Устройство для мажоритарного выбора сигналов



Устройство для мажоритарного выбора сигналов
Устройство для мажоритарного выбора сигналов

 


Владельцы патента RU 2476923:

Открытое акционерное общество "Концерн "Созвездие" (RU)

Изобретение относится к области радиотехники и может найти применение в радиосредствах специальной радиосвязи для высоконадежной передачи данных по радиоканалу в условиях воздействия комплекса помех. Техническим результатом является повышение помехоустойчивости за счет минимизации воздействия выбросов шума на аппаратуру связи, составной частью которой является данное устройство, и повышение достоверности приема информации. Для достижения указанного результата устройство для мажоритарного выбора сигналов содержит: мажоритарный элемент (1), n счетчиков-защелок (21-2n), сумматор (3), n компараторов (41-4n), блок управления (5), n демультиплексоров (61-6n), генератор тактовых импульсов (7), решающее устройство (8), n схем сравнения (91-9n), (n+1) компаратор (10), преобразователь (11), n арифметико-логических устройств (121-12n). 2 ил.

 

Изобретение относится к области радиотехники и может найти применение в радиосредствах специальной радиосвязи для высоконадежной передачи данных по радиоканалу в условиях воздействия комплекса помех.

Известно устройство, описанное в [1], в котором за счет включения логических элементов в контур мажоритарного избирания устройство будет продолжать нормально функционировать и подавать сигнал на исполнительный элемент при выходе из строя одного любого функционального элемента.

Известно устройство, описанное в [2], в котором повышается надежность функционирования за счет снижения аппаратных затрат.

Недостатками вышеупомянутых устройств являются сложность реализации и низкая надежность.

Наиболее близким по технической сущности к предлагаемому является устройство, описанное в [3], принятое за прототип.

Функциональная схема устройства-прототипа приведена на фиг.1, где приняты следующие обозначения:

1 - мажоритарный элемент;

7 - генератор тактовых импульсов (ГТИ);

13 - реверсивный счетчик;

14 - первый элемент И;

15 - второй элемент И;

16 - первый элемент И-НЕ;

17 - второй элемент И-НЕ;

18 - первый D-триггер;

19 - второй D-триггер;

20 - третий D-триггер;

21 - четвертый D-триггер;

22 - пятый D-триггер;

23 - входная шина;

24 - выходная шина;

25 - первый канал;

26 - второй канал;

27 - n-й канал.

Устройство-прототип содержит выходы первого 16 и второго 17 элементов И-НЕ, подключенные к первым входам соответственно первого 14 и второго 15 элементов И, выходы которых соединены соответственно с суммирующим и вычитающим входами реверсивного счетчика 13. Первые входы первого 16 и второго 17 элементов И-НЕ соединены с прямым и инверсным выходами (m-1)-го разряда реверсивного счетчика 13, а вторые входы этих элементов И-НЕ соединены соответственно с инверсным и прямым выходом m-го разряда реверсивного счетчика 13. Выход реверсивного счетчика 13 соединен с первым входом мажоритарного элемента 1 и соответствующими входами мажоритарного элемента других каналов. Последовательно соединены второй 19, третий 20, четвертый 21 и пятый 22 D-триггеры, второй вход второго элемента И 15 соединен с выходом первого D-триггера 18, вход D которого подключен к входной шине 23, а вход С первого D-триггера 18 соединен с прямым выходом ГТИ 7 и входом С четвертого D-триггера 21, инверсный выход ГТИ 7 соединен с входом С третьего 20 и пятого 22 D-триггера, выход которого подключен к входу R второго D-триггера 19, вход D которого соединен с его высокопотенциальной шиной питания U, вход С второго D-триггера 19 подключен к выходу мажоритарного элемента 1, а выход второго D-триггера 19 соединен с выходной шиной канала 24, выход третьего D-триггера 20 соединен с вторым входом 14.

Устройство-прототип работает следующим образом.

