Установка для культивирования хлореллы

Изобретение относится к сельскому хозяйству и может быть использовано для культивации хлореллы. Устройство для культивирования хлореллы содержит емкость, источник света, систему подачи газа. В устройстве емкость выполнена из светопрозрачного материала, герметично закрыта крышкой и разделена на две секции вертикальной перегородкой, которая не доходит до дна и крышки емкости. В крышке емкости смонтированы штуцер и газовый клапан для сброса излишков газа. Система подачи углекислого газа содержит газовый баллон, который оборудован редуктором понижающего давления и соединен с емкостью через шланг, подключенный к штуцеру крышки емкости. В торцах секций установлены водяные насосы, оборудованные подсосом смеси газов. В противоположных сторонах секций помещены внешние источники света, подключенные к таймеру времени. Емкость с источниками света закрыта кожухом из светоотражающего материала. Перегородка емкости выполнена из светоотражающего материала. Технический результат заключается в снижении себестоимости культивирования хлореллы. 1 з.п. ф-лы, 2 ил.

 

Предлагаемое изобретение относится к сельскому хозяйству и предназначено для выращивания микроводорослей, например хлореллы, используемой в качестве витаминной подкормки для животных и птицы, создания кормовой базы при культивировании беспозвоночных водных организмов для кормления молоди рыб различных видов, а также для переработки выращенных микроводорослей в биотопливо. Известно устройство для выращивания хлореллы (заявка Японии №61-239882, МКИ С12М 1/04) (1), содержащее емкость, в которой размещена экранирующая вертикальная перегородка, которая не соприкасается с дном и крышкой емкости. Вблизи нижнего края перегородки размещены трубки с отверстиями для выпуска газа. Трубки соединены с воздушным компрессором.

Известное устройство в значительной степени подвержено влиянию суточных и сезонных изменений температуры и освещенности, не обеспечивает постоянной и оптимальной освещенности культуральной жидкости по всей ее толще, вследствие чего малопроизводительно и требует больших затрат на единицу выпускаемой продукции.

Наиболее близкой к предложенной установке является, выбранная в качестве прототипа, установка для проточного культивирования хлореллы (кн. «Непрерывное культивирование беспозвоночных», автор В.Е.Кокова, Издательство «Наука», Новосибирск, 1982 г. стр.92-94), содержащая две плоскопараллельные кюветы, каждая из которой состоит из светопрозрачной стенки, металлической стенки, резиновой прокладки. Между прозрачными стенками кювет помещен источник света. Кроме того, установка содержит сепаратор-пеногаситель, систему подачи воздуха и углекислого газа. Установка функционирует следующим образом. В минеральную среду Тамия вводится биомасса живых клеток хлореллы. Суспензия клеток хлореллы заливается в кюветы через верхнее отверстие не более чем на 5/6 объема установки. Затем последовательно включается сепаратор-пеногаситель, система подачи воздуха и углекислого газа, источник света. В процессе работы образуется пена, которая устремляется через трубку в пеногаситель, откуда газовая фракция уходит через вторую трубку, а жидкая возвращается в установку по третьей трубке. Ежесуточно суспезию водорослей сливают и вводят свежую питательную среду Тамия. Слитую суспензию хлореллы уплотняют на центрифуге, затем промывают и используют в качестве корма для коловраток и рачков. В установке используется метод полунепрерывного культивирования.

Недостатком известной установки является, во-первых, достаточно сложная конструкция, из-за наличия сепаратора-пеногасителя, систем непрерывной подачи воздуха и углекислого газа от внешних источников, во-вторых, недостаточно высокая производительность из-за применения метода полунепрерывного культивирования, в-третьих, неэффективные затраты энергии из-за рассеивания части света от источника освещения. Кроме того, в процессе работы необходим регулярный контроль над пеногасителями, системой освещения и герметичностью кювет.

Задачей предлагаемого изобретения является повышение производительности культивирования микроводоросли при упрощении конструкции устройства и снижении затрат на культивирование.

Технический результат от использования предлагаемого изобретения заключается в снижении себестоимости хлореллы.

