Устройство управления освещением пассажирских железнодорожных платформ


 


Владельцы патента RU 2477420:

Государственное образовательное учреждение высшего профессионального образования "Московский государственный университет путей сообщения" (МИИТ) (RU)

Изобретение относится к автоматизированным системам управления наружным освещением, в частности к управлению освещением пассажирских железнодорожных платформ. Сущность заявленного устройства состоит в том, что включение освещения на полную мощность происходит в вечернее и ночное время в определенные интервалы времени - на 6-10 минут. Началом интервала времени включения является момент вступление поезда на участок приближения к пассажирской платформе, а заканчивается этот интервал времени через 3-5 минут после полного проследования подвижного состава мимо платформы. По желанию пассажиров продолжительность максимального освещения может быть увеличена еще на 5-7 минут. В остальные интервалы времени система освещения работает с пониженной мощностью (в 2-2,5 раза), при которой уровень освещения еще гарантирует безопасность нахождения пассажиров на платформе. Положительным эффектом является существенная экономия электроэнергии при выполнении условий безопасности пребывания пассажиров на платформах. Техническим результатом является повышение экономичности системы освещения при соблюдении норм освещенности, гарантирующих безопасное пребывание граждан на остановочном пункте. 1 ил.

 

Изобретение относится к устройствам управления наружным искусственным освещением, в частности к управлению освещением на железнодорожных платформах.

Известны устройства управления наружным искусственным освещением на железнодорожных платформах (1), в которых автоматы управления освещением предназначены для автоматического включения и отключения наружного освещения, в зависимости от уровня естественной освещенности. Таймер, установленный в АОН-2000, позволяет автоматически отключать и включать освещение на платформах железнодорожных станций и прилегающих к ним территорий в темное время суток на время отсутствия движения пассажирских поездов. Включение и выключение автоматов можно установить на любую освещенность из диапазона (1,5-15) люкс с погрешностью ±10%.

Известное устройство имеет два основных недостатка. Во-первых, отсутствие связи между фактической поездной ситуацией и программой, вводимой заранее. Это может приводить к опасным ситуациям, при которых освещение на платформах будет выключено. Во-вторых, сам уровень освещенности является фиксированной величиной.

Наиболее близкой по технической сущности является автоматизированная система (2) управления наружным освещением САФ-500. Система ориентирована на модернизацию существующих сетей уличного освещения и управление существующими питающими пунктами, поэтому питающие пункты в состав системы не входят. В состав системы входях диспетчерский пункт и управляющие блоки.

Диспетчерский пункт системы представляет собой компьютер с программным обеспечением для управления системой и подключенный к компьютеру GSM модем. Управляющий блок выполнен в виде конструктивно законченного блока в металлическом корпусе, в котором расположены: контроллер, GSM модем, резервное питание и соединительные провода. Управляющий блок выполняет управление и измерения параметров питающего пункта и передачи данных на диспетчерский пункт. Управляющий блок обеспечивает выполнение следующих функций: точность хода внутренних часов (не более) +/-5 с за сутки, включение вечернего освещения (вечером) и отключение вечернего освещения (ночью), включение ночного освещения (ночью) и отключение ночного освещения (утром), корректировка встроенных часов, установка времени встроенных часов, питание от резервного источника тока при отсутствии напряжения в сети, программирование памяти установок. Для связи центрального диспетчерского пункта с управляющими блоками используется сотовая связь через SMS сообщения.

Оно и принято за прототип. Данная система имеет некоторые недостатки, а именно работает по жесткой программе, не учитывающей фактическую потребность в освещенности остановочного пункта.

Техническим результатом является повышение экономичности системы освещения при соблюдении норм освещенности, гарантирующих безопасное пребывание граждан на остановочном пункте.

Сущность изобретения состоит в том, что в состав известного устройства (2), содержащего диспетчерский пункт, в котором компьютер с программным обеспечением для управления системой освещения подключен к приемопередатчику и входит в состав автоматизированного рабочего места энергодиспетчера, а в зоне размещения осветительных установок устанавливается управляющий блок, содержащий приемопередатчик, подключенный к контроллеру, снабженному блоком резервного питания, контроллер связан с блоком управления питанием осветительных установок.