Входные сигналы X1, Х2, ХП поступают на входы 23 (входы D первого D-триггера 18) соответствующих каналов устройства. Для наглядности примем, что n=3 и все реверсивные счетчики находятся в нулевом состоянии, а логической единице соответствует высокий уровень сигнала. В этом случае нулевые уровни с прямых выходов (m-1)-гo и m-го разрядов реверсивного счетчика 13 поступают на первый вход первого элемента И-НЕ 16 и второй вход второго элемента И-НЕ 17 соответственно. В результате на их выходах будет высокий уровень, который и поступит на первые входы первого 14 и второго 15 элементов И. Входной импульс, например X1, появляется на выходе D-триггера 18 по переднему фронту импульса с прямого выхода ГТИ 7 (период следования импульсов ТГ ГТИ 7 выбирается меньше длительности ТИ входного импульса X1). Импульс с выхода D-триггера 18 поступает на второй вход второго элемента И 15 и формирует на его выходе высокий уровень, который, поступая на вычитающий вход реверсивного счетчика 13, переводит его в состояние "минус единица" (во всех разрядах единицы). В результате высокий уровень с его прямого выхода старшего разряда m поступит на первый вход мажоритарного устройства 1 первого канала 25 и соответствующие входы остальных каналов.

Далее нулевые уровни сигналов с инверсных выходов (m-1)-гo и m-гo разрядов реверсивного счетчика 13 поступают на первый вход первого элемента И-НЕ 16 и второй вход второго элемента И-НЕ 17, в результате чего на их выходах останется высокий уровень. После того как на любой другой вход устройства, например на второй, поступит импульс Х2, он также будет воспринят реверсивным счетчиком второго канала 16. В результате высокий уровень сигнала с прямого выхода его старшего разряда попадает на вход мажоритарного устройства 1 своего канала и соответствующие входы мажоритарного устройства других каналов. При наличии двух высоких уровней на входах мажоритарного элемента 1 всех каналов на его выходе появится высокий уровень, который поступает на вход С второго D-триггера 19 всех каналов. На входе D этого триггера постоянно присутствует высокий уровень U, в результате чего D-триггер 19 устанавливается в единичное состояние по переднему фронту выходного импульса мажоритарного элемента 1.

Выходной сигнал второго D-триггера 19 всех каналов поступает на выходную шину 24 и вход D третьего D-триггера 20. Далее последовательно будут устанавливаться в единичное состояние третий D-триггер 20 по переднему фронту импульса с инверсного выхода ГТИ 7, четвертый D-триггер 21 по переднему фронту импульса с прямого выхода ГТИ 7, пятый D-триггер 22 по переднему фронту импульса с инверсного выхода ГТИ 7. Выходной импульс третьего D-триггера 20 всех каналов поступает на второй вход первого элемента И 14 и формирует на его выходе высокий уровень, который поступает на суммирующий вход реверсивного счетчика 13. В результате состояние всех реверсивных счетчиков увеличится на единицу - реверсивный счетчик 13 первого канала 25 и реверсивный счетчик 13 второго канала 26 будут обнулены, а реверсивный счетчик 13 третьего канала 27 перейдет в состояние "+1" (единица в младшем разряде). Если далее на вход третьего канала 27 поступит импульс Х3, то в соответствии с приведенным описанием этот импульс проходит на вычитающий вход реверсивного счетчика 13 своего канала и переводит реверсивный счетчик 13 третьего канала 27 в нулевое состояние.

После установки пятого D-триггера 22 в единичное состояние его выходной сигнал устанавливает второй D-триггер 19 в нулевое состояние, после чего происходит последовательная установка в нулевое состояние третьего 20, четвертого 21 и пятого 22 D-триггеров и схема приходит в исходное состояние.

Таким образом, устройство выбирает среднюю по числу импульсов последовательность и все выходные сигналы устройства формируются синхронно.

Недостатком устройства-прототипа является невозможность его применения в сетях связи, использующих структурную защиту передаваемой информации (например, использующих радиолинии с псевдослучайной перестройкой рабочей частоты). В таких сетях связи особенно актуальна синхронизация линии связи за счет периодически посылаемых от передатчика к приемнику синхропосылок с повторами. Структура же устройства-прототипа рассчитана на прием сигнала с высокой вероятностью ошибки первого рода: несмотря на отсутствие сигнала, под действием выбросов шума принимается неправильное решение о наличии сигнала. Как следствие этого, ошибочное принятие решения устройством-прототипом о наличие в шуме, например, битов синхропосылки, может привести к комплексу нежелательных последствий для сети связи в целом.

