Ядерная паропроизводительная установка


 


Владельцы патента RU 2477898:

Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)

Изобретение относится к высокотемпературной ядерной энергетике и может быть использовано для реновации блоков с органическим топливом. Ядерная паропроизводительная установка включает высокотемпературный реактор, снабженный парогенератором и промперегревателем. Для обеспечения паром необходимых параметров блоков, работающих на органическом топливе, она подключена по острому пару и пару промежуточного давления к паротурбинной установке газомазутного или угольного блока посредством введенной в схему связующей части, включающей соединяющие трубопроводы. Промперегреватель выполнен в отдельном корпусе, при этом трубопроводами связующей части соответственно соединены: - коллектор острого пара с входом в цилиндр высокого давления ЦВД; выход питательного насоса с коллектором питательной воды; выход цилиндра высокого давления ЦВД с входом в промперегреватель; выход промперегревателя с входом в цилиндр среднего давления ЦСД. Использование паротурбинной части ГРЭС и ее инфраструктуры позволит сократить капитальные затраты и сроки создания таких ядерных энергоблоков и, главное, существенно уменьшит издержки производства электроэнергии, обеспечит существенное уменьшение капиталовложений. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к высокотемпературной ядерной энергетике и может быть использовано для реновации блоков с органическим топливом.

Реакторы типа ВТГР наиболее подходят для мирной атомной энергетики, прежде всего благодаря детерминистскому уровню безопасности и возможности иметь большой КПД, меньшее тепловое загрязнение окружающей среды и меньшее количество РАО.

Высокотемпературные реакторы с гелиевым теплоносителем (ВТГР) не получили распространения в атомной энергетике из-за конъюнктурных обстоятельств и из-за серьезных конструктивных ошибок, допущенных при разработке демонстрационного блока в Форт-Сент-Врейне.

Для высокотемпературного реактора имеется ниша, которая не может быть занята реакторами типа ВВЭР, так как они имеют низкие параметры теплоносителя. Эта ниша - блоки, работающие на органическом топливе. В первую очередь это блоки ГРЭС, работающие на газе и мазуте.

Известен высокотемпературный реактор, охлаждаемый гелием (ВТГР), (см. например, Кирюшин А.И., Пономарев-Степной Н.Н., Глушков Е.С. и др. «Роль и место газоохлаждаемых реакторов в структуре ядерного энергоснабжения». - Атомная энергия, 1999, т.87, вып.2, с.87-91). [1]

Указанное решение предусматривает применение унифицированного газотурбинного БПЭ (блока преобразования энергии). Центральное место в БПЭ занимает турбомашина (ТМ), представляющая собой агрегат вертикального исполнения, состоящий из турбокомпрессора (ТК) и генератора. В качестве основных опор применены электромагнитные подшипники. Генератор размещен вне контура циркуляции гелия в среде воздуха. Предварительный и промежуточный холодильники БПЭ размещены вокруг ТК. Рекуператор расположен в верхней части корпуса выше оси горячего газохода. Сбросное тепло отводится от первого контура в предварительном и промежуточном холодильниках БПЭ системой охлаждающей воды и далее к атмосферному воздуху в сухих вентиляторных градирнях.

Однако в данном решении не оптимальны возможности обеспечения паром необходимых параметров блоков, работающих на органическом топливе, с помощью средств, имеющихся в высокотемпературных реакторах.

Также известны конструкции блока электростанции (см., например, «Тепловые и атомные электрические станции: Справочник» Энергоиздат, 1982, с 310). [2]

Известные современные конструкции блоков электростанций имеют параметры острого пара 13-24 МПА, 540°С и параметры промперегрева 4 МПа, 540°С. КПД паротурбинной части достигают 47%.

Необходимость перегрева пара промежуточного давления обусловлена следующими факторами.

Во-первых, при достаточно сильном расширении пара в нем появляется влага, которая может нарушить условия работы турбинных лопаток.

Во-вторых, при увеличении влажности пара существенно уменьшается внутренний коэффициент полезного действия соответствующей части турбин.

В третьих, перегрев пара промежуточного давления, в том числе многократный, может приводить к повышению термодинамической эффективности за счет приближения к идеальному циклу Карно.

Недостатком известных блоков, работающих на органическом топливе, является то, что они потребляют дефицитное топливо. По словам Д.И.Менделеева, «они жгут ассигнации», причем их выбросы очень сильно загрязняют окружающую среду, в том числе и радиоактивными веществами. Кроме того, добыча угля в настоящее время весьма опасна для здоровья и сопровождается частыми катастрофами с человеческими жертвами.

Применение ВТГР для замены угольных и газомазутных котлов на блоках сверхкритического и докритического давления позволит дополнительно сэкономить газ и нефть для экспорта в объеме до 50 млрд куб. в год и 50 млн тонн в год соответственно. Важно также для народного хозяйства уменьшить добычу каменного угля, чтобы сократить аварийность на шахтах. Это позволит спокойно провести их реконструкцию.

Таким образом, применение ВТГР для реновации (от лат. renovatio - обновление, возобновление - экономический процесс замещения выбывающих в результате морального и физического износа средств производства) блоков органического топлива имеет большое экономическое, экологическое и политическое значение для России.

За прототип выбрано указанное выше решение [1], согласно которому конструкция установки включает высокотемпературный гелиевый реактор, газодувки, парогенераторы, промперегреватель, а также систему очистки и хранения гелия, однако, как указывалось, в данном решении неоптимальны возможности обеспечения паром необходимых параметров блоков, работающих на органическом топливе, с помощью средств, имеющихся в высокотемпературных реакторах.

