Способ полимеризации в суспензионной фазе


 


Владельцы патента RU 2477288:

ИНЕОС МЭНЬЮФЕКЧУРИНГ БЕЛДЖИУМ НВ (BE)

Изобретение имеет отношение к способу получения мультимодального полиэтилена. Способ проходит в по меньшей мере двух реакторах, соединенных последовательно, где от 20 до 80 мас.% высокомолекулярного (ВМк) полимера получают в суспензии в первом реакторе и от 20 до 80 мас.% низкомолекулярного (НМк) полимера получают в суспензии во втором реакторе. Значение отношения средней эффективной концентрации вещества в реакторе НМк продукта к средней эффективной концентрации вещества в реакторе ВМк продукта составляет от 0,25 до 1,5. Среднюю эффективную концентрацию вещества в каждом реакторе определяют как производительность по полиэтилену, полученному в реакторе (кг ПЭ/ч)/[концентрация этилена в реакторе (мольных %)×продолжительность пребывания в реакторе (ч)×скорость подачи катализатора в реактор (г/ч)]. Продолжительность пребывания определяют как массу полимера в реакторе (кг)/скорость удаления полимера из реактора (кг/ч). Объем второго реактора по меньшей мере на 10%, предпочтительно по меньшей мере на 30%, а более предпочтительно по меньшей мере на 50%, больше объема первого реактора. Отношение длины к диаметру первого реактора L/D(1) превышает этот показатель у второго реактора L/D(2), а предпочтительно превышает по меньшей мере на 20%. Технический результат - разработка способа получения мультимодального полиэтилена в двух реакторах с оптимальным соотношение размеров. 2 н. и 13 з.п. ф-лы, 1 табл., 1 пр.

 

Настоящее изобретение относится к полимеризации олефинов в реакторах суспензионной фазы, а более конкретно к полимеризации в двух или большем числе реакторов, размещенных последовательно.

Полимеризация олефинов в суспензионной фазе известна хорошо, в ней олефиновый мономер и необязательно олефиновый сомономер полимеризуют в присутствии катализатора в разбавителе, в котором твердый полимерный продукт суспендируют и транспортируют.

Полимеризацию проводят, как правило, при температурах в интервале от 50 до 125°С и под абсолютными давлениями в интервале от 1 до 100 бар. Применяемым катализатором может быть любой катализатор, используемый, как правило, для полимеризации олефинов, такой как катализаторы из оксида хрома, Циглера-Натта или металлоценового типа.

Во многих мультиреакторных системах применяют реакторы с циркуляцией, которые характеризуются непрерывной трубчатой конструкцией, включающей по меньшей мере две, например четыре, вертикальные секции и по меньшей мере две, например четыре, горизонтальные секции. Тепло полимеризации, как правило, отводят с использованием непрямого обмена с охлаждающей средой, предпочтительно с водой, в рубашках, окружающих по меньшей мере часть трубчатого реактора с циркуляцией. Объем каждого реактора с циркуляцией мультиреакторной системы можно варьировать, но, как правило, он находится в интервале от 10 до 200 м3, более типично от 50 до 120 м3. Реакторы с циркуляцией, применяемые при выполнении настоящего изобретения, относятся к этому родовому типу.

Как правило, в процессе суспензионной полимеризации с получением, например, полиэтилена суспензия в реакторе обычно включает порошкообразный полимер, углеводородный разбавитель (разбавители), (со) мономер (со) (мономеры), катализатор, обрывающие цепь агенты, такие как водород, и другие реакторные добавки. Так, в частности, суспензия обычно включает от 20 до 75, предпочтительно от 30 до 70 мас.% (в пересчете на общую массу суспензии), порошкообразного полимера и от 80 до 25, предпочтительно от 70 до 30 мас.% (в пересчете на общую массу суспензии), суспензионной среды, где суспензионной средой служит совокупность всех компонентов текучих сред в реакторе, и обычно она включает разбавитель, олефиновый мономер и все добавки; разбавителем может быть инертный разбавитель или им может быть реакционно-способный разбавитель, в частности жидкий олефиновый мономер, где основной разбавитель представляет собой инертный разбавитель, олефиновый мономер составляет, как правило, от 2 до 20, предпочтительно от 4 до 10 мас.% суспензии.

Суспензию прокачивают по относительно гладкостенной бесконечной контурной реакционной системе при скоростях движения текучей среды, достаточных для того, чтобы сохранить полимер в суспензии в суспендированном состоянии и сохранить приемлемые градиенты концентрации и содержания твердых частиц в поперечном сечении. Суспензию отводят из полимеризационного реактора, содержащего полимер, совместно с реагентами и инертными углеводородами, которые все включают главным образом инертный разбавитель и непрореагировавший мономер. Получаемую суспензию, включающую полимер и разбавитель, а в большинстве случаев и катализатор, олефиновый мономер и сомономер, можно удалять периодически или непрерывно, необязательно с использованием концентрирующих устройств, таких как гидроциклоны и вертикальные отстойники, с целью свести к минимуму количество текучих сред, отводимых с полимером.

В мультиреакторных процессах полимеризации состав суспензии, отводимой из конечного реактора, зависит от многих факторов, не считая состава продукта, фактически полученного полимеризацией в конечном реакторе: он также зависит от целевого конечного продукта, реакционных условий и относительных пропорций продуктов в любых предшествующих реакторах. На реакционные условия, требующиеся для конечного реактора, влияют также реакционные условия в предшествующих реакторах, причем на потенциал средней эффективной концентрации вещества в последующих реакционных условиях особое влияние оказывает производительность катализатора в предшествующих реакторах. Таким образом, регулирование состава суспензии, отводимой из конечного реактора, а также связанные с этим технологические условия оказываются более сложными, чем в случае единственного реактора.

Одной проблемой, которая может повлиять на все вышеприведенные факторы, является относительный размер обоих реакторов. Существует много противоречащих друг другу требований, влияющих на оптимизацию объема и размеров обоих реакторов. Для того чтобы управляться не только с полимером, получаемым в этом реакторе, но также с полимером, переносимым из предшествующего реактора или реакторов, в процессе мультиреакторной полимеризации второй и все последующие реакторы должны быть достаточно большими. Это означает, по-видимому, что для того чтобы сохранить аналогичную объемную производительность, второй и последующие реакторы должны быть больше предшествующих реакторов. В ЕР 057420 А описана двухреакторная система, в которой второй реактор обладает удвоенным объемом первого. При создании настоящего изобретения было установлено, что один недостаток этой системы заключается в том, что требуемый отвод тепла, условие, часто ограничивающее производительность, в более крупных последующих реакторах превышает необходимый отвод тепла в предшествующем реакторе. Соответственно, каким должно быть оптимальное соотношение размеров реакторов, не очевидно. Так, в частности, когда реакторную систему конструируют для проведения процесса с катализаторами разных типов (например, Циглера-Натта, хромового и/или металлоценового) или с каталитической системой, в которой необходимая средняя эффективная концентрация вещества или фактор производительности между реакторами в разных рабочих режимах варьируется значительно, идеальное соотношение размеров реакторов в каждом случае является, вероятно, разным, затрудняя тем самым выбор идеального профиля размеров. Профиль эффективной концентрация вещества в постоянных реакционных условиях при переходе между каталитическими системами Циглера-Натта, хромовыми, металлоценовыми и/или на основе late переходного металла также значительно варьируется.