Поставленная задача достигается тем, что в известной установке для культивирования хлореллы, содержащей емкость, источник света, систему подачи газа, согласно изобретению емкость выполнена из светопрозрачного материала, герметично закрыта крышкой, разделена на две секции вертикальной перегородкой, не доходящей до дна и крышки емкости, в которой смонтированы штуцер и газовый клапан для сброса излишков газа, система подачи углекислого газа содержит газовый баллон, который оборудован редуктором понижающего давления, и соединен с емкостью через шланг, подключенный к штуцеру крышки емкости, при этом в торцах секций установлены водяные насосы, оборудованные подсосом смеси газов, а в противоположных сторонах секций помещены внешние источники света, подключенные к таймеру времени, причем емкость с источниками света закрыта кожухом из светоотражающего материала.

Перегородка емкости выполнена из светоотражающего материала. Разделение емкости на две секции и использование таймера, подключенного к источникам освещения, для периодического переключения световых и темновых интервалов освещения суспензии хлореллы позволяет использовать метод непрерывного культивирования, что значительно повышает производительность культивирования хлореллы.

Использование водяных насосов с подсосом смеси воздуха и углекислого газа из воздушного пространства верхней части емкости позволяет производить постоянное внесение смеси газов в культивируемую суспензию хлореллы, а также ее тщательное перемешивание, не используя для этого внешних источников газа, что значительно упрощает конструкцию установки и удешевляет ее стоимость.

Герметичность емкости и проходы между секциями позволяют использовать для аэрации хлореллы смесь газов воздушного пространства емкости, обогащенную углекислотой и кислородом, выделенных при дыхании хлореллы в световых и темновых интервалах освещения. При этом нет потерь газов в атмосферу и не привлекаются внешние источники воздуха и углекислого газа. Также отпадает необходимость в пеногасителе, что упрощает конструкцию установки, а также облегчает ее обслуживание. Расположение источников света с обеих сторон каждой секции, и использование кожуха из светоотражающего материала обеспечивает равномерное распределение освещенности в объеме секций по всей толщи суспензии хлореллы, снижает потери света на рассеяние, что повышает эффективность установки, а также снижает потребление электроэнергии на единицу продукции.

Сравнение прототипа с заявляемым техническим решением показало, что указанные выше признаки являются отличительными, в связи с чем заявляемое устройство соответствует критерию "новизны".

На фиг.1 изображена установка для культивирования хлореллы, общий вид; на фиг.2 - то же, вид в плане.

Установка содержит емкость 1, выполненную из светопрозрачного материала, разделенную на две секции 2 вертикальной перегородкой 3 таким образом, что она не соприкасается с дном и крышкой емкости 1. Перегородка 3 выполнена из светоотражающего материала. Емкость 1 герметично закрыта крышкой 4. Крышка 4 оборудована сбросным газовым клапаном 5, предназначенным для сброса излишков углекислоты после предпусковой ее подачи или в процессе работы установки, а также штуцером 6, к которому подключается шланг 7 от газового баллона 8 с углекислотой. Газовый баллон 8 оборудован редуктором 9 для понижения давления вводимого газа. В торцах секций 2 смонтированы водяные насосы 10, дополнительно оборудованные регулируемым подсосом 11 смеси газов. Забор смеси газов осуществляется из воздушного пространства над суспензией хлореллы. Вне емкости 1 с двух противоположных сторон каждой секции 2 помещены источники света 12, связанные с таймером 13 времени, который один раз в сутки производит переключение комплектов источников света 12. На емкость 1 с источниками света 12 надет кожух 14 из светоотражающего материала, например алюминиевой фольги, для концентрации света в секциях 2 и препятствия рассеивания его за пределы установки. Установка снабжена водонагревателем с терморегулятором для создания оптимальной температуры в емкости. В качестве водяных насосов 10, оборудованных подсосом воздуха, можно использовать аквариумные компрессоры со снятыми механическими фильтрами. Водонагревателем может служить аквариумный нагреватель с встроенным контактным терморегулятором необходимой мощности. Источники света 12 представляют собой лампы дневного света.

Установка работает следующим образом.