К контроллеру дополнительно подключены контакты реле схемы извещения о приближении поезда через схему формирования сигналов, последовательно с которой включен одновибратор и контакты кнопки, размещаемой на осветительной опоре, также через схему формирования сигналов, последовательно с которой включен второй одновибратор, выходы первой схемы формирования сигналов и указанных одновибраторов через логический элемент ИЛИ подключены к входам управления контроллером.

Такое подключение обеспечивает в вечернее и ночное время включение освещения на полную мощность за определенное время до фактического прохода поезда мимо платформы, на все время посадки-высадки пассажиров и на заданное время (необходимое, чтобы выйти с платформы) после отправления поезда. В случае необходимости пассажиры могут принудительно включить освещение на полную мощность на заданное время, нажав на кнопку, которой оборудуются либо непосредственно мачты освещения, либо они размещаются в других местах по маршруту следования пассажиров с платформы.

Предлагаемое изобретение иллюстрируется чертежом, на котором представлена блочная схема устройства.

Устройство управления освещением на железнодорожных платформах содержит диспетчерский пункт, в котором компьютер 1 с программным обеспечением для управления системой освещения подключен к приемопередатчику 2. Компьютер 1 входит в состав автоматизированного рабочего места энергодиспетчера 3. На месте размещения осветительных установок размещается управляющий блок, содержащий приемопередатчик 4, подключенный к контроллеру 5, снабженному блоком резервного питания 6, выходы контроллера связаны с блоком 7 управления питанием осветительных установок 8. Выход схемы 9 извещения о приближении поезда через блок 10 формирования сигналов подключен к одному входу логического элемента ИЛИ 11, к другому входу названного элемента подключен одновибратор 12. Контакты кнопки 13 включения дополнительного освещения, размещаемой на осветительной опоре или в других местах по маршруту следования пассажиров с платформы, подключены к входу второго одновибратора 14, выход которого, в свою очередь, подключен к третьему входу логического элемента ИЛИ 11, выход указанного элемента подключен к одному из входов управления контроллером 5.

Работа устройства протекает следующим образом. Компьютер 1 реализует заранее заложенную в него программу управления наружным освещением на удаленных объектах (платформах). Управляющие команды от компьютера 1 поступают на приемопередатчик 2. Общий контроль за функционированием системы освещения посредством автоматизированного рабочего места 3 осуществляется энергодиспетчером. На платформе управление работой осветительных установок по командам, принимаемым приемопередатчиком 4, осуществляется контроллером 5. Контроллер 5 снабжен блоком резервного питания 6 на случай сбоя в общей системе питания, что предотвращает потерю информации о режимах управления осветительной установкой 8. С выходов контроллера управляющие сигналы поступают на блок 7 управлению режимом питания осветительных установок 8.

На основании анализа пассажиропотоков в вечернее и ночное время суток можно указать такие интервалы времени, когда реализация максимальной освещенности необходима только в моменты времени, непосредственно предшествующие прибытию поезда к платформе, на время посадки-высадки и отправлению поезда. В остальное время уровень освещенности может быть существенно снижен (в 2-5 раз). Для реализации такого алгоритма выход 9 схемы извещения о приближении поезда подключается к схеме формирования сигналов 10. На выходе схемы формирования сигналов 10 на время за 1-2 мин до подхода поезда и на все время стоянки вплоть до полного ухода поезда от платформы будет сформирован сигнал высокого логического уровня.

Этот сигнал поступает на один их входов логического элемента ИЛИ 11, обеспечивая тем самым появление аналогичного сигнала на выходе указанного элемента. Этот сигнал, поступая на соответствующий вход управления контроллером 5 принудительно (на время действия сигнала), задает режим максимальной мощности, который обеспечивается посредством блока 7 управления режимом питания осветительных установок 8. Соответственно на это время уровень освещенности, создаваемый осветительной установкой 8 на платформе, будет соответствовать максимальному значению.

После прекращения действия этого сигнала от схемы извещения о приближении поезда (по заднему фронту импульса) схемы формирования сигналов 10 запускается одновибратор 12, на выходе которого также будет сформирован сигнал высокого уровня на заданное время, необходимое для того, чтобы все пассажиры смогли выйти с платформы (после ухода поезда). Этот сигнал, поступая на другой вход логического элемента ИЛИ 11, обеспечивает появление аналогичного сигнала на выходе указанного элемента. По аналогии с процессом, описанным выше, сигнал высокого уровня с выхода элемента ИЛИ 11 поступает на уже упомянутый вход управления контроллером 5 принудительно (на время действия сигнала), задает режим максимальной мощности, который обеспечивается посредством блока 7 управления режимом питания осветительных установок 8. Соответственно, на это время уровень освещенности, создаваемый осветительной установкой 8 на платформе, будет соответствовать максимальному значению.