Однако при создании настоящего изобретения было установлено, что наиболее оптимальное соотношение размеров реакторов является таким, при котором второй реактор по меньшей мере на 10 об.% больше первого реактора и, кроме того, отношение длины к диаметру первого реактора превышает этот же показатель у второго реактора.

Таким образом, первым объектом настоящего изобретения является получение мультимодального полиэтилена в по меньшей мере двух реакторах, соединенных последовательно, где от 20 до 80 мас.% высокомолекулярного (ВМк) полимера получают в суспензии в первом реакторе и от 20 до 80 мас.% низкомолекулярного (НМк) полимера получают в суспензии во втором реакторе, где отношение средней эффективной концентрации вещества в реакторе НМк продукта к средней эффективной концентрации вещества в реакторе ВМк продукта составляет от 0,25 до 1,5, где среднюю эффективную концентрацию вещества в каждом реакторе определяют как производительность по полиэтилену, полученному в реакторе (кг ПЭ/ч)/[концентрация этилена в реакторе (мольных %)×продолжительность пребывания в реакторе (ч)×скорость подачи катализатора в реактор (г/ч)], причем продолжительность пребывания определяют как массу полимера в реакторе (кг)/скорость удаления полимера из реактора (кг/ч), и где объем второго реактора по меньшей мере на 10%, предпочтительно по меньшей мере на 30%, более предпочтительно по меньшей мере на 50% больше объема первого реактора, а отношение длины к диаметру первого реактора L/D(1) превышает этот показатель у второго реактора L/D(2), а предпочтительно превышает по меньшей мере на 20%.

Реакторная система, в которой объем второго реактора по меньшей мере на 10% больше объема первого реактора, создает возможность свести к минимальному общий объем реакторов, одновременно обеспечивая достаточную гибкость для манипулирования с разными рабочими условиями и катализаторами. Это особенно выгодно в случаях, когда активность катализатора в первом реакторе ВМк продукта оказывается высокой, поскольку больший размер второго реактора создает возможность использования увеличенных продолжительностей пребывания для данного соотношения блоков. При создании настоящего изобретения было установлено, что существует возможность устранить затруднения с разными требованиями по отводу тепла в обоих реакторах гарантированием того, что отношение длины к диаметру первого реактора L/D(1) превышает этот показатель у второго реактора L/D(2), предпочтительно превышает по меньшей мере на 20%, а наиболее предпочтительно превышает по меньшей мере на 30%. Как правило, значение отношения L/D(1) к L/D(2) превышает 1,5, наиболее предпочтительно превышает 2. Увеличенный L/D обеспечивает более значительную площадь поверхности на единицу объема, что создает возможность более высокой скорости отвода тепла, поскольку способность охлаждать реактор зависит от площади доступной поверхности, на которую можно воздействовать охлаждением. Таким образом, если требования по охлаждению обоих реакторов одинаковы, более крупный реактор НМк продукта может обладать более низким L/D, чем меньший реактор ВМк продукта. Следовательно, выполнение изобретения позволяет сбалансировать способность каждого реактора к теплопереносу при одновременном также сведении к минимуму общего объема реакторов.

В общем в предпочтительном варианте значение отношения длины к диаметру (L/D) первого реактора ВМк продукта превышает 500, предпочтительно находится в пределах от 750 до 3000, а наиболее предпочтительно превышает 800, например составляет от 800 до 1500. Обычно в предпочтительном варианте значение отношения длины к диаметру (L/D) второго реактора НМк продукта превышает 200, предпочтительно составляет от 200 до 1000, а наиболее предпочтительно от 250 до 750, например от 300 до 550.

Обычно каждый из реакторов обладает внутренним объемом больше 10 м3, более обычно больше 25 м3, в частности больше 50 м3. Как правило, он находится в интервале от 75 до 200 м3, а более конкретно от 100 до 175 м3.

Среднюю эффективную концентрацию вещества в каждом реакторе определяют как производительность по полиэтилену, полученному в реакторе (кг ПЭ/ч)/[концентрация этилена в реакторе (мольных %)×продолжительность пребывания в реакторе (ч)×скорость подачи катализатора в реактор (г/ч)], причем продолжительность пребывания определяют как массу полимера в реакторе (кг)/скорость удаления полимера из реактора (кг/ч). Если во второй реактор дополнительный катализатор не добавляют, тогда при расчете соотношения средних эффективных концентраций вещества скорость потока катализатора в оба реактора рассматривают как одинаковую. Если во второй реактор дополнительный катализатор добавляют, то скорость потока во второй реактор рассматривают как совокупность расхода катализатора из первого реактора плюс расход дополнительного свежего катализатора, добавляемого непосредственно во второй реактор. По другому варианту эффективная концентрация вещества в каждом реакторе может быть вычислена на основе остатков катализатора в полимере, полученном в каждом реакторе, как это хорошо известно, а исходя из этого вычисляют соотношение эффективных концентраций вещества.

Продолжительность пребывания определяют как массу полимера в реакторе (кг)/скорость удаления полимера из реактора (кг/ч). В случае, когда полимер возвращают назад в реактор, например когда после реактора используют гидроциклон, скорость удаления полимера не является производительностью (т.е. количество удаляемого полимера меньше количества полимера, возвращаемого в процесс).

В предпочтительном варианте мультимодальный полиэтилен обладает сдвиговым соотношением по меньшей мере 15, обычно в пределах от 15 до 50, а предпочтительно в пределах от 21 до 35. Понятие "сдвиговое соотношение" - это значение отношения индекса расплава полиэтилена под большой нагрузкой, ИРБН, к MI5 полиэтилена. ИРБН и MI5 определяют в соответствии со стандартом ISO 1133 при температуре 190°C с применением нагрузок соответственно 21,6 и 5 кг. MI2 определяют аналогичным образом, но с применением нагрузки 2,16 кг.

ИРБН мультимодального полиэтилена, выходящего из второго реактора, в предпочтительном варианте находится в пределах от 1 до 100 г/10 мин, а более предпочтительно в пределах от 1 до 40 г/10 мин.

В одном варианте катализатор, используемый для полимеризации, представляет собой катализатор Циглера-Натта. В этом случае предпочтительное отношение НМк к ВМк полимеру составляет от 40:60 до 60:40.

