обнаружения угла эллиптичности
Вероятность ложной тревоги Pлт Границы интервала обнаружения в градусах при угле эллиптичности ε0
20° 45°
0.01 [-0.3, 0.3] [19.6, 20.4] [-45, -40.4], [40.4, 45]
0.10 [-3, 3] [16.3, 23.7] [-45, -32.7], [32.7, 45]
0.30 [-9, 9] [8.5, 31.4] [-45, -26.7], [26.7, 45]

Правильное обнаружение сигнала происходит тогда, когда угол эллиптичности смеси полезного сигнала и шума ε попадает в заданный интервал обнаружения Δε.

На фиг.5 приведены кривые плотности вероятности угла эллиптичности смеси полезного сигнала и шума P(ε) для трех вероятностей ложной тревоги Pлт, для разных отношений сигнал/шум q и угла эллиптичности ε0=0° в зависимости от угла эллиптичности (величина q - отношение полной энергии полезного сигнала в двух ортогонально поляризованных приемных каналах к энергии шума в каждом канале).

Площадь участка, ограниченного интервалом обнаружения и кривой P(ε) плотности вероятности угла эллиптичности ε смеси полезного сигнала и шума, соответствует вероятности правильного обнаружения Рпо при заданной вероятности ложной тревоги Рлт.

На фиг.6 приведены зависимости вероятности правильного обнаружения сигнала для различных значений Рлт от отношения сигнал/шум.

В блоке принятия решения о наличии или отсутствии селектируемого сигнала по поляризационному признаку 14 задают параметры вероятности ложной тревоги Рлт и обнаруживаемого угла эллиптичности принимаемого сигнала ε0. По заданной вероятности ложной тревоги Pлт, углу эллиптичности ε0 и распределению плотности вероятности угла эллиптичности шума вычисляется интервал обнаружения Δε из следующего выражения:

где у(х) - функция плотности вероятности угла эллиптичности шума, εЛ и εП - левая и правая граница интервала обнаружения.

Решая (2), находят значения εЛ и εП. Интервал обнаружение соответственно равен . Вычисленный угол эллиптичности ε принятого сигнала по формуле 1 сравнивается с вычисленным интервалом обнаружения угла эллиптичности Δε. Если ε принадлежит интервалу Δε, принимается решение о том, что обнаружен сигнал с углом эллиптичности ε0 с заданной вероятностью ложной тревоги Рлт. Если ε не принадлежит интервалу Δε, принимается решение о том, что сигнал не обнаружен. Вычисленный угол эллиптичности ε принятого сигнала и результат обнаружения отображается на индикаторе 15.

Путем численного моделирования возможно определить оптимальный интервал обнаружения Δε для заданного угла эллиптичности ε0, заданной вероятности ложной тревоги Рлт и отношения сигнал-шум. Под оптимальным интервалом обнаружения в этом случае понимается максимальная вероятность правильного обнаружения РПО. В табл.2 приведены оптимальные интервалы обнаружения некоторых углов эллиптичности ε0 для вероятности ложной тревоги Рлт=0.1, для различных отношений сигнал/шум. В табл.3 приведены вероятности правильного обнаружения, соответствующие оптимальным интервалам обнаружения из табл.3.

Таблица 2
Интервалы обнаружения угла эллиптичности
Угол эллиптичности ε0, в градусах Границы интервала обнаружения в градусах, для различных отношений сигнал/шум, в дБ
4 8 12 16
0 [-3.4, 2.54] [-2.85, 3.09] [-3.1, 2.84] [-3.15, 2.8]
10 [7.05, 13.31] [6.65, 12.89] [6.7, 12.94] [6.9, 13.15]
20 [20, 28.44] [16.3, 23.74] [16.3, 23.74] [16.35, 23.8]
30 [27.4, 45], [-45, -41.92] [25.6, 37.67] [24.65, 35.67] [24.65, 35.67]
40 [31.25, 45], [-45, -33.82] [31.4, 45], [-45, -33.64] [32, 45], [-45, -32.96] [32.65, 45], [-45, -32.29]
Таблица 3
Вероятность правильного обнаружения
Угол эллиптичности ε0, в градусах Вероятность правильного обнаружения, для различных отношений сигнал/шум, в дБ
4 8 12 16
0 0.171 0.376 0.775 0.998
10 0.177 0.398 0.802 0.999
20 0.225 0.467 0.869 1
30 0.237 0.542 0.967 1
40 0.292 0.785 0.998 1

Из вышеприведенного следует, что предлагаемые способ и устройство в отличие от способа-прототипа и устройства-прототипа позволяют принимать решение о наличии или отсутствии селектируемого сигнала по поляризационному признаку - углу эллиптичности. Это расширяет функциональные возможности устройства-прототипа.