Те пассажиры, которые по каким-либо причинам задерживаются на платформе, могут, нажав кнопку 13, запустить одновибратор 14, на выходе которого будет на дополнительное время также сформирован сигнал высокого уровня, который поступит на еще один вход логического элемента ИЛИ 11. По описанному выше алгоритму осветительные установки 8 вновь на дополнительное время будут включены на полную мощность.

Таким образом, на то время, когда уровень освещенности действительно необходим не ниже нормируемых значений, будет реализована работа осветительных установок на платформах на полную мощность. В остальные интервалы вечернего и ночного времени это может существенно снижаться, без негативного влияния на безопасность пассажиров. Нетрудно подсчитать, что даже по самым скромным оценкам, принимая средний интервал между поездами в 20-30 минут, а общее время включенного состояния осветительных установок на один поезд 6 -8 минут, можно определить как минимум 50% снижение энергозатрат на освещение пассажирских платформ. Если учесть предстоящий переход от традиционных источников света на светодиоды, то это означает еще и существенное продление срока службы таких светильников.

Источники информации

1. Таймер освещения УМПТ(Р). Сайт: http://http:www.fea-samara.ru

2. Автоматизированная система управления наружным освещением САФ-500. http://www.drillings.ru/saf500.

Устройство управления освещением на железнодорожных платформах, содержащее диспетчерский пункт, в котором компьютер с программным обеспечением для управления системой освещения подключен к приемопередатчику, компьютер входит в состав автоматизированного рабочего места энергодиспетчера, непосредственно на месте размещения осветительных установок помещается управляющий блок, содержащий приемопередатчик, подключенный к контроллеру, снабженному блоком резервного питания, а выходы контроллера связаны с блоком управления питанием осветительных установок, отличающееся тем, что выход схемы извещения о приближении поезда через блок формирования сигналов подключен к одному входу логического элемента ИЛИ, к другому входу названного элемента подключен одновибратор, кроме того, контакты кнопки включения дополнительного освещения, размещаемой на осветительной опоре или в других местах по маршруту следования пассажиров с платформы, подключены к входу второго одновибратора, выход которого, в свою очередь, подключен к третьему входу логического элемента ИЛИ, выход указанного элемента подключен к одному из входов управления контроллером.



 

Похожие патенты:

Изобретение относится к светотехнике и может быть использовано в качестве осветительного устройства, установленного на столбах (или других устройствах крепления) вдоль автомобильных и железных дорог, в пешеходных зонах, парковых зонах и на других объектах или закрепленного в различных помещениях к потолку, к стене и т.д.

Изобретение относится к автономным электроосветительным установкам. .

Изобретение относится к приборостроению, в частности к осветительным приборам. .

Изобретение относится к устройствам наружного освещения в темное время суток. .

Изобретение относится к осветительным устройствам с встроенным источником энергии. .

Изобретение относится к приборостроению, в частности к осветительным приборам. .

Изобретение относится к альтернативной энергетике и предназначено для естественного освещения объектов различного назначения