В мультиреакторных процессах полимеризации состав суспензии, отводимой из конечного реактора, зависит от многих факторов, не считая состав продукта, фактически полученного полимеризацией в конечном реакторе; он также зависит от целевого конечного продукта, реакционных условий и относительных долей продуктов во всех предшествующих реакторах. Обязательные реакционные условия в конечном реакторе зависят также от реакционных условий в предшествующих реакторах, причем на потенциал средней эффективной концентрации вещества в последующих реакционных условиях особое влияние оказывает производительность катализатора в предшествующих реакторах. В общем необходимо, чтобы основную часть жидких компонентов, отводимых с полимером из конечного реактора, отделяли в отпарном резервуаре в условиях таких температуры и давления, благодаря которым они могут быть повторно конденсированы простым охлаждением, без повторного сжатия. Остальные жидкие компоненты, не удаленные по этому способу, отделяют во втором отпарном резервуаре, работающем под более низким давлением, и для того чтобы возвратить в процесс их необходимо сжимать повторно. Преимущество этого способа, который в дальнейшем в настоящем описании упоминается как способ "отпаривания под средним давлением", заключается в том, что для повторной конденсации повторно сжата должна быть только небольшая доля испаренных жидких компонентов. При создании настоящего изобретения было установлено, что благодаря осторожному регулированию реакционных условий существует возможность гарантировать то, что осуществление способа "отпаривания под средним давлением" позволяет проводить процесс без потребности в повторном сжатии жидкости, испаренной в первом отпарном резервуаре.

В предпочтительном варианте значение отношения концентрации твердых частиц в первом реакторе к этому показателю во втором реакторе поддерживают на уровне ниже 1,0, предпочтительно в пределах от 0,6 до 0,8, поскольку это содействует также сохранению баланса средней эффективной концентрации вещества между обоими реакторами в целевом интервале. Концентрация твердых частиц является средней массой полимера относительно общей массы суспензии.

Обычно концентрация твердых частиц во втором реакторе НМк продукта составляет по меньшей мере 35 мас.%, наиболее предпочтительно находится в пределах от 45 до 60 мас.%. Концентрация твердых частиц в реакторе ВМк продукта обычно находится в пределах от 20 до 50 мас.%, более предпочтительно в пределах от 25 до 35 мас.%. В этом случае в предпочтительном варианте твердые частицы, переносимые из первого реактора во второй реактор, концентрируют с применением зоны осаждения и/или гидроциклона. С целью уменьшить долю сомономера, переносимого в последующий реактор, перед гидроциклоном может быть введен поток свободного от сомономера разбавителя с повышением таким образом плотности полимера, получаемого в реакторе НМк продукта.

Еще одним объектом изобретения является способ получения мультимодального полиэтилена в по меньшей мере двух реакторах, соединенных последовательно, где от 20 до 80 мас.% высокомолекулярного (ВМк) полимера получают в суспензии в первом реакторе и от 20 до 80 мас.% низкомолекулярного (НМк) полимера получают в суспензии во втором реакторе, где концентрация твердых частиц во втором реакторе НМк продукта, определенная как масса полимера, деленная на общую массу суспензии, составляет по меньшей мере 35 мас.%, наиболее предпочтительно находится в пределах от 45 до 60 мас.%, и/или значение отношения концентрации твердых частиц в первом реакторе к этому показателю во втором реакторе поддерживают на уровне ниже 1,0, предпочтительно в пределах от 0,6 до 0,8, а объем второго реактора по меньшей мере на 10%, предпочтительно по меньшей мере на 30%, а более предпочтительно по меньшей мере на 50%, больше объема первого реактора и отношение длины к диаметру первого реактора L/D(1) превышает этот показатель у второго реактора L/D(2), а предпочтительно превышает по меньшей мере на 20%. В этом дополнительном варианте предпочтительное значение отношения средней эффективной концентрации вещества в реакторе НМк продукта к средней эффективной концентрации вещества в реакторе ВМк продукта составляет от 0,25 до 1,5, где среднюю эффективную концентрацию вещества в каждом реакторе определяют как производительность по полиэтилену, полученному в реакторе (кг ПЭ/ч)/[концентрация этилена в реакторе (мольных %)×продолжительность пребывания в реакторе (ч)×скорость подачи катализатора в реактор (г/ч)], причем продолжительность пребывания определяют как массу полимера в реакторе (кг)/скорость удаления полимера из реактора (кг/ч). Также в предпочтительном варианте концентрация твердых частиц в реакторе ВМк продукта находится в пределах от 20 до 50 мас.%, более предпочтительно в пределах от 25 до 35 мас.%.

При создании настоящего изобретения было установлено, что максимизация концентрации твердых частиц во втором реакторе НМк продукта относительно этого показателя в первом реакторе ВМк продукта является эффективным путем увеличения продолжительности пребывания во втором реакторе относительно этого же показателя в первом, для того чтобы сбалансировать производительность в обоих реакторах.

В предпочтительном варианте выполнения изобретения суспензию, содержащую мультимодальный полиэтилен, переносят из второго из двух реакторов в отпарной резервуар, работающий в условиях таких давления и температуры, благодаря которым по меньшей мере 50 мольных %, предпочтительно по меньшей мере 80 мольных %, более предпочтительно 90 мольных %, наиболее предпочтительно 95 мольных %, жидкого компонента суспензии отводят из отпарного резервуара в виде пара. В этом варианте предпочтительно, чтобы в отпарном резервуаре концентрация компонентов, обладающих молекулярной массой ниже 50, Слегких продуктов, соответствовала уравнению Слегких продуктов<7+0,07(40-Tc)+4,4(Рс-0,8)-7(CH2/CEt), где Tc и Pc обозначают соответственно температуру (°С) и манометрическое давление (МПа) по месту, где пар, отводимый из отпарного резервуара, конденсируют, а CH2 и CEt обозначают молярные концентрации в отпарном резервуаре соответственно водорода и этилена. Выполнение изобретения способствует достижению этого сведением к минимуму концентрации Слегких продуктов во втором реакторе. Совершенно очевидно, что понятия "первый" и "второй" реакторы относятся к последовательности полимеризации, независимо от того, какой полимер и в каком реакторе получают.

В предпочтительном варианте концентрацию компонентов, обладающих молекулярной массой ниже 50, в суспензии, поступающей в отпарной резервуар, регулируют путем регулирования этой концентрации во втором реакторе. Таким образом, в предпочтительном варианте концентрация во втором реакторе компонентов, обладающих молекулярной массой ниже 50, также соответствует уравнению Слегких продуктов<7+0,07(40-Тс)+4,4(Рс-0,8)-7(СН2/CEt), где Слегких продуктов, CH2 и CEt в этом случае обозначают соответственно концентрации компонентов, обладающих молекулярной массой ниже 50, водорода и этилена во втором реакторе, а Pc и Tc имеют вышеуказанные значения. В более предпочтительном варианте концентрация компонентов, обладающих молекулярной массой ниже 50, во втором реакторе является такой же, как концентрация компонентов, обладающих молекулярной массой ниже 50, поступающих в отпарной резервуар.