В связи с этим для повышения качества работы мажоритарного критерия необходима предварительная обработка принимаемой информации с целью минимизации ошибок мажоритарного выбора.

Таким образом, задачей предлагаемого устройства является введение адаптации приемника к изменениям помеховой обстановки и уменьшение потерь информации.

Достигаемый при этом технический результат - повышение помехоустойчивости за счет минимизации воздействия выбросов шума на аппаратуру связи, составной частью которой является данное устройство, и повышение достоверности приема информации.

Для реализации данного технического результата в устройство, содержащее генератор тактовых импульсов (ГТИ) и мажоритарный элемент, согласно изобретению введены n счетчиков-защелок, n демультиплексоров, n арифметико-логических устройств, (n+1) компараторов, n схем сравнения, решающее устройство, преобразователь, сумматор и блок управления, причем решающее устройство, вход которого является входом устройства, последовательно соединено с преобразователем и 1-м - n-м счетчиком-защелкой, причем первые выходы 1-го - n-го счетчиков-защелок соединены с последовательно соединенными сумматором, первым компаратором и блоком управления, l-й -n-й выходы которого соединены соответственно со вторыми входами 1-го - n-го демультиплексоров; вторые выходы 1-го - n-го счетчиков-защелок соединены соответственно с первыми входами 1-го - n-го демультиплексоров, первые выходы которых соединены с мажоритарным элементом, выход которого является выходом устройства; вторые выходы 1-го - n-го демультиплексоров соединены соответственно с 1-й - n-й схемами сравнения, выходы которых соединены соответственно с 1-м - n-м арифметико-логическими устройствами, выходы которых соединены соответственно с 2-м - (n+1)-м компараторами, выходы которых соединены соответственно с 2-м - (n+1)-м входами блока управления; синхровходы 1-го - n-го счетчиков-защелок, 1-го - n-го демультиплексоров, 1-го - n-го арифметико-логических устройств, 1-го - (n+1)-го компараторов, 1-й - n-й схем сравнения, мажоритарного элемента, решающего устройства, преобразователя, сумматора и блока управления соединены с выходом ГТИ.

Функциональная схема предлагаемого устройства для мажоритарного выбора сигналов приведена на фиг.2, где приняты следующие обозначения:

1 - мажоритарный элемент;

21-2n - 1-й - n-й счетчики-защелки (СЗ1-СЗn);

3 - сумматор;

41-4n - 1-й - n-й компараторы;

5 - блок управления (БУ);

61-6n - 1-й - n-й демультиплексоры (Дм1-Дмn);

7 - генератор тактовых импульсов (ГТИ);

8 - решающее устройство (РУ);

91-9n - 1-я - n-я схемы сравнения (CC1-CCn);

10 - (n+1)-й компаратор;

11 - преобразователь;

121-12n - 1-е - n-е арифметико-логические устройства (АЛУ1-АЛУn).

Заявляемое устройство содержит последовательно соединенные решающее устройство 8, вход которого является входом устройства, преобразователь 11 и 1-й - n-й счетчики-защелки 21-2n, причем первые выходы 1-го - n-го счетчиков-защелок 21-2n соединены с последовательно соединенными сумматором 3, (n+1)-м компаратором 10 и блоком управления 5, 1-й - n-й выходы которого соединены соответственно со вторыми входами 1-го - n-го демультиплексоров 61-6n.

Вторые выходы 1-го - n-го счетчиков-защелок 21-2n соединены соответственно с первыми входами 1-го - n-го демультиплексоров 61-6n, первые выходы которых соединены с мажоритарным элементом 1, выход которого является выходом устройства.

Вторые выходы 1-го - n-го демультиплексоров 61-6n соединены соответственно с 1-й - n-и схемами сравнения 91-9n, выходы которых соединены соответственно с 1-м - n-м арифметико-логическими устройствами 121-12n, выходы которых соединены соответственно с 1-м - n-м компараторами 41-4n выходы которых соединены соответственно с 2-м - (n+1)-м входами блока управления 5.

Синхровходы 1-го - n-го счетчиков-защелок 21-2n, 1-го - n-го демультиплексоров 61-6n, 1-го - n-го арифметико-логических устройств 121-12n, 1-го - (n+1)-го компараторов 10, 41-4n, 1-й - n-й схем сравнения 91-9n, мажоритарного элемента 1, решающего устройства 8, преобразователя 11, сумматора 3 и блока управления 5 соединены с выходом ГТИ.