Изобретение относится к области энергетики, а именно к возобновляемым источникам энергии. Техническим результатом является освещение объектов или участков поверхностей в условиях отсутствия энергоснабжения с возможностью длительной и круглогодичной эксплуатации. В качестве альтернативных источников энергии используются солнечная радиация и вихревой ветровой поток, организованный внутри полой конусной многогранной опоры. Преобразователем солнечной радиации в электрическую энергию служит неподвижный конусный оптически активный купол и конусная солнечная батарея, установленная с возможностью вращения. Выработка электроэнергии происходит также за счет энергии вихревого воздушного потока, организованного внутри полой части многогранной опоры (МО), действующего на лопасти аэродинамической формы двух трехлопастных электроветрогенераторов (ЭВГ). Трехлопастные ЭВГ жестко закреплены на одном общем валу в цилиндрической части полой МО и вращаются в двух параллельных плоскостях, причем расстояние между плоскостями вращения должно быть не менее диаметра лопастей трехлопастного электроветрогенератора (ЭВГ). Лопасти трехлопастного ЭВГ, находящегося в первой параллельной плоскости, смещены на 60° относительно лопастей трехлопастного ЭВГ, находящегося во второй параллельной плоскости. Все лопасти трехлопастных ЭВГ имеют аэродинамический профиль. Лопасти двух трехлопастных ЭВГ закреплены в алюминиевых ободах, на внешней поверхности которых расположены магниты с чередованием полюсов, напротив которых в цилиндрической части полой МО размещены обмотки катушек, причем число магнитов не должно совпадать с числом обмоток катушек. Вихревой воздушный поток внутри полой конусной части МО организован за счет винтовой формы граней этой опоры и разности температуры на входе конусной (конфузорной) и выходе (диффузорной) частей полой многогранной опоры. Входные окна, предназначенные для приема поступающего воздуха, расположены в основании полой многогранной опоры. Входные боковые стенки обеспечивают первоначальную закрутку входящего воздушного потока внутри полой многогранной опоры. Выход воздушного потока из полой многогранной опоры происходит через прямоугольные окна, расположенные в верхней части диффузора. Непосредственная выработка электроэнергии происходит при пересечении магнитными силовыми линиями витков обмотки, что обеспечивается вращением лопастей трехлопастных ЭВГ совместно с алюминиевыми ободами и магнитами относительно витков обмоток под действием вихревого воздушного потока. Электроэнергия, вырабатываемая тандемными фотоэлектронными модулями, накапливается в аккумуляторных батареях. С помощью электронного пульта управления по команде датчика освещенности подается сигнал на включение и выключение светодиодных ламп для освещения окружающего пространства. 2 з.п. ф-лы, 8 ил.

Изобретение относится к области энергетики, а именно к возобновляемым источникам энергии. Техническим результатом является освещение объектов или участков поверхностей в условиях отсутствия энергоснабжения, при этом использование МГАЭС значительно снизит нагрузку на традиционные электростанции и улучшит экологическую обстановку окружающей среды. В качестве альтернативных источников энергии используются энергии солнечной радиации и ветра. МГАЭС содержит полую опору, корпус ветродвигателя, выполненный в виде полого шара, в центральную часть которого встроены конфузор и диффузор, и поворотный механизм корпуса ветродвигателя. На выходе конфузора с наружной стороны установлено кольцо, создающее дополнительное разряжение за полым шаром, что усиливает скорость потока воздуха, проходящего через конфузор и диффузор. Кроме того, МГАЭС включает в себя цилиндрический штырь поворотного механизма, подшипники скольжения, цилиндрическую опорную шайбу, крепежные болты, опорный шарик, сетку, установленную на входе в конфузор для защиты от птиц, ветродвигатели с лопастями аэродинамического профиля, вращающиеся в трех параллельных плоскостях, которые расположены в средней части между конфузором и диффузором, вал ветродвигателей, который с помощью шариковых подшипников закреплен в стойках полого шара, средний подвижный фигурный обод для трехлопастного ветродвигателя, расположенный в средней параллельной плоскости, два крайних обода для двухлопастных ветролопастей установлены со смещением 90° друг относительно друга, магниты, размещенные с чередованием полюсов на внешней стороне двух крайних подвижных ободов для двухлопастных ветролопастей, обмотки катушек, расположенные на внутренней стороне фигурного обода напротив магнитов, размещенных с чередованием полюсов на внешней стороне крайних подвижных ободов двухлопастных ветролопастей, три магнита продольной намагниченности размещены со смещением в 120° на внешней стороне среднего подвижного фигурного обода напротив концов лопастей аэродинамического профиля трехлопастного ветродвигателя, неподвижный обод с магнитным кольцом радиальной намагниченности, которое расположено напротив трех магнитов продольной намагниченности, две пары параллельных кольцевых канавок под подшипниковые шарики, расположенные друг напротив друга на внешней стороне фигурного обода и на внутренней поверхности неподвижного обода, тандемные солнечные батареи, расположенные на наружной поверхности полого шара и на полой опоре МГАЭС, аккумуляторные батареи, реле-регулятор зарядки аккумуляторных батарей, электронный пульт управления, датчик света и две светодиодные лампы, размещенные на полой опоре. 4 з.п. ф-лы, 6 ил.
Наверх