Обычно предпочтительно, чтобы концентрация компонентов, обладающих молекулярной массой ниже 50, соответствовала уравнению Слегких продуктов<7+0,07(40-Тс)+4,4(Рс-0,8)-7(CH2/CEt), где Слегких продуктов, CH2, CEt Pc и Tc имеют значения, указанные ранее и относятся либо ко второму реактору, либо к отпарному резервуару, что зависит от конкретного варианта выполнения изобретения.

В предпочтительном варианте необходимо гарантировать, чтобы концентрация компонентов, обладающих молекулярной массой ниже 50, во втором реакторе соответствовала уравнению Слегких продуктов<7+0,07(40-Тс)+4,4(Рс-0,8)-7(CH2/CEt) обеспечением того, что значение отношения средней эффективной концентрации вещества во втором реакторе НМк продукта к средней эффективной концентрации вещества в первом реакторе ВМк продукта составляет от 0,25 до 1,5. Средняя эффективная концентрация вещества в первом реакторе (где обычно получают сополимер с получением ВМк продукта) как правило выше, чем во втором реакторе (где обычно получают гомополимер с получением НМк продукта), и при создании настоящего изобретения было установлено, что как следствие с целью регулирования концентрации легких компонентов во втором реакторе соотношение средних эффективных концентраций вещества между реакторами необходимо регулировать внутри этих интервалов.

Благодаря сохранению предпочтительных соотношения средней эффективной концентрации вещества и соотношения концентраций этилена между обоими реакторами существует возможность добиться высоких общей объемной производительности (определена как производительность по полимеру в кг/ч на единицу объема реактора) и эффективных концентраций вещества, и одновременно с этим все еще отмечать потребности в Слегких продуктов по изобретению в отпарном резервуаре. Среднюю объемную производительность во всех объединенных реакторах можно поддерживать на уровне больше 100 кг/м3/ч, более предпочтительно больше 150 кг/м3/ч, а наиболее предпочтительно больше 200 кг/м3/ч.

Настоящее изобретение особенно применимо, когда катализатор полимеризации представляет собой катализатор Циглера-Натта, преимущественно если общая производительность процесса составляет по меньшей мере 10 кг полиэтилена/г катализатора, предпочтительно больше 15 кг полиэтилена/г катализатора, наиболее предпочтительно больше 20 кг полиэтилена/г катализатора. Если катализатор полимеризации представляет собой бис-Ср металлоценовый катализатор, наиболее предпочтительно бис-тетрагидроинденильное (ТГИ) соединение, общая производительность процесса в этом случае в предпочтительном варианте составляет по меньшей мере 3 кг полиэтилена/г катализатора, предпочтительнее больше 6 кг полиэтилена/г катализатора, наиболее предпочтительно больше 15 кг полиэтилена/г катализатора. Если катализатор полимеризации представляет собой моно-Ср металлоценовый катализатор, наиболее предпочтительно (трет-бутиламидо)(тетраметил-η5-циклопентадиенил)диметилсилантитан-η4-1,3-пентадиен, общая производительность процесса в этом случае в предпочтительном варианте составляет по меньшей мере 3 кг полиэтилена/г катализатора, предпочтительнее больше 6 кг полиэтилена/г катализатора, наиболее предпочтительно больше 15 кг полиэтилена/г катализатора.

С целью добиться вышеприведенного соотношения средних эффективных концентраций вещества предпочтительно, чтобы значение отношения концентрации этилена в жидкости (в мольных %) во втором реакторе к этому показателю в первом реакторе составляло 5 или меньше. В предпочтительном варианте значение отношения концентрации этилена во втором реакторе к этому показателю в первом реакторе составляет 3 или меньше, а более предпочтительно 2,5 или меньше. В наиболее предпочтительном варианте требованиям как соотношение концентраций этилена, так и соотношение средних эффективных концентраций вещества совместно удовлетворяют. Концентрацию этилена в жидкости рассчитывают как число молей этилена, деленное на число молей всех жидких компонентов.

В предпочтительном варианте фактическая концентрация этилена во втором реакторе составляет меньше 8 мольных %. Однако для гарантии удовлетворительного уровня производительности также предпочтительно, чтобы концентрация этилена превышала 1,5 мольного %, предпочтительнее больше 2 мольных %. Концентрация водорода во втором реакторе в предпочтительном варианте составляет меньше 5 мольных %, более предпочтительно меньше 3 мольных %. Значение соотношения водорода к этилену в предпочтительном варианте составляет 0 до 0,5 моля/моль.

В предпочтительном варианте температуру первого реактора поддерживают в пределах от 60 до 80°С, предпочтительнее меньше 75°С, поскольку это может содействовать сбалансированию эффективных концентраций вещества между реакторами и соответствующими охлаждающими способностями.

Для улучшения средней эффективной концентрации вещества можно вводить добавки, предпочтительно в реактор НМк продукта. Равным образом можно добавлять подавители образования побочных продуктов, предпочтительно в реактор НМк продукта. Дополнительно или по другому варианту с целью регулирования баланса средних эффективных концентраций вещества во второй реактор может быть также добавлен дополнительный катализатор. Во время работы конфигурации ВМк-НМк в предпочтительном варианте применение средства улучшения эффективной концентрации вещества в реакторе ВМк продукта и в конфигурации НМк-ВМк избегают, этого обычно можно избежать, однако можно его использовать с целью свести к минимуму требуемую концентрацию мономеров в реакторе ВМк продукта. Это уменьшает последующие потребности в энергии дегазации.

Во всех вариантах выполнения изобретения одно преимущество изобретения заключается в оптимизации реакторного баланса средних эффективных концентраций вещества, объемной производительности и требований по охлаждению и одновременно с этим в сведении к минимуму концентрации Слегких продуктов в отпарном резервуаре, что позволяет избежать необходимости повторного сжатия, приводит к улучшенной эффективности. Выполнение настоящего изобретения способно создать возможность для достижения значений эффективности мономера меньше 1,015, обычно меньше 1,01, а предпочтительно меньше 1,006, даже с применением объемной производительности по меньшей мере 100 кг/м3/ч, более предпочтительно по меньшей мере 150 кг/м3/ч, наиболее предпочтительно по меньшей мере 200 кг/м3/ч в каждом реакторе. Под понятием "эффективность мономера" подразумевают массовое отношение израсходованного этилена+сомономер к полученному полимеру.