Устройство работает следующим образом.

Непрерывное радиочастотное колебание, переведенное в область видеочастот, поступает в РУ 8. В РУ 8 на основе дискретизации сигнала по времени и по амплитуде принимается решение о длине исследуемого вектора. Для увеличения точности последующих измерений результаты дискретизации в блоке 11 переводятся из формы числа с фиксированной точкой в форму числа с плавающей точкой.

Получаемые в блоках 8 и 11 векторы переменной длины загружаются последовательно в блоки 21-2n по следующему принципу (где β - порядковый номер получаемого в блоке 11 вектора):

При β<n:

- при получении β-го вектора запись производится только в блоки 2γ, где γ∈[1,β], причем для данного интервала в 2γ-й блок записывается (|γ-β-1|)-й вектор.

При β≥n:

- при получении β-го вектора в 2n-й блок записывается (β-n+1)-й вектор.

После записи в каждый из блоков 21-2n их значение длины поступает в сумматор 3, откуда вычисленное значение суммы поступает в блок 10, где происходит сравнение с имеющимся первым контрольным значением (КЗ1). КЗ1 соответствует числу, равному сумме длин векторов, содержащихся в блоках 21-2n, при условии, что их длины равны.

Результаты сравнения в блоке 10 поступают в БУ 5. При условии достижения равенства контрольному значению в блоке 10 БУ 5 вырабатывает управляющие сигналы для адресных входов демультиплексоров 61-6n, согласно которым входной сигнал из соответствующего блоку 6j (где j∈[1,n]) блока 2j поступает соответственно в блок 9j.

Схемы сравнения являются блоками хранения эталонного сигнала. И на выходах блоков 91-9n формируется результат сравнения с эталонным сигналом полученных в блоках 8 и 11 векторов. Данные результаты из блоков 91-9n поступают соответственно в АЛУ 121-12n, где на основе некоторых критериев (определяемых из условий оптимального соотношения вероятностей ложных тревог и правильного приема) определяется окончательное отклонение вектора от эталонного распределения.

Полученные величины отклонений из АЛУ 121-12n поступают соответственно в блоки 41-4n, где происходит сравнение с имеющимся вторым контрольным значением (КЗ2).

Результаты сравнения в блоках 41-4n поступают в БУ 5. На их основе (для тех из блоков 41-4n, где произошло превышение КЗ2) БУ 5 вырабатывает управляющие сигналы для адресных входов соответствующих демультиплексоров 61-6n, согласно которым входной сигнал из соответствующих блоков 21-2n поступает в блок 1, где на основании мажоритарных критериев происходит окончательное определение битов в принятых векторах.

С выхода ГТИ 7 на все блоки данного устройства подаются тактовые импульсы, определяющие начало каждой микрооперации, в результате чего обеспечивается синхронизация работы устройства в целом.

РУ может быть реализовано на основе схем, описанных в [4]. Регистры-защелки могут быть реализованы физически на базе элементов, описанных в [5]. СС 91-9n могут быть реализованы в виде дискретных согласованных фильтров. Блок 1 может быть выполнен в виде логических элементов [6].

Устройство в целом может быть реализовано в виде перепрограммируемого цифрового устройства, например XC3S400-4PQ208I [7].

Таким образом, введение в предлагаемом устройстве новых блоков и связей позволяет увеличить достоверность приема информации за счет адаптации к изменению помеховой обстановки, что позволяет применять его в спецсвязи в условиях воздействия комплекса помех.

Источники информации

1. Патент РФ на изобретение №2298823 "Устройство мажоритарного резервирования (варианты)". // Рабинович М.Д., Никифоров Б.Д., Абрамов В.М., 2005.

2. Патент РФ на изобретение №2110835 "Устройство для мажоритарного выбора сигналов". // Леденев Г.Я., Лаврищев А.Б., 1998.

3. Патент РФ на изобретение №2396591 "Устройство для мажоритарного выбора сигналов". // Леденев Г.Я., Сухов Б.М., Ефимов С.Н., 2008.

4. Шумоподобные сигналы в системах передачи информации. // Под ред. проф. Пестрякова В.Б. - М.: Сов. радио, 1973.

