Способ извлечения молибдена из кислых разбавленных растворов сложного состава

Изобретение относится к области гидрометаллургии молибдена и может быть использовано для извлечения, концентрирования и очистки молибдена от элементов-спутников (Fe3+, Cu2+, Zn2+, Ni2+, Co2+, Al3+, Sn4+, Sb3+, РЗЭ3+ и др.) при переработке различных жидких и твердых молибденсодержащих отходов и промпродуктов. Способ извлечения молибдена из кислых разбавленных растворов, содержащих элементы-спутники молибдена, включает осаждение молибдена в виде его соли. При этом осаждение с очисткой молибдена осуществляют в виде его цезиевой соли 12-молибдофосфорной кислоты состава: CS3-xHxPMo12O40·nH2O (х=0-1, n=9-12). Осаждение ведут при нагревании до 40-80°С путем последовательного добавления ортофосфат-иона в виде растворимого фосфата или ортофосфорной кислоты, сильной кислоты, например, серной, или гидроксида натрия до рН 1-3 и растворимой соли цезия, включая маточные растворы, получающиеся при выщелачивании поллуцита. Техническим результатом является повышение степени извлечения молибдена из технологических и сточных растворов. 2 ил., 3 пр.

 

Изобретение относится к области гидрометаллургии молибдена и может быть использовано для извлечения, концентрирования и очистки молибдена от элементов-спутников (Fe3+, Cu2+, Zn2+, Ni2+, Со2+, Al3+, Sn4+, Sb3+, РЗЭ3+ и др.) при переработке различных жидких и твердых молибденсодержащих отходов и промпродуктов.

Известен способ [Патент РФ №2181782, МПК С22В 34/34, С22В 34/36, С22В 3/40, 2002] извлечения молибдена жидкостной экстракцией с использованием триоктиламина и изооктилового спирта в керосине в черной и цветной металлургии, а также при очистке промышленных и бытовых стоков. Недостатком способа является использование пожароопасных органических растворителей, а также недостаточно низкое содержание молибдена (до 1,2 г/дм3) в перерабатываемых растворах.

Известен способ извлечения молибдена из водных многокомпонентных растворов в форме сульфидов [Патент РФ №2325327, МПК C01G 39/06, 2006], основанный на образовании растворимых тиомолибдатов и последующим их разрушением серной кислотой с образованием осадка сульфида молибдена. Недостатком способа является выделение газообразного высокотоксичного сероводорода [ПДКм.р.=0,008 мг/м3: Беспамятнов Г.П., Богушевская К.К., Беспамятнова А.В. и др. Предельно допустимые концентрации вредных веществ в воздухе и воде. Л.: Химия, 1972, 370 с.] и образование аморфных осадков сульфидов элементов-примесей.

Наиболее близким к предложенному способу по технической сущности и достигаемому результату является способ извлечения молибдена из кислых растворов [Патент РФ №2280088, МПК С22В 34/34, 2006], включающий смешение исходного раствора с реагентом (фосфорная кислота или ее соли), нейтрализацию пульпы (до рН 2,0-3,0) щелочным реагентом, выдержку пульпы при перемешивании, осаждение и удаление жидкой фазы декантацией. Оставшийся осадок растворяют раствором аммиака. Недостатками данного способа являются:

- менее широкий диапазон концентраций молибдена (до 0,1 г/л), в котором применим данный способ;

- малая степень извлечения молибдена, особенно в области низких содержаний молибдена (≈5% при 0,1 г/л).

Техническим результатом настоящего изобретения является расширение диапазона содержания молибдена (до 0,05 г/л); увеличение степени его извлечения из исходных технологических водных растворов (увеличение выхода молибдена до 95-100% при СМо=10-100 г/л и 60-80% в области малых его содержаний при 1-0,05 г/л) (Фиг.1).

Указанный технический результат достигается тем, что в предлагаемом способе молибден извлекается из кислых разбавленных (0,05-10 г/л) растворов, содержащих элементы-спутники молибдена (Fe3+, Cu2+, Zn2+, Ni2+, Co2+, Al3+, Sn4+, Sb3+, РЗЭ3+ и др.). Для концентрирования, выделения и очистки молибдена от сопутствующих элементов используется извлечение молибдена в виде его цезиевой соли 12-молибдофосфорной кислоты состава: Cs3-xHxPMo12O40·nH2O (x=0-1, n=9-12), в процессе осаждения при нагревании молибденсодержащего раствора до 40-80°С, последовательно добавляют ортофосфат-ион (в виде любого растворимого фосфата или ортофосфорной кислоты), серную кислоту или гидроксид натрия до рН 1-3 и любую растворимую соль цезия, включая также маточные растворы, получающиеся после выщелачивания поллуцита.

Суть предлагаемого способа поясняется следующими примерами.

Пример 1.