В случае, когда катализатор, используемый для реакции полимеризации, представляет собой катализатор Циглера-Натта, предпочтительно, чтобы единственное средство улучшения эффективной концентрации вещества и подавитель образования побочных продуктов использовали в реакторе НМк продукта. Примером служит галоидированный углеводород, а более конкретно хлорметан формулы CHxCl4-x; где х обозначает целое число от 1 до 3. Наиболее предпочтительный хлорметан представляет собой хлороформ, CHCl3. Количество добавляемого галоидированного углеводорода обусловлено количеством катализатора Циглера-Натта, а в предпочтительном варианте является таким, при котором значение молярного отношения добавляемого в реактор галоидированного углеводорода к добавляемому в реактор титану превышает 0,1, предпочтительно находится в пределах от 0,2 до 1. Применение галоидированного углеводорода особенно необходимо, когда его добавляют в сочетании с каталитическими системами, в которых он как улучшает эффективную концентрацию вещества, так и подавляет образование этана, в частности с катализаторами Циглера-Натта. Он оказывается эффективным также в реакторе получения низкомолекулярного полимера, поскольку проявляет совокупный эффект повышения эффективной концентрации вещества и подавления образования этана. Образование этана добавляется к концентрации легких реагентов в реакторе, благодаря чему становится более трудным поддержание концентрации Слегких продуктов в исходном материале для отпарного резервуара ниже уровня, требуемого по изобретению. Образование этана может быть особенно значительным при получении низкомолекулярных полимеров, особенно если присутствует водород. При получении низкомолекулярного полимера во втором реакторе также особенно необходимо повышать активность катализатора, поскольку как старение катализатора, так и высокая концентрация водорода способствуют понижению полимеризационной активности. Галоидированные углеводороды, такие как хлороформ, способны, следовательно, обеспечить двойное преимущество: повышение активности, а также сведение к минимуму концентрации Слегких продуктов во втором реакторе.

Реактор предпочтительного типа, применяемый для таких процессов полимеризации, представляет собой реактор с циркуляцией, который характеризуется непрерывной трубчатой конструкцией, включающей по меньшей мере две, например четыре, вертикальные секции и по меньшей мере две, например четыре, горизонтальные секции. Тепло полимеризации, как правило, отводят с использованием непрямого обмена с охлаждающей средой, предпочтительно с водой, в рубашках, окружающих по меньшей мере часть трубчатого реактора с циркуляцией. Объем одного реактора с циркуляцией в мультиреакторной системе можно варьировать, но он, как правило, находится в интервале от 10 до 200 м3. В предпочтительном варианте полимеризационный реактор, применяемый при выполнении настоящего изобретения, представляет собой реактор с циркуляцией.

Типичные манометрические давления, создаваемые в реакторе с циркуляцией, находятся в пределах от 0,1 до 10 МПа, предпочтительно в пределах от 3 до 5 МПа.

Способ в соответствии с изобретением применяют при получении композиций, содержащих этиленовые гомополимеры и сополимеры. Этиленовые сополимеры, как правило, включают один или несколько альфа-олефинов в варьируемом количестве, которое может достигать 12 мас.%, предпочтительно от 0,5 до 6 мас.%, например приблизительно 1 мас.%.

Альфа-моноолефиновые мономеры, обычно используемые в таких реакциях, представляют собой один или несколько 1-олефинов, содержащих до 8 углеродных атомов на молекулу и никакого ответвления ближе к двойной связи, чем в 4-м положении. Типичные примеры включают этилен, пропилен, бутен-1, пентен-1, гексен-1, октен-1 и смеси, такие как этилен и бутен-1 или этилен и гексен-1. Бутен-1, пентен-1 и гексен-1 являются особенно предпочтительными сомономерами для сополимеризации с этиленом.

В одном варианте выполнения изобретения полимер представляет собой полиэтиленовую смолу, обладающую плотностью больше 940 кг/м3 и ИРБН от 1 до 100 г/10 мин и включающую от 35 до 60 мас.% первой полиэтиленовой фракции высокой молекулярной массы и от 40 до 65 мас.% второй полиэтиленовой фракции низкой молекулярной массы, причем первая полиэтиленовая фракция включает линейный полиэтилен низкой плотности, обладающий плотностью до 935 кг/м3 и ИРБН меньше 1 г/10 мин, а вторая полиэтиленовая фракция включает полиэтилен высокой плотности, обладающий плотностью по меньшей мере 960 кг/м3, предпочтительно по меньшей мере 965 кг/м3, и MI2 больше 100 г/10 мин и полиэтиленовую смолу.

Типичные разбавители для суспензий в каждом реакторе включают углеводороды, содержащие от 2 до 12, предпочтительно от 3 до 8, углеродных атомов на молекулу, например линейные алканы, такие как пропан, н-бутан, н-гексан и н-гептан, или разветвленные алканы, такие как изобутан, изопентан, изооктан и 2,2-диметилпропан, или циклоалканы, такие как циклопентан и циклогексан, или их смеси. В случае полимеризации этилена разбавитель обычно инертен в отношении катализатора, сокатализатора и получаемого полимера (такой как жидкие алифатические, циклоалифатические и ароматические углеводороды) при такой температуре, при которой по меньшей мере 50% (предпочтительно по меньшей мере 70%) образующегося полимера в нем нерастворимы. В качестве разбавителя особенно предпочтителен изобутан.

Рабочие условия также могут быть такими, в которых мономеры действуют как разбавитель, как это происходит в случаях так называемых процессов полимеризации в массе. Пределы концентрации суспензий в объемных процентах приемлемы, как было установлено, для применения независимо от молекулярной массы разбавителя и от того, является ли разбавитель инертным или реакционно-способным, находится ли в жидком или в сверхкритическом состоянии. Для полимеризации пропилена в качестве разбавителя особенно предпочтителен пропиленовый мономер.

Методы регулирования молекулярной массы в данной области техники известны. Когда используют катализаторы Циглера-Натта, металлоценового и тридентатного типов с late переходным металлом, в предпочтительном варианте применяют водород, причем более высокое давление водорода приводит к более низкой средней молекулярной массе. Когда используют катализаторы хромового типа, для регулирования молекулярной массы в предпочтительном варианте варьируют температуру полимеризации.

