Переносной измеритель массовой концентрации растворенных нефтепродуктов в воде


 


Владельцы патента RU 2477856:

РОССИЙСКАЯ ФЕДЕРАЦИЯ, от имени которой выступает МИНИСТЕРСТВО ПРОМЫШЛЕННОСТИ И ТОРГОВЛИ РОССИЙСКОЙ ФЕДЕРАЦИИ (RU)

Изобретение относится к автоматизированным средствам измерения и может использоваться органами охраны окружающей среды для контроля природных вод и органами технического надзора для контроля технологических вод. Заявлен переносной измеритель массовой концентрации растворенных нефтепродуктов в воде, содержащий погружной модуль с размещенным в нем флуоресцентным датчиком контроля количественных характеристик загрязнения, модуль управления с размещенными в нем контроллером, автономным источником электропитания и блоком подачи реагента. Конструктивно модуль управления и погружной модуль соединены телескопической штангой, в которой располагаются соединительный кабель и гидравлический соединитель для подачи из модуля управления в погружной модуль реагента, необходимого для количественного определения загрязнения, одновременно телескопическая штанга служит для опускания погружного модуля в воду на заданную глубину. Технический результат: мобильное определение степени загрязнения водных объектов растворенными нефтью и нефтепродуктами без пробоотбора и пробоподготовки. 1 ил.

 

Изобретение относится к автоматизированным средствам измерения, а именно к средствам, определяющим количественные показатели загрязнения водных объектов растворенными нефтью и нефтепродуктами, и может использоваться органами охраны окружающей среды для контроля природных вод и органами технического надзора для контроля технологических вод.

Известен автоматический пост индикации загрязнения водных объектов [1], содержащий снабженный якорем погружной модуль с размещенными в нем датчиками контроля гидрологических и физико-химических параметров качества воды водных объектов, соединительный кабель, устройство внешней связи, источник питания, контроллер для выбора глубины погружения. Источник питания, устройство внешней связи и контроллер для выбора глубины погружения модуля размещены в береговом модуле, выполненном с возможностью защиты от несанкционированного доступа и воздействия неблагоприятных климатических условий. Недостатком этого устройства является фиксированная якорем точка водоема, в которой производится контроль качества воды. Для контроля качества воды всего водоема необходима сеть таких постов, так как перестановку поста из точки в точку требует временных и материальных затрат.

Предлагаемым изобретением решается задача мобильного контроля степени загрязнения водных объектов растворенными в них нефтью и нефтепродуктами без пробоотбора и пробоподготовки.

Для достижения этого технического результата переносной измеритель массовой концентрации растворенных нефтепродуктов в воде, содержащий погружной модуль с размещенным в нем датчиком контроля количественных характеристик загрязнения, соединительный кабель, модуль управления с размещенными в нем автономным источником электропитания и контроллером, дополнительно оснащен блоком подачи реагента, размещенным в блоке управления, и телескопической штангой, конструктивно связывающей погружной модуль, оснащенный датчиком флуоресцентного типа, с модулем управления, в которой размещены соединительный кабель и гидравлический соединитель для подачи в погружной модуль реагента, необходимого для количественного определения загрязнения, при этом телескопическая штанга служит для опускания погружного модуля в воду на заданную глубину.

На фигуре представлена блок-схема устройства, где обозначено:

1 - модуль управления;

2 - контроллер;

3 - автономный источник электропитания;

4 - блок подачи реагента:

5 - погружной модуль, входят в него:

6 - штуцер для впрыска реагента;

7 - датчик контроля, входят в него:

8 - хроматомембранная ячейка;

9 - источник оптического излучения;

10 - фотоприемное устройство;

11 - телескопическая штанга, входят в нее:

12 - соединительный кабель;

13 - гидравлический соединитель.

Устройство работает следующим образом

Модуль управления 1 находится у оператора, погружной модуль 5 оператор опускает в водоем при помощи телескопической штанги 11. Для оператора доступны клавиатура и индикатор контроллера 2 модуля управления 1. Кнопкой на клавиатуре оператор включает режим измерения. Далее процесс измерения проходит автоматически под управлением контроллера 2. Электропитание от источника 3 поступает в контроллер 2 по цепи питания и распределяется в устройстве контроллером по цепи управления в блок подачи реагента 4 в источник оптического излучателя 9 и в фотоприемное устройство 10 датчика контроля 7. Контроллер 2 управляет блоком подачи реагента 4, который подает реагент по гидравлическому соединителю 13 в погружной модуль 5, в котором через штуцер 6 реагент впрыскивается на хроматомембранную ячейку 8 датчика контроля загрязнения 7, омываемую исследуемой водой. На хроматомембранной ячейке 8 происходит экстракция растворенных в воде нефти или нефтепродуктов в реагент [5]. Далее контроллер 2 включает по цепям управления в датчике контроля 7 по соединительному кабелю 12 источник оптического излучения 9, который облучает хроматомембранную ячейку 8 с экстрагированными на ней нефтепродуктами, вызывая их флуоресценцию. Интенсивность флуоресценции нефтепродуктов воспринимается фотоприемным устройством 10 и передается в виде электрического сигнала по соединительному кабелю 12 в цепи управления контроллера 2 для анализа. По уровню сигнала флуоресценции контроллер 2 вычисляет массовую концентрацию растворенных в воде нефти или нефтепродуктов [2, 3, 4]. Для получения достоверных результатов устройство калибруется по Государственным стандартным образцам содержания нефтепродуктов в водорастворимой матрице.