Источники информации

1. Пат. США US 4.323.899, G01S 13/02. Опубл. 06.04.1982.

2. Пат. США US 6,768,971 В1, H01Q 21/06. Опубл. 27.07.2004 - прототип.

3. Канарейкин Д.Б., Павлов Н.Ф., Потехин В.А. Поляризация радиолокационных сигналов. - М.: Сов. радио, 1966. - 440 с.

4. Поздняк С.И., Мелитицкий В.А. Введение в статистическую теорию поляризации радиоволн. - М.: Сов. радио. 1974. - 480 с.

5. Левин Б.Р. Теоретические основы статистической радиотехники. - 3-е изд., перераб. и доп.- М.: Радио и связь, 1989. - 656 с.

1. Способ обнаружения и селекции радиолокационных сигналов по поляризационному признаку, включающий прием двух ортогональных компонент сигнала - горизонтальной компоненты Ex и вертикальной компоненты Ey, преобразование аналоговых сигналов приемных устройств в цифровую форму, запоминание их в устройствах памяти, интерполирование цифровых сигналов, запоминание интерполированных цифровых сигналов, последующие определения отношения амплитуд и разности фаз ортогональных компонент селектируемого сигнала, отличающийся тем, что производят вычисление совокупного поляризационного параметра принимаемого сигнала - угла эллиптичности, и принятие решения о наличии селектируемого сигнала осуществляют при выполнении условия: εЛ≤ε≤εП,
где εЛ и εП - левая и правая границы интервала обнаружения,
- вычисленный угол эллиптичности принимаемого сигнала,
А - амплитуда горизонтальной компоненты сигнала Ex, В - амплитуда вертикальной компоненты сигнала Ey, α - разность фаз между этими компонентами,
при этом границы интервала обнаружения εЛ и εП определяются с использованием критерия Неймана-Пирсона из уравнения:

где PЛТ - вероятность ложной тревоги, у(х) - функция плотности вероятности угла эллиптичности при отсутствии селектируемого сигнала, если же вычисленный угол эллиптичности ε не принадлежит интервалу обнаружения εЛ≤ε≤εП, то принимается решение о том, что сигнал не обнаружен.

2. Устройство обнаружения и селекции радиолокационных сигналов, содержащее двухполяризационную антенну, двухканальный приемник, имеющий два входа, соединенные с выходами двухполяризационной антенны, и два выхода, два идентичных, соединенных с выходами двухканального приемника, канала, первый из которых состоит из каскадно соединенных первого фильтра нижних частот, первого аналого-цифрового преобразователя, первого устройства памяти, первого устройства интерполяции сигнала и второго устройства памяти, а второй канал - из каскадно соединенных второго фильтра нижних частот, второго аналого-цифрового преобразователя, третьего устройства памяти, второго устройства интерполяции сигнала и четвертого устройства памяти, и устройство обработки сигналов, имеющее два входа, первый из которых соединен с выходом второго устройства памяти, а второй - с выходом четвертого устройства памяти, и два выхода, отличающееся тем, что в него дополнительно введены блок принятия решения о наличии или отсутствии селектируемого сигнала по поляризационному признаку, имеющий два входа, соединенных с выходами устройства обработки сигналов, и наличии или отсутствии селектируемого сигнала по поляризационному признаку, при этом поляризационный признак представляет собой угол эллиптичности ε, а принятие решения о наличии или отсутствии селектируемого сигнала осуществляется в соответствии с условием εЛ≤ε≤εП, где εЛ и εП - левая и правая границы интервала обнаружения Δε, причем, если ε принадлежит интервалу обнаружения Δε, принимается решение, что обнаружен сигнал с углом эллиптичности ε с заданной вероятностью ложной тревоги, если же ε не принадлежит интервалу обнаружения Δε, принимается решение, что сигнал не обнаружен.



 

Похожие патенты:

Изобретение относится к техническим средствам охраны и может быть использовано для поиска радиоуправляемых взрывных устройств. .

Изобретение относится к области радиолокации. .

Изобретение относится к области гидроакустики и производит обнаружение локального объекта в условиях наличия распределенных помех различного происхождения. .

Изобретение относится к области радиолокации и может быть использовано в радиолокационных комплексах для обзора контролируемого пространства. .

Изобретение относится к радиотехнике и предназначено для обработки радиолокационных сигналов. .