5. Искусство схемотехники. Хоровиц П., Хилл У. - М.: Мир, 1998, п.8.24.

6. Микросхемотехника: Учебное пособие для вузов. Изд. 2-е, перераб. и доп.// Алексеенко А.Г., Шакулин И.И. - М.: Радио и связь, 1990.

7. http://www.plis.ru/index.php

Устройство для мажоритарного выбора сигналов, содержащее генератор тактовых импульсов (ГТИ) и мажоритарный элемент, отличающееся тем, что введены n счетчиков-защелок, n демультиплексоров, n арифметико-логических устройств, (n+1) компараторов, n схем сравнения, решающее устройство, преобразователь, сумматор и блок управления, причем решающее устройство, вход которого является входом устройства, последовательно соединено с преобразователем и 1-м - n-м счетчиками-защелками, причем первые выходы 1-го - n-го счетчиков-защелок соединены с последовательно соединенными сумматором, первым компаратором и блоком управления, 1-й - n-й выходы которого соединены соответственно со вторыми входами 1-го - n-го демультиплексоров; вторые выходы 1-го - n-го счетчиков-защелок соединены соответственно с первыми входами 1-го - n-го демультиплексоров, первые выходы которых соединены с мажоритарным элементом, выход которого является выходом устройства; вторые выходы 1-го - n-го демультиплексоров соединены соответственно с 1-й - n-й схемами сравнения, выходы которых соединены соответственно с 1-м - n-м арифметико-логическими устройствами, выходы которых соединены соответственно с 2-м - (n+1)-м компараторами, выходы которых соединены соответственно с 2-м - (n+1)-м входами блоков управления; синхровходы 1-го - n-го счетчиков-защелок, 1-го - n-го демультиплексоров, 1-го - n-го арифметико-логических устройств, 1-го - (n+1)-го компараторов, 1-й - n-й схем сравнения, мажоритарного элемента, решающего устройства, преобразователя, сумматора и блока управления соединены с выходом ГТИ.



 

Похожие патенты:

Изобретение относится к области автоматики и вычислительной техники и предназначено для повышения достоверности функционирования. .

Изобретение относится к вычислительной технике, в частности к модулярным спецпроцессорам (СП), функционирующим в полиномиальной системе классов вычетов (ПСКВ) и способным сохранять работоспособное состояние при возникновении ошибки за счет реконфигурации структуры.

Изобретение относится к области загрузки содержимого из электронного файла данных. .

Изобретение относится к вычислительной технике и может быть использовано для построения модулярных нейрокомпьютеров, функционирующих в симметричной системе остаточных классов.

Изобретение относится к области автоматики и вычислительной техники и предназначено для повышения отказоустойчивости оперативного запоминающего устройства в управляющих системах реального времени.

Изобретение относится к автоматике и вычислительной технике и может быть использовано при построении высоконадежных матричных, конвейерных, систолических, векторных и других процессоров.

Изобретение относится к автоматике и вычислительной технике и может быть использовано для построения высокопроизводительных систем, систем управления, АСУТП и других систем, удовлетворяющих высоким требованиям к безотказной работе.

Изобретение относится к автоматике и вычислительной технике и может быть использовано при построении управляющих и вычислительных систем высокой производительности, АСУТП, а также других систем, к которым предъявляются жесткие требования по надежности.

Изобретение относится к контролю систем авионики

Изобретение относится к устройствам обмена сообщениями по состоящему из двух линий оптическому каналу и может быть использовано для обнаружения и устранения отказов в передаче сообщений

Изобретение относится к телекоммуникации и вычислительной технике и может быть использовано для организации работы компьютерных сетей. Технический результат заключается в повышении устойчивости к сетевым атакам за счет уменьшения влияния на работоспособность сервера пакетов, поступающих от атакующих ботов. Способ включает формирование запроса от терминального устройства клиента на получение IP адреса сервера, проверку сертификата сервера и сертификата клиента, формирование одной или нескольких таблиц IP адресов в виде двоичных кодов, установление безопасного соединения, передачу сформированной таблицы терминальному устройству клиента, а передачу пакетов данных между терминальным устройством клиента и сервером осуществляют с изменением IP адреса сервера, который выбирают из таблицы IP адресов. Система включает терминальное устройство клиента, сервер данных, сервер доменных имен, сервер обеспечения безопасного соединения, два маршрутизатора и блок, формирующий таблицу IP адресов в виде двоичных кодов и меняющий IP адреса по таблице, назначаемой для каждого соединения. 2 н. и 12 з.п. ф-лы, 7 ил.