В промышленных установках порошкообразный полимер отделяют от разбавителя таким образом, чтобы разбавитель не подвергался воздействию загрязнения, что позволяет возвращать разбавитель в полимеризационную зону с минимальной очисткой, если она вообще нужна. Выделение порошкообразного полимера, полученного согласно способу по настоящему изобретению, из разбавителя может быть, как правило, осуществлено по любому методу, известному в данной области техники; так, например, он может включать либо (I) применение таких вертикальных отстойников непрерывного действия, что поток суспензии через отверстие в них создает зону, в которой полимерные частицы могут в определенной степени оседать из разбавителя, либо (II) непрерывный отвод продукта посредством одного или нескольких разгрузочных проходов, местонахождение которых в реакторе с циркуляцией может быть где угодно, но в предпочтительном варианте вблизи последующего конца горизонтальной секции контура. Работа реакторов большого диаметра с высокими концентрациями твердых частиц в суспензии сводит к минимуму количество основного разбавителя, отводимого из полимеризационного контура. Применение концентрирующих устройств для отводимой полимерной суспензии, предпочтительно гидроциклонов (единственного или размещенных в случае нескольких гидроциклонов параллельно или последовательно), дополнительно улучшает извлечение разбавителя энергетически эффективным образом, поскольку при этом избегают значительного понижения давления и выпаривания выделенного разбавителя. Еще одним средством увеличения рабочего окна конечного реактора и уменьшения концентрации мономера под пониженным давлением для отпарного резервуара среднего давления является повышение концентрации способных легко конденсироваться компонентов, например благодаря добавлению перед гидроциклоном свежего или возвращаемого в процесс разбавителя.

Когда конечный реактор мультиреакторной системы представляет собой реактор с циркуляцией, давление отводимой, а предпочтительно концентрированной, полимерной суспензии перед введением в первичный отпарной резервуар понижают и ее, что необязательно, нагревают. В предпочтительном варианте поток нагревают после понижения давления. Вследствие выполнения изобретения пары разбавителя и всего мономера, выделенные в первичном отпарном резервуаре, могут быть сконденсированы без повторного сжатия. Далее их, как правило, возвращают в процесс полимеризации. Как правило, манометрическое давление в первичном отпарном резервуаре составляет от 0,5 до 2,5 МПа, предпочтительно от 0,5 до 1,5 МПа. Твердые частицы, выделенные из первичного отпарного резервуара, обычно направляют во вторичный отпарной резервуар для удаления остаточных летучих веществ.

Способ в соответствии с изобретением имеет отношение ко всем каталитическим системам для полимеризации олефинов, особенно к тем, которые выбраны из катализаторов циглерова типа, в частности к тем, которые приготовлены из титана, циркония или ванадия и из термически активированного диоксида кремния, или неорганических нанесенных на носитель катализаторов на основе оксида хрома и из катализаторов металлоценового типа, причем металлоцен является циклопентадиенильным производным переходного металла, в частности титана или циркония.

Неограничивающими примерами катализаторов циглерова типа являются соединения, включающие переходный металл, выбранный из группы IIIB, IVB, VB или VIB Периодической таблицы элементов, магний и галоген, полученные смешением соединения магния с соединением переходного металла и галоидированным соединением. Галоген может, что необязательно, образовывать неотъемлемую часть соединения магния или соединения переходного металла.

Катализаторы металлоценового типа могут представлять собой металлоцены, активированные либо алюмоксаном, либо ионизирующим агентом, как это изложено, например, в ЕР 500944 А (фирма Mitsui Toatsu Chemicals).

Наиболее предпочтительными являются катализаторы циглерова типа. Среди них конкретные примеры включают по меньшей мере один переходный металл, выбранный из групп IIIB, IVB, VB и VIB, магний и по меньшей мере один галоген. Хорошие результаты получают с теми, которые включают:

от 10 до 30 мас.% переходного металла, предпочтительно от 15 до 20 мас.%,

от 20 до 60 мас.% галогена, предпочтительно от 30 до 50 мас.%,

от 0,5 до 20 мас.% магния, обычно от 1 до 10 мас.%,

от 0,1 до 10 мас.% алюминия, обычно от 0,5 до 5 мас.%, остальное обычно приходится на элементы, обусловленные продуктами, используемыми для их приготовления, в частности углерод, водород и кислород. Предпочтительными переходным металлом и галогеном являются титан и хлор. Наиболее предпочтительные катализаторы характеризуются следующим составом:

Переходный металл: от 8 до 20 мас.%

Содержание магния: от 3 до 15 мас.%

Содержание хлора: от 40 до 70 мас.%

Содержание алюминия: меньше 5 мас.%

Остаточное содержание органики: меньше 40 мас.%

Процессы полимеризации, особенно катализируемые катализатором Циглера, как правило, проводят в присутствии сокатализатора. Существует возможность для применения любого сокатализатора, известного в данной области техники, преимущественно соединений, включающих по меньшей мере одну алюминий-углеродную химическую связь, таких как необязательно галоидированные алюморганические соединения, которые могут включать кислород или элемент группы I Периодической таблицы элементов, и алюмоксаны. Конкретными примерами служат, по-видимому, алюморганические соединения из алюмотриалкилов, такие как триэтилалюминий, алюмотриалкенилов, такие как триизопропенилалюминий, алюмомоно- и диалкоксиды, такие как диэтилалюмоэтоксид, моно- и дигалоидированные алюмоалкилы, такие как диэтилалюмохлорид, алкилалюмомоно- и дигидриды, такие как дибутилалюмогидрид, и алюморганические соединения, включающие литий, такие как LiAl(С2Н5)4. Хорошо подходят алюморганические соединения, преимущественно те, которые не галоидируют. Особенно целесообразны триэтилалюминий и триизобутилалюминий.

В одном конкретном варианте выполнения изобретения катализатор, используемый в процессе, представляет собой катализатор Циглера-Натта, массовое отношение НМк к ВМк полимеру составляет от 40:60 до 60:40, а объемная производительность (определена как производительность по полимеру в кг/ч на единицу объема реактора) составляет по меньшей мере 150, предпочтительно по меньшей мере 200, наиболее предпочтительно по меньшей мере 250.

Предпочтительный катализатор на хромовой основе включает нанесенный на носитель катализатор с оксидом хрома, обладающий содержащим диоксид титана носителем, например композитным носителем из диоксида кремния и диоксида титана. Особенно предпочтительный катализатор на хромовой основе может включать от 0,5 до 5 мас.% хрома, предпочтительно примерно 1 мас.% хрома, в частности 0,9 мас.% хрома, в пересчете на массу хромсодержащего катализатора. Носитель включает по меньшей мере 2 мас.% титана, предпочтительно от примерно 2 до 3 мас.% титана, более предпочтительно примерно 2,3 мас.% титана, в пересчете на массу хромсодержащего катализатора. Катализатор на хромовой основе может обладать удельной площадью поверхности от 200 до 700 м2/г, предпочтительно от 400 до 550 м2/г, и объемной пористостью больше 2 см3/г, предпочтительно от 2 до 3 см3/г.Катализатор на хромовой основе можно использовать в сочетании с активаторами, такими как металлорганические соединения алюминия или бора. Предпочтительными являются борорганические соединения, такие как бортриалкилы, у которых алкильные цепи включают до 20 углеродных атомов. Особенно предпочтителен триэтилбор.