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства с использованием прямых и рассеянных воздушными объектами сигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретение относится к радиолокации и может использоваться для ускоренного поиска и слежения за объектами

Изобретение относится к наведению летательных аппаратов на воздушные цели (ВЦ). Достигаемый технический результат - повышение ситуационной осведомленности летчика о конечных результатах наведения и упрощение соответствующих вычислений. Указанный результат достигается за счет того, что в горизонтальной плоскости измеряют полярные координаты цели и самолета, на пункте управления (ПУ) оценивают их полярные и прямоугольные координаты, курс цели и скорости самолета и цели, вводят вспомогательную точку A, расположенную по вектору скорости самолета на расстоянии Дз, определяют требуемый курс ψT движения самолета, значение которого передают с ПУ на самолет, где измеряют его текущий курс ψс и определяют параметр управления Δψ=ψT-ψc, осуществляют управление траекторией движения самолета, при этом на ПУ оценивают курс ψc самолета и выбирают точку A путем задания ее прямоугольных координат, рассчитывают угол визирования цели относительно точки A, определяют углы пеленга, представляющие собой углы между векторами скоростей точки A и цели соответственно и линией визирования «точка A-цель», определяют значение требуемого курса ψT движения самолета из условия равенства проекций скоростей точки A и цели на перпендикуляр к линии визирования «точка A-цель», летчик оценивает возможность перехвата самолетом ВЦ с использованием визуального отображения на экране индикатора прогнозируемого положения цели (точки перехвата), для чего в вычислительной системе ПУ находят прямоугольные координаты точки перехвата по соответствующим формулам. 8 ил.

Изобретение может быть использовано для поиска радиоуправляемых взрывных устройств (РВУ). Заявленное изобретение состоит из передатчика зондирующего сигнала, приемников, настроенных на удвоенную и утроенную частоту зондирующего сигнала, блока управления, блока обработки, пульта управления и индикации, блока антенн, широкополосного приемника, анализатора спектра и индикатора анализатора спектра, определенным образом соединенных между собой. Достигаемый технический результат изобретения - повышение информативности при выполнении задач по разведке местности (объектов) на наличие РВУ путем фиксации наличия в объекте обследования колебательного контура и определения его резонансной частоты. 2 ил.

Изобретение относится к методам радиолокационного обнаружения воздушных объектов (ВО), в том числе беспилотных летательных аппаратов (БЛА). Достигаемый технический результат - просмотр всего диапазона частот (перебор всех значений длин волн, соизмеримых с размерами ВО и элементами их конструкции) и повышение точности обнаружения. Указанный результат достигается тем, что базовую начальную частоту зондирования предлагается выбрать равной 150 МГц, а перестройку вести до 6 ГГц. После анализа отражений на различных частотах и выявления факта возникновения превышающего порог спектрального отклика на одной из частот излучение переводится из режима с перестройкой частоты в одночастотный режим, соответствующий по частоте наличию спектрального отклика от малозаметного БЛА. После перехода на выявленную предполагаемую резонансную частоту fр результаты обнаружения малозаметного БЛА в соответствующем стробе дальности повторно проверяются. Проверяется соответствие доплеровской частоты Fд спектрального отклика в последовательно сформированных спектрах одного и того же строба дальности, а также факт превышения спектральным откликом установленного порога обнаружения. Если в трех подряд взятых спектрах спектральный отклик от БЛА превышает порог и его доплеровская частота Fд остается неизменной, то принимается решение об обнаружении в соответствующем стробе дальности малозаметного БЛА. 3 ил.

Изобретение относится к области радиотехники и может быть использовано при решении задач пассивной радиолокации. Техническим результатом является улучшение обнаружения хаотической последовательности импульсов. Способ предполагает разбиение всего интервала наблюдения входного сигнала на ряд тактов, период которых приблизительно совпадает со средним значением интервалов между соседними импульсами обнаруживаемой последовательности, внутрипериодную обработку входного сигнала, заключающуюся в выборе его максимальных значений в пределах каждого тактового периода, и последующее межпериодное накопление результатов внутрипериодной обработки. 1 ил.

Предлагаемое изобретение относится к радиолокации и может быть использовано в радиолокационной технике, в системах обработки первичной радиолокационной информации, для обнаружения высокоманевренной цели в импульсно-доплеровских радиолокационных станциях. Достигаемый технический результат - повышение разрешающей способности по ускорению и улучшение характеристик обнаружения без увеличения требований к вычислительным ресурсам. Указанный результат достигается за счет адаптивной настройки каналов без увеличения их количества. Для этого осуществляются операции поиска максимумов модулей преобразования Фурье в каждом из каналов ускорения и изменение настройки каналов ускорения в процессе обнаружения цели, то есть изменение междупериодных фазовых набегов опорных сигналов за счет ускорения. 4 ил.