Концентрирование молибдена и его отделение от большей части сопутствующих примесей происходит в результате образования в растворе 12-молибдофосфат-иона в кислой среде в присутствии любого растворимого ортофосфат-иона, включая также ортофосфорную кислоту, по реакции:

Оптимальные условия образования этого соединения: 1) рН раствора 1-3; 2) нагревание раствора до 40-80°С; 3) соотношение концентраций МоО42-: РО43- должно быть близкое к стехиометрическому, т.е. 12:1. В присутствии однозарядных ионов: М+=NH4+, K+, Rb+ и Cs+ ион PMo12O403- образует малорастворимые соединения, например, при М+=Cs+ (любая растворимая в воде соль цезия), по реакции:

.

При увеличении рН раствора, начиная с рН 3-4 и выше, наблюдается ступенчатое отщепление оксометаллатных ионов молибдена с образованием ненасыщенных 11-молибдофосфатов - , которые способны не только к образованию малорастворимых цезиевых солей - Cs7PMo11O39, но и к образованию малорастворимых на холоду металлокомплексов -Cs5[PMo11O39Z(OH)] и Cs11-xHx[(PMo11O39)2Z], где Z = примесь элемента-спутника молибдена. Поэтому, учитывая возможность образования подобных соединений, при проведении осаждения Cs3PMo12O40 для предотвращения загрязнения осадка цезиевой соли необходимо создать рН<3, при этом можно использовать сильную минеральную кислоту, например, серную.

При этих условиях осаждается цезиевая соль состава Cs3-xHxPMo12O40·nH2O, где небольшая доля ионов цезия замещена на ионы водорода (х=0-1, n=9-12). Поскольку растворимость цезиевой соли 12-молибдофосфорной кислоты значительно меньше растворимости аммонийной соли (прототип), а также других, приведенных в данном примере однозарядных катионов, то полнота осаждения молибдена в виде Cs3-xHxPMo12O40·nH2O значительно выше, чем у аналогичной аммонийной соли. Она составляет 95-100% при содержании молибдена СМо=10-100 г/л и 60-80% в области малых его содержаний при 1-0,05 г/л (фиг.1), что значительно выше по сравнению с осаждением аммонийной соли: 60-80% при CMo=10-100 г/л и падает до 5-8% при СМо=0,1 г/л, а при СМо=0,05 г/л осадок аммонийной соли совсем не образуется.

Цезиевая соль в указанных условиях образуется в виде мелкокристаллического желтого осадка, характеризующегося мономодальным распределением частиц по размерам (фиг.2). Асимметрия распределения связана с характеристической формой кристаллов осадка. Средний размер его частиц составляет 0,4 мкм, что затрудняет процедуру отделения осадка от раствора методом фильтрования, но не является препятствием для отделения осадка путем отстаивания с последующей декантацией, либо с последующим центрифугированим.

Полное отстаивание цезиевых солей происходит потому, что их относительная плотность существенно выше, чем у аммонийных аналогов (ρCz=2,98>ρNH4=2,05 г/см3) при некотором уменьшении размеров осаждаемых частиц (фиг.2) [Набойченко С.С., Юнь А.А. - Расчеты гидрометаллургических процессов. М.: МИСИС, 1995, - 428 с.].

Кроме того, улучшение отстаивания солей происходит также в результате коагуляции зародышей кристаллизации вследствие сорбции высокозарядных ионов элементов-примесей на поверхности кристаллов цезиевой соли.

Пример 2.

Отличается от примера 1 тем, что для создания оптимального значения рН 1-3 используется добавление раствора NaOH для подщелачивания слишком кислого раствора молибдена по реакции:

.

Пример 3.

Отличается от примера 1 тем, что в качестве растворимой соли цезия используется маточный раствор, получаемый при кислотном выщелачивании поллуцита в процессе его гидрометаллургической переработки. Этот раствор, кроме цезия, содержит также примеси солей рубидия и калия, что не мешает осаждению 12-молибдофосфата цезия.

Таким образом, использование изобретения позволит повысить степень извлечения молибдена из технологических растворов в результате образования и осаждения 12-молибдофосфата цезия. При этом происходит очистка молибдена от большей части элементов-примесей и очистка сточных вод от молибдена [ПДКв=0,5 мг/л: Беспамятнов Г.П., Богушевская К.К., Беспамятнова А.В. и др. Предельно допустимые концентрации вредных веществ в воздухе и воде. Л.: Химия, 1972, 370 с.].

Рассмотрение полученных экспериментальных данных указывает на достоверность достижения цели изобретения и показывает, что техническим результатом данного изобретения является:

- расширение диапазона содержаний молибдена до 0,05 г/л, при котором его можно извлечь из сточных и сбросовых растворов, тем самым увеличивая сырьевую базу источников молибдена;

- увеличение степени извлечения молибдена (95-100% при СМо=10-100 г/л), особенно в области его низких содержаний (60-80% при СМо=1-0,05 г/л);

- очистка извлекаемого соединения молибдена от большей части (Fe3+, Cu2+, Zn2+, Ni2+, Со2+, Al3+, Sn4+, Sb3+, РЗЭ3+ и др.) сопутствующих примесей;

- уменьшение степени загрязнения сточных вод (до <0,05 г/л по молибдену), что значительно снижает нагрузку на окружающую среду при использовании предложенного способа в качестве средства малоотходной технологии в результате извлечения молибдена из сточных и сбросовых вод.