Секции 2 емкости 1 на 1/4 заполняют раствором микроудобрений, и до половины объема заполняют хлореллой. На водонагревателе устанавливают требуемые значения температуры. Включают водяные насосы 10 с подсосом 11 смеси газов из воздушного пространства над границей суспензии хлореллы. Емкость 1 герметично закрывают крышкой 4. Из газового баллона 8 в верхнюю часть емкости 1 вносится стартовая порция углекислоты. С помощью водяных насосов происходит тщательное перемешивание хлореллы с углекислым газом и воздухом, поступившими из верхней части емкости 1. Излишки углекислого газа выводятся сбросным газовым клапаном 5. Емкость 1 с источниками света 12 закрывают кожухом 14. Включают таймер 13, который подключает источники света 12 одной из секций 2. В освещенной секции 2 происходит перемешивание хлореллы с выделением кислорода, а в неосвещенной секции 2 происходит перемешивание хлореллы с выделением углекислоты. Выделенные газы поступают в верхнюю часть емкости 1, где перемешиваются и подсосом воздуха поступают в культивируемую суспензию хлореллы, насыщая ее смесью газов. По истечении времени, установленного на таймере 13, таймер 13 отключает источники света 12 секции 2 и включает источники света 12 во второй секции 2. Поднимают кожух 14. Крышку 4 емкости 1 открывают и 0,5-0,7 объема хлореллы извлекается из емкости 1. Вводится свежий раствор микроудобрений. Крышку 4 герметично закрывают. Установка вновь закрывается кожухом 14. Таким образом, обеспечивается процесс непрерывного культивирования хлореллы.

Предлагаемая установка имеет простую конструкцию, в которой используются общедоступные, стандартные комплектующие. Запуск установки и поддержание непрерывного и нормального процесса культивирования требуют соблюдения несложных операций по обслуживанию и контролю. Равномерное распределение освещения в объеме устройства без внешних потерь и создание для культуры непрерывного чередования режима дня и ночи в любое время года и суток с одновременным поддержанием оптимальной температуры и постоянным насыщением смесью газов для развития микроводорослей значительно повышает эффективность и производительность установки.

1. Установка для культивирования хлореллы, содержащая емкость, источник света, систему подачи газа, отличающаяся тем, что емкость выполнена из светопрозрачного материала, герметично закрыта крышкой, разделена на две секции вертикальной перегородкой, не доходящей до дна и крышки емкости, в которой смонтированы штуцер и газовый клапан для сброса излишков газа, система подачи углекислого газа содержит газовый баллон, который оборудован редуктором понижающего давления и соединен с емкостью через шланг, подключенный к штуцеру крышки емкости, при этом в торцах секций установлены водяные насосы, оборудованные подсосом смеси газов, а в противоположных сторонах секций помещены внешние источники света, подключенные к таймеру времени, причем емкость с источниками света закрыта кожухом из светоотражающего материала.

2. Установка по п.1, отличающаяся тем, что перегородка емкости выполнена из светоотражающего материала.



 

Похожие патенты:

Изобретение относится к биотехнологии и может быть использовано для получения как биомассы микроводорослей, так и любых продуктов их жизнедеятельности. .

Изобретение относится к гидротехническим сооружениям при возведении искусственных рифов в морских и пресноводных хозяйствах. .

Изобретение относится к микробиологической промышленности, а именно к технологии выращивания хлореллы. .
Изобретение относится к марикультуре, а именно к искусственному восстановлению полей ламинарии в традиционных местах ее произрастания. .

Изобретение относится к микробиологической промышленности, а именно к технологии выращивания хлореллы. .

Изобретение относится к сельскому хозяйству и направлено на решение проблемы повышения жизнеспособности различных видов флоры и фауны, обитающих в воде. .

Изобретение относится к биофизике и ядерной технике и предназначено для производства биологического сырья для синтеза искусственного органического топлива, кормов и гумуса.

Изобретение относится к сельскому хозяйству, конкретно к установкам для выращивания кормовой микроводоросли спирулины плантенсис. .

Изобретение относится к носителю для швартовной точки выращивания макроводорослей, как описано во вступительной части п.1 формулы изобретения, и устройству для подвешивания таких носителей

Изобретение относится к биотехнологии, а именно к технологии выращивания планктонных водорослей, в частности хлореллы

Плавучий биореактор включает по меньшей мере один установленный на поверхности водоема герметичный контейнер из мягкого светопроницаемого полимерного материала с трубопроводами с запорной арматурой для загрузки исходных сырьевых компонентов, разгрузки микроводорослей и подачи и отбора газов из контейнера. Контейнер снабжен горизонтальным каркасом в форме поверхности кругового полого цилиндра, основания которого посредством стержней соединены между собой по образующим. На одной оси с каркасом смонтирован вал. Трубопроводы для загрузки исходных сырьевых компонентов и подачи газов, а также разгрузки микроводорослей и отбора газов смонтированы в основаниях каркаса контейнера. Биореактор снабжен понтоном, шарнирно сочлененным с контейнером посредством одноплечих рычагов, смонтированных на валу контейнера с возможностью его свободного вращения и качания по вертикали. Изобретение позволяет увеличить производительность биореактора. 1 з.п. ф-лы, 3 ил.