Изобретение относится к методам и средствам обработки сигналов в радиотехнических системах и может быть использовано при решении задач обнаружения радиоимпульсов в условиях воздействия непрерывной узкополосной помехи с неизвестной несущей частотой. Достигаемый технический результат - повышение эффективности обнаружения. Указанный результат достигается за счет того, что признаками присутствия радиоимпульса на входе обнаружителя принимаются не только положительные, но и отрицательные выбросы в выходном сигнале обнаружителя, при этом для регистрации отрицательных выбросов используется дополнительная пороговая схема. обеспечивающая улучшение характеристик обнаружения. 3 ил.
Изобретение относится к области радиолокаций. Технический результат заключается в уменьшении погрешности измерения фазы обратного вторичного излучения цели. Устройство для измерения элементов матрицы рассеяния цели содержит: генератор (1) монохроматических электрических колебаний высокой частоты (ВЧ), поляризатор (2), волноводный разделитель поляризации (3) поля вторичного излучения цели, приемно-передающую антенну (4) полей ВЧ, источник (5) опорного сигнала, фильтр (6) сигнала рабочей гармоники несущей частоты, делитель (7) частоты сигнала рабочей гармоники, три смесителя (8.1, 8.2, 8.3), три фильтра ПЧ (9.1, 9.2, 9.3), три усилителя сигнала ПЧ (10.1, 10.2, 10.3), два фильтра несущей частоты (11.1, 11.2), два регистратора фазы (12.1, 12.2), два регистратора амплитуды (13.1, 13.2), гетеродин (14), радиолокационную цель (15), опоры (16) системы мягкой подвески цели, несущий трос (17) системы подвески цели, стропы (18) крепления цели, стропы-оттяжки (19) вращения цели, поворотное устройство цели, диод (21), источник (5) опорного сигнала. 2 з.п. ф-лы, 2 ил.

Изобретение относится к радиолокационным пеленгаторам запреградных объектов. Достигаемый технический результат - повышение точности пеленгации локализованного слабоконтрасного объекта на фоне распределенной в пространстве помехи и обеспечение запреградного действия по локализованному объекту. Указанный результат достигается за счет того, что радиолокационный пеленгатор локализованных объектов содержит излучатель, передающую антенну, две приемные антенны, два приемных модуля, коррелятор для оценки взаимно корреляционной функции, исполнительное устройство, при этом вторая приемная антенна выполнена подвижной относительно первой и расположена на расстоянии от нее где d - расстояние между приемными антеннами, λ0=0,18 м - средняя длина волны, при этом излучатель выполнен в виде генератора сверхкороткого импульсного излучения. 5 ил.

Радиоизмерительная установка для измерения эффективной поверхности рассеяния объектов содержит: генератор ВЧ, приемник, приемо-передающую антенну, которая выполнена в виде плоской фазированной антенной решетки (ФАР) с N каналами, генератор опорной частоты, три смесителя, фильтр высокой частоты, генератор импульсов, импульсный модулятор, усилитель мощности, циркулятор, систему из √N+1 разветвителей, каждый разветвитель имеет √n выходов, N ответвителей, N аттенюаторов, N фазовращателей, N излучателей, блок настройки ФАР, который имеет N входов вторых выходов ответвителей, N первых выходов сигналов управления аттенюаторами и N вторых выходов сигналов управления фазовращателями. Выход генератора опорной частоты соединен с гетеродинными входами смесителей и входом гетеродинного сигнала блока настройки, сигнальный вход первого смесителя соединен с выходом генератора ВЧ, а выход первого смесителя соединен с входом фильтра ВЧ. Выход генератора ВЧ соединен с гетеродинными входами второго и третьего смесителей, выход фильтра ВЧ соединен с сигнальным входом усилителя мощности, а его выход соединен с входом циркулятора, выход-вход которого соединен с входом первого разветвителя системы разветвителей, выходы первого разветвителя соединены с входами других разветвителей, выходы которых образуют N каналов фазированной антенной решетки. Выход циркулятора соединен с сигнальным входом второго смесителя, выход которого соединен с входом приемника. В каждом канале последовательно включены: ответвитель, аттенюатор, фазовращатель и излучатель. Вторые выходы ответвителей соединены с сигнальными входами третьих смесителей, выходы которых соединены с входами блока настройки, первые N выходов которого соединены с входами управляющих сигналов аттенюаторами, а вторые N выходов соединены с входами управляющих сигналов фазовращателей. Техническим результатом изобретения является увеличение площади однородного по амплитуде и фазе фронта ЭМП до площади апертуры ФАР, возможность измерения ЭПР объектов больших размеров с большей точностью по сравнению с прототипом изобретения и сокращение в два раза продольных размеров радиоизмерительной установки. 3 ил.
Наверх