Изобретение относится к области контроля тупиковых ситуаций в системах автоматики, связи и вычислительной техники (инфокоммуникации), преимущественно в ракетно-космической технике, в космическом и наземном сегментах управления. Технический результат изобретения заключается в повышении эффективности определения тупиковых ситуаций, особенно в случае наличия множества разнотипных ресурсов, при неполной априорной информации о требуемых процессам ресурсах, с учетом атрибутов критических ресурсов - показателей надежности технических, программных ресурсов и размеров буферной памяти узлов инфокоммуникационной системы. Указанный технический результат достигается тем, что заявленный способ контроля тупиковых ситуаций инфокоммуникационной системы заключается в том, что определяют значения: λ r i т - математического ожидания интенсивности отказов i-гo критического технического ресурса riт, где i=1, 2, 3,…, h r j п - математического ожидания интенсивности отказов j-гo критического программного ресурса rjп, где j=1, 2, 3,…, размера q зоны буферной памяти узла инфокоммуникационной системы, задают tвнп - значение временного интервала планируемого выполнения процессов и вычисляют значение коэффициента готовности - Кгтр по формуле: К г т р = ∏ i = 1 r i т e × − λ r i т t в н п ∏ j = 1 r j п e − h r j п t в н п × ∏ n = 1 N e − k @ э q n ∑ i = 1 k − 1 ( k @ э q n ) i i ! где i=1,2,3,…, - количество критических ресурсов riт; j=1, 2, 3,…, - количество критических программных ресурсов rjп; λ r i т - математическое ожидание интенсивности отказов i-го критического технического ресурса riт; tвнп - временной интервал планируемого выполнения процессов; h r j п - математическое ожидание интенсивности отказов j-гo критического программного ресурса rjп; k - порядок аппроксимирующего распределения Эрланга с параметром @э - интенсивности пуассоновского потока в узел для целого значения размера q зоны буферной памяти узла инфокоммуникационной системы; N - общее количество зон буферной памяти в инфокоммуникационной системе; q - размер зоны буферной памяти узла инфокоммуникационной системы, сравнивают определенный коэффициент готовности - Кгтр с пороговым уровнем Кгтр (0) и при выполнении условия: Кгтр < Кгтр (0) делают вывод о наличии в инфокоммуникационной системе тупиковых ситуаций. 2 н.п. ф-лы, 2 ил.

Изобретение относится к сети, в особенности к сети Ethernet. Технический результат заключается в обеспечении возможности быстрого и надежного переключения при отказе одной из сетевых линий передачи за счет блока расширения для сетевых линий передачи сети, который при выходе из строя сетевой линии передачи обеспечивает возможность быстрого переключения в сети. Технический результат достигается за счет сети Ethernet, содержащей в качестве сетевых элементов по меньшей мере два сетевых компонента (4А, 4В), которые соединены между собой посредством сетевой линии (2) передачи. В соответствии с изобретением в сетевой линии (2) передачи для увеличения ее дальности действия размещен по меньшей мере один блок (1) расширения с двумя внешними портами (А, В), причем блок (1) расширения отказ сетевой линии (2) передачи на одном из своих портов (А, В) перенаправляет на порт (В или А) последующего сетевого элемента (сетевого компонента 4А или 4В). 3 н. и 9 з.п. ф-лы, 6 ил.

Изобретение относится к области вычислительной техники. Технический результат изобретения заключается в повышении отказоустойчивости бесконфликтной распределенной беспроводной коммутации цифровых устройств. В способе осуществляется обмен оптическими сигналами между устройствами, при котором в предоставленный приемнику стыковочный модуль источник сообщения, используя расположенный в нем демультиплексор, посылает сигналы сообщения и непрерывный оптический сигнал в различных частотных диапазонах. Приемники сообщения и все следящие за этой коммутацией устройства посылают в модуль непрерывные оптические сигналы, а модуль возвращает непрерывные сигналы их источникам модулированными сигналами сообщения. При отказе модуля он заменяется любым другим из группы работоспособных модулей. 2 н. и 1 з.п. ф-лы, 4 ил.