Группа изобретений относится к области выращивания микроводорослей. Предложена установка для выращивания хлореллы и светильник для установки. Установка содержит связанную линией отвода готовой суспензии с емкостью готовой суспензии систему биореакторов хлореллы, биореактор раствора углекислого газа, связанный на выходе с биореакторами хлореллы, станцию подготовки питательного раствора, связанную на выходе с биореакторами хлореллы и биореактором раствора углекислого газа, светильники в виде электроламп, снабженные системой охлаждения, насосы и запорно-регулирующие устройства. Светильники установлены внутри корпусов биореакторов хлореллы, их система охлаждения представляет собой рубашку жидкостного охлаждения. Рубашка жидкостного охлаждения выполнена в виде дополнительного кожуха из прозрачного материала, огибающего корпус электролампы с образованием проточного канала. Вход и выход проточного канала связаны между собой через теплообменник и циркуляционный насос линией подвода и линией отвода охлаждающей жидкости. Устройства перемешивания, регулирования, мойки и дренажа размещены и подключены под системой секций биореакторов. Биореакторы хлореллы снабжены линиями отвода моющей жидкости в дренаж, при этом биореакторы хлореллы связаны на входе с емкостью готовой суспензии. Изобретения позволяют повысить удобство эксплуатации, безопасность работы, эффективность системы охлаждения светильников, производительность и качество целевого продукта, обеспечить процесс производства суспензии водоросли в автоматическом режиме. 2 н.п. ф-лы, 3 ил.

Устройство для культивирования макрофитов с рабочими объемами с соотношением высоты к ширине не менее 1,5, имеющими поперечные профили дна в форме четвертой-шестой части сечения цилиндра, примыкающего к высоким боковым стенкам под прямым углом, и низкие стенки, выполненные из светонепроницаемого материала, оснащенные расположенными в их глубоких частях продольными перфорированными воздуховодами, патрубками для подачи и щелями для слива питательной среды, газообменниками, блоком регулирования рН с датчиками рН и набором сигнальных электродов, коммутатором, исполнительным механизмом для подачи в газообменники углекислого газа, светильниками с вертикальным набором люминесцентных ламп, вокруг которых попарно группируются рабочие объемы, которые дополнительно оснащены роторами, вращающимися на осях, закрепленных на торцевых стенках, с шестью подпружиненными, наполняемыми воздухом поворотными лопастями, выполненными из светопроницаемого материала, и вспомогательными перфорированными воздуховодами с независимым регулированием подачи воздуха. Устройство при значительном сокращении расходов углекислого газа и сжатого воздуха позволяет эффективно использовать световую энергию и, сохраняя высокую удельную производительность продукции, снизить её себестоимость.

Способ культивирования одноклеточной зеленой микроводоросли Dunaliella salina для получения биомассы с использованием квазинепрерывного режима культивирования. Культуру, выращенную на модифицированной питательной среде Тренкеншу методом накопительных культур до плотности 1,5-3 г ОР·л-1 переводят в квазинепрерывный режим культивирования. Дальнейшее выращивание осуществляют при удельной скорости протока среды около 0,3 сут-1, при круглосуточном освещении с поверхностной освещенностью 80 Вт·м-2, непрерывной продувке газовоздушной смесью со скоростью 1 л смеси·мин-1·л-1 культуры, которая содержит 3 % СО2, и температуре 26-28°С, на модифицированной питательной среде Тренкеншу. Полученная биомасса составляла около 0,5 г ОВ с 1 л культуры в сутки при относительном содержании каротиноидов в биомассе не менее 0,9 % ОВ, хлорофилла а - 2,8% ОВ и белка - 55% ОВ.