Если используемый катализатор представляет собой металлоценовый катализатор, то в предпочтительном варианте он включает бис-тетрагидроинденильное (ТГИ) соединение. Предпочтительная каталитическая система включает (а) металлоценовый каталитический компонент, содержащий бис-тетрагидроинденильное соединение общей формулы (IndH4)2R"MQ2, в которой все IndH4 являются одинаковыми или разными и обозначают тетрагидроинденил или замещенный тетрагидроинденил, R" обозначает мостик, который включает С14алкиленовый радикал, диалкилгерманий или кремний, или силоксан, или алкилфосфин, или аминовый радикал, причем мостик замещен или не замещен, М обозначает металл группы IV или ванадий, а каждый Q обозначает гидрокарбил, содержащий от 1 до 20 атомов углерода, или галоген; и (б) сокатализатор, который активирует каталитический компонент. Все бис-тетрагидроинденильные соединения могут быть замещены одинаково или с отличием друг от друга в одном или нескольких положениях в циклопентадиенильном кольце, циклогексенильном кольце и этиленовом мостике. Каждая замещающая группа может быть независимо выбрана из групп формулы XRv, в которой Х выбирают из элементов группы IVB, кислорода и азота, все R имеют одинаковые или разные значения, выбранные из водорода или гидрокарбила, содержащего от 1 до 20 углеродных атомов, a v+1 обозначает валентность X. В предпочтительном варианте Х обозначает С. Если циклопентадиенильное кольцо замещено, то его замещающие группы не должны быть настолько объемистыми, чтобы влиять на координацию олефинового мономера к металлу М. Предпочтительные заместители в циклопентадиенильном кольце содержат R как водородный атом или СН3. В более предпочтительном варианте по меньшей мере одно, а наиболее предпочтительно оба циклопентадиенильных кольца не замещены. В особенно предпочтительном варианте оба инденила не замещены. R" в предпочтительном варианте обозначает этиленовый мостик, который является замещенным или незамещенным. Металл М в предпочтительном варианте представляет собой цирконий, гафний или титан, наиболее предпочтительно цирконий. Все Q имеют одинаковые или разные значения и могут обозначать гидрокарбильный или гидрокарбоксильный радикал, содержащий от 1 до 20 атомов углерода, или галоген. Приемлемые гидрокарбилы включают арил, алкил, алкенил, алкиларил или арилалкил. Каждый Q в предпочтительном варианте обозначает галоген. Особенно предпочтительным бистетрагидроинденильным соединением является этиленбис-(4,5,6,7-тетрагидро-1-инденил)цирконийдихлорид.

Нанесенные на диоксид кремния хромовые катализаторы, как правило, подвергают обработке на стадии начальной активации на воздухе при повышенной температуре активации. Предпочтительная температура активации находится в интервале от 500 до 850°С, более предпочтительно от 600 до 750°С.

В способе по изобретению первый реактор последовательного ряда снабжают, в дополнение к разбавителю и мономеру, катализатором и сокатализатором, а каждый последующий реактор снабжают по меньшей мере мономером, в частности этиленом, и суспензией, обусловленной предыдущим реактором данного ряда, причем эта смесь включает катализатор, сокатализатор и смесь полимеров, полученную в предыдущем реакторе такого ряда. Можно, но необязательно, направлять во второй реактор и/или, если уместно, в по меньшей мере один из следующих реакторов свежий катализатор и/или сокатализатор. Однако катализатор и сокатализатор предпочтительнее вводить исключительно в первый реактор.

ПРИМЕР

Приведенная ниже таблица содержит полимеризационные условия, определенные для осуществления настоящего изобретения.

R1 R2
Полимер ВМк НМк
Состав % 56 44
Внешний диаметр реактора D м 0.509 0.662
Длина реактора L м 381 275
Отношение L/D 750 417
Внутренний диаметр реактора м 0.471 0.624
Объем реактора м3 66.1 83.7
Проц. увеличение объема реактора 27%
Макс. производительность кг/ч 17559 13687
Объемная производительность кг/м3 266 164
Конц. твердых частиц мас.% 50 55
Продолжительность пребывания ч 1.1 0.8
Плотность суспензии кг/м3 586 611
Эффективность кг ПЭ/gcata%мол. ч 2000 600
Конц. этилена (С2) мол.% 2.3 7.9
Отношение L/D(R1) к L/D (R2) 1.8
Скорость подачи катализатора г/ч 3512
Соотношение конц. твердых частиц (R1:R2) 0.91
Эффективное соотношение R2:R1 0.30
Соотношение C2(R2):C2(R1) 3.43

1. Способ получения мультимодального полиэтилена в по меньшей мере двух реакторах, соединенных последовательно, где от 20 до 80 мас.% высокомолекулярного (ВМк) полимера получают в суспензии в первом реакторе и от 20 до 80 мас.% низкомолекулярного (НМк) полимера получают в суспензии во втором реакторе, где значение отношения средней эффективной концентрации вещества в реакторе НМк продукта к средней эффективной концентрации вещества в реакторе ВМк продукта составляет от 0,25 до 1,5, где среднюю эффективную концентрацию вещества в каждом реакторе определяют как производительность по полиэтилену, полученному в реакторе (кг ПЭ/ч)/[концентрация этилена в реакторе (моль %)×продолжительность пребывания в реакторе (ч)×скорость подачи катализатора в реактор (г/ч)], причем продолжительность пребывания определяют как массу полимера в реакторе (кг)/скорость удаления полимера из реактора (кг/ч), и где объем второго реактора по меньшей мере на 10%, предпочтительно по меньшей мере на 30%, а более предпочтительно по меньшей мере на 50%, больше объема первого реактора, а отношение длины к диаметру первого реактора L/D(1) превышает этот показатель у второго реактора L/D(2), а предпочтительно превышает по меньшей мере на 20%.

2. Способ по п.1, в котором концентрация твердых частиц во втором реакторе НМк продукта, определенная как масса полимера, деленная на общую массу суспензии, составляет по меньшей мере 35 мас.%, наиболее предпочтительно находится в пределах от 45 до 60 мас.%, и/или значение отношения концентрации твердых частиц в первом реакторе к этому показателю во втором реакторе поддерживают на уровне ниже 1,0, предпочтительно в пределах от 0,6 до 0,8.