Группа изобретений относится к отказоустойчивым системам и может быть использована для построения высоконадежных кластеров. Техническим результатом является повышение отказоустойчивости при выполнении задач в распределенных средах. Ключевой особенностью данного технического решения является использование меток работоспособности и выбор задач с учетом параметров как самой задачи, так и ее предполагаемого исполнителя. Система содержит средство обновления метки работоспособности, средство обнаружения неработоспособных узлов, средство формирования списка задач, средство выбора задач, средство выполнения задач, базу данных. 2 н. и 12 з.п. ф-лы, 5 ил.
Изобретение относится к вычислительной технике. Технический результат заключается в снижении вероятности потери «грязных» данных при отказе одного из контроллеров. Способ контроля корректности записи данных в двухконтроллерной системе хранения данных на массиве энергонезависимых носителей, включающей первый и второй контроллеры, каждый из которых содержит кэш в оперативной памяти, разделенный на сегменты, в котором: записывают данные, полученные от инициатора, в кэш первого контроллера, при этом записанные в кэш данные помечаются как «грязные»; рассчитывают в кэше первого контроллера контрольную сумму полученных данных и хранящихся в кэше других «грязных» данных; передают полученные от инициатора данные из первого контроллера в кэш второго контроллера, при этом записанные в кэш данные помечаются как «грязные»; рассчитывают в кэше второго контроллера контрольную сумму полученных «грязных» данных и хранящихся в кэше других «грязных» данных; передают контрольную сумму, рассчитанную в первом контроллере, во второй контроллер; сравнивают во втором контроллере контрольные суммы первого и второго контроллеров; передают из второго контроллера в первый контроллер результат сравнения контрольных сумм; при совпадении контрольных сумм принимают решение о корректности завершения операции синхронизации данных. 2 н. и 12 з.п. ф-лы, 3 ил.

Изобретение относится к средствам управления и наблюдения за состоянием изделий, в т.ч. служебных систем (СС) летательного аппарата (ЛА). Способ включает сравнение коэффициента готовности (Кгтр) с его пороговым уровнем. Для каждой из СС ЛА формируют необходимый набор диагностических компонентов из нейросетевой аналитико-имитационной модели (НСМ) СС, контроллера отклонений параметров (КОП) сигналов СС, контроллера анализа технического состояния (КАТС) СС и контроллера формирования массива диагностических признаков (КФДП) СС. Входные сигналы подают одновременно на входы СС и НСМ. Выходные сигналы этих систем подают на входы КОП СС, где вычисляют разности сигналов. Последние передают на входы КАТС, где вычисляют частные коэффициенты устойчивости (Кучk). Значения Кучk передают на входы КФДП, где вычисляют значения Кгтр и др. показателей надежности, безотказности, долговечности и т.д. (пользуясь рекомендациями и формулами ГОСТ 27002-89 и ГОСТ Р 53111-2008). Формируют из вычисленных значений массив диагностических признаков, который записывают в буферную память КФДП. Техническим результатом изобретения является обеспечение наиболее полного диагностирования всех служебных систем ЛА. 1 ил.

Изобретение относится к вычислительной технике. Технический результат заключается в увеличении стабильности работы компьютера за счет изменения функционала приложения в зависимости от определенных событий и функциональных модулей. Система изменения функционала приложения содержит функциональные модули антивирусного приложения: файловый антивирус, веб-антивирус, модуль обновления антивирусных баз, средство установки для установки обновления и передачи списка функциональных модулей, для которых было установлено обновление средству наблюдения и средству изменения функционала; средство наблюдения для выявления событий, наступивших с момента установки обновления, и определения превышения порогового значения выявленными событиями; средство изменения функционала для определения функциональных модулей, которые повлияли на превышение порогового значения выявленными средством наблюдения событиями, изменения настроек средства установки таким образом, чтобы далее загружались только обновления антивирусных баз, а также обновления, исключающие появление определенных средством наблюдения событий, и не загружались иные обновления, и изменения одного или более функциональных модулей в зависимости от определенных событий и определенных функциональных модулей. 2 н. и 14 з.п. ф-лы, 4 ил.
Наверх