Изобретение относится к способу определения объемов и площадей поверхностей клеток диатомовых водорослей, предусматривающему отбор и фотографирование водорослей, компьютерное построение трехмерных геометрических моделей путем создания каркаса, покрываемого полигональной поверхностью, расчеты объемов и площадей водорослей по полученным моделям. При этом трехмерный каркас модели строят путем объединения трех компьютерных оцифрованных проекций панцирей диатомовых водорослей на створчатую, продольную и поперечную плоскости, причем для построения цифровых проекций применяют кубические кривые Безье, которые используют для обводки контуров клеток диатомовых, причем ключевые вершины кривых Безье размещают в морфологически значимых местах границы контура клетки, которые соответствуют наиболее возможным местам изменения формы границы в процессе развития микроводоросли, а после «обтягивания» каркаса полигональной поверхностью построенную модель соотносят с размерами исследуемого объекта и модифицируют с помощью перемещения ключевых вершин кривых Безье так, чтобы их размеры и пропорции отвечали размерам и пропорциям исследуемых клеток.

Изобретение «Применение глубинной морской воды из сероводородной зоны Черного моря в качестве среды культивирования морских водорослей» относится к марикультуре и предназначено для культивирования морских водорослей в лабораторных и промышленных условиях. Техническая сущность изобретения заключаются в применении глубинной воды Черного моря как содержащей сероводород, так и окисленной в качестве среды культивирования морских водорослей. Исследования биогенных свойств водной среды из восстановительной зоны Черного моря, выполненные авторами изобретения показали, что глубинная вода не оказывает губительного действия на черноморские планктонные водоросли в присутствии высоких исходных концентраций сероводорода. После полного окисления этого ксенобиотика черноморская глубинная вода может применяться в качестве питательной плодородной среды культивировании одноклеточных планктонных и многоклеточных бентосных водорослей в лабораторных или промышленных условиях и в марикультурных хозяйствах.
Изобретение относится к области выращивания одноклеточных фотосинтезирующих микроорганизмов. Предложен способ культивирования фотосинтезирующих микроорганизмов в фотобиореакторе закрытого типа с рабочим объемом, содержащим культуральную жидкость. Способ включает подачу газовой смеси, содержащей углекислый газ, в рабочий объем фотобиореактора, осуществление освещения культуральной жидкости от источника искусственного света и ее перемешивание. Перед началом процесса культивирования в рабочий объем фотобиореактора в культуральную жидкость вносят гранулы люминофора с длительным послесвечением в количестве 10-30% от объема культуральной жидкости. Гранулы люминофора снабжены прозрачной наружной оболочкой из химически и биологически инертного материала. При непрерывном или периодическом отборе культуральной жидкости из рабочего объема фотобиореактора отделяют гранулы люминофора с помощью сетчатого фильтра. Изобретение обеспечивает снижение энергетических затрат на процесс культивирования фотосинтезирующих микроорганизмов и увеличение производительности процесса. 1 табл., 2 пр.

Изобретение относится к растениеводству и животноводству. Предложенный вертикальный конвейер дроссельных растилен пищевых, пастбищных и фармацевтических растений, осетров, креветок и спирулины содержит станину с вертикальными возвратно-поступательного движения конвейером пищевых и пастбищных растений и конвейером бассейнов осетров, креветок, спирулины и аквакультур и транспортеры с аэропонными растильнями. Дроссельные растильни выполнены в идее шарнирно навешенных вертикальных лопастей на транспортеры конвейера пищевых и пастбищных растений с возможностью реализации технологии «хайпоника» и поочередной подачи стеблей и корней на кормление животным, а овощей - покупателям. Бассейны осетров, креветок и спирулины шарнирно прикреплены к транспортерам вертикального конвейера бассейнов. Станина оснащена телескопическими ковшовыми садками-манипуляторами ряски, спирулины, осетров, креветок и аквакультур, оборудованными поворотными и линейными приводами, с возможностью подачи ряски и спирулины на дроссельные растильни из любого бассейна для кормления животных и для подачи аквакормов для кормления осетров, креветок, а осетров, креветок, спирулины - покупателям. Роботизированное исполнение и конверторное снабжение энергией, удобрениями, водой и воздухом выполнено с возможностью быстрой реакции на изменения требований рынка. Изобретение обеспечивает повышение эффективности и продуктивности конвейера. 4 з.п. ф-лы, 1 ил.
Наверх