3. Способ получения мультимодального полиэтилена в по меньшей мере двух реакторах, соединенных последовательно, в присутствии катализатора для полимеризации олефина, где от 20 до 80 мас.% высокомолекулярного (ВМк) полимера получают в суспензии в первом реакторе и от 20 до 80 мас.% низкомолекулярного (НМк) полимера получают в суспензии во втором реакторе, где концентрация твердых частиц во втором реакторе НМк продукта, определенная как масса полимера, деленная на общую массу суспензии, составляет по меньшей мере 35 мас.%, наиболее предпочтительно находится в пределах от 45 до 60 мас.%, и/или значение отношения концентрации твердых частиц в первом реакторе к этому показателю во втором реакторе поддерживают на уровне ниже 1,0, предпочтительно в пределах от 0,6 до 0,8, объем второго реактора по меньшей мере на 10%, предпочтительно по меньшей мере на 30%, а более предпочтительно по меньшей мере на 50%, больше объема первого реактора, а отношение длины к диаметру первого реактора L/D(1) превышает этот показатель у второго реактора L/D(2), а предпочтительно превышает по меньшей мере на 20%.

4. Способ по п.3, в котором значение отношения средней эффективной концентрации вещества в реакторе НМк продукта к средней эффективной концентрации вещества в реакторе ВМк продукта составляет от 0,25 до 1,5, где среднюю эффективную концентрацию вещества в каждом реакторе определяют как производительность по полиэтилену, полученному в реакторе (кг ПЭ/ч)/[концентрация этилена в реакторе (моль %)×продолжительность пребывания в реакторе (ч)×скорость подачи катализатора в реактор (г/ч)], причем продолжительность пребывания определяют как массу полимера в реакторе (кг)/скорость удаления полимера из реактора (кг/ч).

5. Способ по п.1 или 3, в котором концентрация твердых частиц в первом реакторе ВМк продукта находится в пределах от 20 до 50 мас.%, более предпочтительно в пределах от 25 до 35 мас.%.

6. Способ по п.1 или 3, в котором значение отношения L/D(1) к L/D(2) превышает 1,5, предпочтительно больше 2.

7. Способ по п.1 или 3, в котором значение отношения длины к диаметру (L/D) первого реактора ВМк продукта превышает 500, предпочтительно находится в пределах от 750 до 3000, а наиболее предпочтительно превышает 800, например от 800 до 1500.

8. Способ по п.1 или 3, в котором значение отношения длины к диаметру (L/D) второго реактора НМк продукта превышает 200, предпочтительно составляет от 200 до 1000, а наиболее предпочтительно от 250 до 750, например от 300 до 550.

9. Способ по п.1 или 3, в котором средняя объемная производительность (определена как производительность по полимеру в кг/ч на единицу объема реактора) во всех реакторах в совокупности превышает 100 кг/м3/ч, предпочтительно превышает 150 кг/м3/ч, а более предпочтительно превышает 200 кг/м/3ч.

10. Способ по п.1 или 3, в котором катализатор, используемый в процессе, представляет собой катализатор Циглера-Натта, массовое отношение НМк к ВМк полимеру составляет от 40:60 до 60:40, а объемная производительность (определена как производительность по полимеру в кг/ч на единицу объема реактора) составляет по меньшей мере 150, предпочтительно по меньшей мере 200, наиболее предпочтительно по меньшей мере 250.

11. Способ по п.1 или 3, в котором значение отношения концентрации этилена в жидкой фазе (в моль %) во втором реакторе к этому показателю в первом реакторе составляет 5 или меньше, предпочтительно 3 или меньше, а более предпочтительно 2,5 или меньше.

12. Способ по п.1 или 3, в котором концентрация этилена во втором реакторе составляет меньше 8 моль %, предпочтительно в пределах от 1,5 до меньше 8 моль %.

13. Способ по п.1 или 3, в котором температуру первого реактора поддерживают в пределах от 60 до 80°С, а предпочтительно ниже 75°С.

14. Способ по п.1 или 3, в котором суспензию, содержащую мультимодальный полиэтилен, переводят из второго из двух реакторов в отпарной резервуар, работающий под давлением и при температуре, благодаря которым по меньшей мере 50 моль %, предпочтительно по меньшей мере 80 моль %, более предпочтительно 90 моль %, наиболее предпочтительно 95 моль %, жидкого компонента суспензии отводят из отпарного резервуара в виде пара.

15. Способ по п.14, в котором во втором реакторе концентрация компонентов, обладающих молекулярной массой ниже 50, также соответствует уравнению Слегких продуктов<7+0,07(40-Тс)+4,4(Рс-0,8)-7(СH2Еt), где Слегких продуктов, СH2 и CEt в этом случае обозначают концентрации соответственно компонентов, обладающих молекулярной массой ниже 50, водорода и этилена во втором реакторе, Тc обозначает температуру конденсации (°С) упомянутого пара, а Рс обозначает манометрическое давление (МПа) по месту, где пар, отводимый из отпарного резервуара, конденсируют.



 

Похожие патенты:

Изобретение относится к материалу-заменителю древесины для карандашей в деревянном корпусе. .
Изобретение относится к композиционному материалу, который может быть использован для защиты поверхностей ковшей экскаваторов, бункеров, кузовов самосвалов и других механизмов от абразивного износа в режиме ударных нагрузок.

Изобретение относится к композиционным полимерным материалам на основе синтетического бутадиенового каучука и может быть использовано в кабельной и обувной промышленности.

Изобретение относится к термопластичной эластомерной композиции с повышенной устойчивостью к действию агрессивных сред, на основе полиэтилена и хлорсульфированного полиэтилена, которые могут быть использованы для изготовления методами литья под давлением и экструзии прокладок, втулок, манжетов и других резинотехнических изделий работающих в условиях контакта с агрессивными средами.
Изобретение относится к технологии получения стабилизированной композиции на основе полиэтилена низкого давления, предназначенной для изготовления методами выдувного формования и литья под давлением выдувных и литьевых изделий.
Изобретение относится к нанокомпозиту на основе полиэтилена, к способам его получения и может быть использовано в пищевой, химической промышленности, в медицине при производстве новых материалов с улучшенными физико-механическими свойствами и с низкой газопроницаемостью (повышенными барьерными характеристиками).
Изобретение относится к самозатухающим полимерным композициям на основе полиэтилена высокого давления и может быть использовано для производства изделий, в частности, методами экструзии, литья под давлением, прессованием.
Изобретение относится к термоусаживающейся электронно-химически модифицированной ленты, предназначенной для использования в качестве обертки в конструкциях покрытий на основе мастичных материалов для защиты от коррозии стальных магистральных трубопроводов различного назначения, а также при ремонте покрытий.

Изобретение относится к производству полиолефина. .
Изобретение относится к способу получения полидиенового полимера. .

Изобретение относится к многостадийному способу полимеризации олефинов. .

Изобретение относится к многостадийному способу полимеризации олефинов. .

Изобретение относится к многостадийному способу полимеризации олефинов. .

Изобретение относится к пластмассовым бакам, изготовленным из сополимеров пропилена и гексена-1. .

Изобретение относится к способу получения светлых, цветостабильных при повышенных температурах нефтеполимерных смол. .
Изобретение относится к водной полимерной дисперсии для улучшения термоустойчивости и водоустойчивости клеев. .
Наверх