ЛИТЕРАТУРА.

1. Патент РФ №2154848.

2. Орадовский С.Г. Комплекс химико-аналитических методов исследования нефтяного загрязнения морских вод. В сб. «Методы исследования органического вещества в океане». М.: Наука, 1980 г., стр.249-235.

3. Определение ароматических углеводородов нефтяного происхождения методом флуоресцентной спектроскопии. Сб. «Методические указания по определению токсических загрязняющих веществ в морской воде на фоновом уровне», №45. М.: Гидрометеоиздат, 1982 г., стр.25-28.

4. Виноградов А.В., Крикунов А.С., Суровегин А.Л., Федоров В.В., Шабалин И.А. Определение растворенных нефтей и нефтепродуктов в водных средах методом лазерной флуориметрии. В сб. «Определение нормируемых компонентов в природных сточных водах». М.: Наука, 1987 г., стр.168-175.

5. Патент РФ №2109555, дата публикации: 27.04.1998 г. Способ организации массообмена и устройство для его осуществления.

Переносной измеритель массовой концентрации растворенных нефтепродуктов в воде, содержащий погружной модуль с размещенным в нем датчиком контроля количественных характеристик загрязнения, соединительный кабель, модуль управления с размещенными в нем автономным источником электропитания и контроллером, отличающийся тем, что дополнительно оснащен блоком подачи реагента, находящимся в модуле управления, и телескопической штангой, конструктивно связывающей погружной модуль, оснащенный датчиком флуоресцентного типа, с модулем управления, в которой размещены соединительный кабель и дополнительно гидравлический соединитель для подачи в погружной модуль реагента, необходимого для количественного определения загрязнения, одновременно телескопическая штанга служит для опускания погружного модуля в воду на заданную глубину.



 

Похожие патенты:
Изобретение относится к аналитической химии, в частности к люминесцентному анализу микробной фазы в водных растворах. .

Изобретение относится к аналитической химии органических соединений (концентрирование и определение) и может быть использовано для санитарно-эпидемиологического контроля питьевых вод, воды объектов, имеющих рыбохозяйственное значение, а также степени очистки сточных вод различных химических производств.

Изобретение относится к области анализа небиологических материалов физическими и химическими методами и может быть использовано при решении задач экологического мониторинга на объектах хранения и уничтожения химического оружия на бывших предприятиях по производству отравляющих веществ.

Изобретение относится к устройствам мониторинга и очистки акваторий от различных загрязнений. .
Изобретение относится к области охраны окружающей среды. .

Изобретение относится к области охраны окружающей среды, в частности к средствам экологического мониторинга окружающей среды с помощью дистанционного неинвазивного контроля в реальном масштабе времени функционального состояния животных, и преимущественно может быть использовано для автоматической оперативной оценки качества таких компонентов окружающей среды, как вода, донные отложения, воздух и почва.

Изобретение относится к анализу вод разного типа. .

Изобретение относится к аналитической химии органических соединений и может быть использовано для санитарно-эпидемиологического контроля водных сред. .
Изобретение относится к фармации, а именно к фармацевтической химии, и может быть использовано для количественного определения фармакологически активных веществ - флавоноидов в лекарственном растительном сырье.

Изобретение относится к области физических и химических исследований свойств материалов, в частности касается конструкции автоматизированного цифрового микроскопа для исследования микро- и наноструктур на длинах волн второй оптической гармоники и двухфотонной люминесценции.

Изобретение относится к аналитической химии применительно к экспресс-анализу лекарственных препаратов, преимущественно для обнаружения и количественного определения активнодействующего вещества.

Изобретение относится к области приборостроения и может быть использовано при исследовании объектов окружающей среды, а также технологических растворов. .

Изобретение относится к способу определения бензола, толуола и ксилола или их смесей в воздухе. .

Изобретение относится к измерительному устройству для определения по меньшей мере одного параметра пробы крови, с проточной измерительной ячейкой (1), в которой размещен по меньшей мере один люминесцентно-оптический сенсорный элемент (ST, SO, SG), приводимый в контакт с пробой крови, с по меньшей мере одним источником (4) света для возбуждения люминесцентно-оптического сенсорного элемента и по меньшей мере одним фотодетектором (6) для приема излученного люминесцентно-оптическим сенсорным элементом люминесцентного излучения.

Изобретение относится к устройству и способу для измерения напряжений в стенках стеклянных контейнеров и толщины стенок стеклянных контейнеров, которые используют флуоресценцию для быстрого и точного определения толщины слоев напряжений и толщины стенок, а также кривой напряжений в стеклянных контейнерах.

Изобретение относится к микроэлектронному сенсорному устройству и способу для обнаружения целевых компонентов, например, биологических молекул, содержащих частицы-метки
Наверх