Способ извлечения молибдена из кислых разбавленных растворов, содержащих элементы-спутники молибдена, включающий осаждение молибдена в виде его соли, отличающийся тем, что осаждение с очисткой молибдена осуществляют в виде его цезиевой соли 12-молибдофосфорной кислоты состава Cs3-xHxPMo12O40·nH2O (х=0-1, n=9-12) при нагревании до 40-80°С путем последовательного добавления ортофосфат-иона в виде растворимого фосфата или ортофосфорной кислоты, сильной кислоты, например серной, или гидроксида натрия до рН 1-3 и растворимой соли цезия, включая маточные растворы, получающиеся при выщелачивании поллуцита.



 

Похожие патенты:

Изобретение относится к способу выделения способных к поглощению водорода металлов из растворов, а также к установке для его осуществления. .
Изобретение относится к металлургии благородных металлов, а точнее - к способам извлечения ценных компонентов из цинксодержащих золотосеребряных и/или серебряно-золотых цементатов с повышенным содержанием серебра.

Изобретение относится к области металлургии цветных и благородных металлов, в частности к способам выделения благородных металлов из отходов, в том числе аффинажного производства.
Изобретение относится к области металлургии цветных и благородных металлов, в частности к способам извлечения серебра из концентрированных хлоридных растворов. .

Изобретение относится к гидрометаллургии благородных и редких металлов, в частности к процессам извлечения золота из растворов с низкой концентрацией в присутствии ионов других металлов, например осветленных растворов золотоизвлекательных заводов, рассолов калийного производства, геотермальных вод, вод соленых озер и морской воды.

Изобретение относится к способу переработки сурьмянистых сплавов с содержанием благородных металлов более 0,1%. .

Изобретение относится к устройству для цементации золота из раствора с вращением потока раствора. .

Изобретение относится к способам осаждения ванадия из водных растворов и может быть использовано в гидрометаллургии редких тугоплавких металлов, в частности получения оксида ванадия (V+5) высокой чистоты.

Изобретение относится к гидрометаллургии благородных металлов и может быть внедрено на предприятиях, проводящих извлечение и аффинаж металлов, способных к цементационному выделению.

Изобретение относится к способу извлечения галлия из щелочных растворов цементацией галламой алюминия. .

Изобретение относится к гидрометаллургии редких металлов, в частности молибдена, и может быть использовано для переработки и разложения низкосортных молибденитовых концентратов с получением молибдата кальция, пригодного для выплавки ферромолибдена.

Изобретение относится к способу комплексной переработки углерод-кремнеземистых черносланцевых руд, содержащих ванадий, уран, молибден, редкоземельные элементы (РЗЭ).
Изобретение относится к металлургии редких металлов, в частности, к извлечению триоксида молибдена из огарков, полученных путем окислительного обжига молибденитовых концентратов и промпродуктов.
Изобретение относится к способу переработки отработанного молибден-алюминийсодержащего катализатора. .
Изобретение относится к способу извлечения меди и молибдена из сульфидных медно-молибденовых руд. .
Изобретение относится к извлечению молибдена и рения из сульфидных концентратов. .

Изобретение относится к способу извлечения молибдена из содержащего молибден сульфидного материала. .
Изобретение относится к способу получения высокочистого молибдена для распыляемых мишеней. .
Изобретение относится к металлургии, а именно к получению металлического молибдена и ферромолибдена из молибденитового концентрата. .

Изобретение относится к области извлечения веществ с использованием сорбентов и может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков и для переработки отходов цветных металлов, содержащих молибден (VI).

Изобретение относится к гидрометаллургии и может быть использовано для извлечения редких металлов из бедных, упорных, ультрадисперсных руд. Способ переработки черносланцевых руд с извлечением редких металлов включает выщелачивание руды раствором серной кислоты с растворением редких металлов. Выщелачивание ведут в автоклаве раствором серной кислоты, состоящим из свободной и связанной серной кислоты при соотношении H2SO4(своб):H2SO4(связ)=2:1 и содержащим 25-45 г/л сульфата железа, 70-90 г/л сульфата алюминия и 0,5 г/л азотной кислоты. При этом процесс осуществляют при давлении в автоклаве 10-15 атм с перемешиванием при температуре 140-160°C в интервале концентрации общей H2SO4(общ), равном 350-450 г/л, при плотности пульпы Т:Ж=1:0,7-0,9, предпочтительно 1:0,8, при постоянном окислительно-восстановительном потенциале Eh в системе, равном 350-450 мВ, в течение 2-3 часов до остаточной концентрации свободной H2SO4(своб) в пределах 45-75 г/л. Техническим результатом является повышение вскрытия руды и извлечения редких металлов: ванадия, урана, молибдена и РЗЭ, снижение расхода кислоты и повышение эффективности использования объема автоклава. 2 з.п. ф-лы, 1 табл., 1 пр.
Наверх