Технической задачей предложенного решения является обеспечение паром необходимых параметров блоков, работающих на органическом топливе, с помощью средств, имеющихся в высокотемпературных реакторах.

Упомянутая «Техническая задача» решается с обеспечением «Технического результата» в предложенной ядерной энергетической установке, содержащей гелиевый высокотемпературный ядерный реактор, газодувки, парогенераторы, промперегреватель, а также систему очистки и хранения гелия, при этом предложенное решение отличается тем, что она (ядерная энергетическая установка) подключена по острому пару и пару промежуточного давления к паротурбинной установке газомазутного или угольного блока, а именно: сущность предложения заключается в реализации следующей совокупности существенных признаков.

Ядерная паропроизводительная установка (ЯПУ), включающая высокотемпературный гелиевый реактор, газодувки, парогенераторы, промперегреватель, а также систему очистки и хранения гелия, снабжена средствами подключения по острому пару и пару промежуточного давления к паротурбинной установке газомазутного или угольного блока ГРЭС посредством введенной в схему связующей части, включающей соединяющие трубопроводы, при этом промперегреватель выполнен в отдельном корпусе в составе, по крайней мере, одной отдельной петли, образованной выходом цилиндра высокого давления с входом в промперегреватель и выходом из промперегревателя с входом в цилиндр среднего давления,

при этом

- трубопроводами связующей части соответственно соединены:

коллектор острого пара с входом в цилиндр высокого давления ЦВД, выход питательного насоса с коллектором питательной воды.

Сущность изобретения иллюстрируется чертежом, где приведена принципиальная схема ядерной паропроизводительной установки.

На представленном чертеже позициями обозначены:

1 - защитная оболочка,

2 - реактор,

3 - парогенератор,

4 - промперегреватель,

5 - главные газодувки,

6 - система очистки гелия,

7 - коллектор питательной воды,

8 - коллектор острого пара,

9 - паропровод парогенератора,

10 - трубопровод питательной воды парогенератора,

11 - паропровод,

12 - трубопровод питательной воды,

13 - паропровод на вход промперегревателя,

14 - паропровод выхода из промперегревателя,

15 - цилиндр высокого давления ЦВД,

16 - цилиндр среднего давления ЦСД,

17 - цилиндр низкого давления ЦНД,

18 - электрогенератор,

19 - конденсатор,

20 - конденсатный насос 1 ступени,

21 - подогреватель низкого давления ПНД,

22 - деаэратор,

23 - конденсатный насос 2 ступени,

24 - подогреватель высокого давления ПВД,

25 - питательный насос,

26 - теплообменник системы пассивного отвода остаточного тепловыделения (СПОТ).

То есть указанная техническая задача решена за счет того, что известная «Ядерная паропроизводительная установка» - «ЯПУ» [1] (левая часть на приведенном чертеже) подключена к газомазутному или угольному блоку: это - правая часть на приведенном чертеже.

Соответственно связующая их часть «Связующая Часть» включает трубопроводы 11, 12, 13, 14.

А именно, трубопроводы обеспечивают следующие подключения:

Трубопровод 11: коллектор острого пара 8 с входом в цилиндр высокого давления ЦВД 15.

Трубопровод 12 - выход питательного насоса 25 с коллектором питательной воды 7.

Трубопровод 13 - выход цилиндра высокого давления ЦВД 15 с входом в промперегреватель 4.

Трубопровод 14 - выход промперегревателя 4 с входом в цилиндр среднего давления ЦСД 16.

Таким образом, достигается технический результат (эффект): обеспечение паром необходимых параметров (24-25 МПа, 540-550С°) газомазутного или угольного блока и возврат питательной воды в ядерную паропроизводительную установку, при этом используются средства инфраструктуры обеспечения действующих газомазутного или угольного блока.

Ядерная паропроизводительная установка на чертеже работает следующим образом.

Защитная оболочка 1 обеспечивает локализацию последствий тяжелых аварий, а также защищает от внешних воздействий, например, при падении самолета. Тепло, выделяемое в реакторе 2, отводится в парогенераторы 3 и промперегреватель 4 гелиевым теплоносителем, который прокачивается четырьмя главными газодувками 5. Необходимую чистоту гелия обеспечивает система очистки 6. Отвод тепла из парогенераторов 3 осуществляется водой и паром высокого давления. Подвод питательной воды в парогенераторы 3 производится из коллектора питательной воды 7 и далее по трубопроводам питательной воды 10 на вход в парогенераторы 3. Пар высокого давления (острый пар) от парогенераторов 3 по паропроводам 9 собирается в коллектор острого пара 8 и по паропроводу 11 направляется в цилиндр высокого давления (ЦВД) 15.

В ЦВД 15 острый пар расширяется до проектного промежуточного давления порядка 4 МПа, при котором температура снижается примерно до 300°С. Этот пар направляется по паропроводу 13 в промперегреватель 4, в котором он перегревается до температуры 550°С. По паропроводу 14 перегретый пар промежуточного давления направляется в ЦСД 16. Далее пар поступает в ЦНД 17 и затем в конденсатор 19, где он охлаждается и конденсируется. Из конденсатора 19 конденсат закачивается конденсатным насосом 20 первой ступени сжатия в тракт регенеративного подогрева питательной воды. Этот тракт включает подогреватели низкого давления (ПНД) 21. Затем конденсат повышенного давления порядка 6 бар поступает в деаэратор 22, в котором за счет повышенной температуры удаляется воздух из питательной воды. Деаэрированная питательная вода закачивается конденсатным насосом второй ступени 23 в подогреватели высокого давления ПВД 24. Далее питательная вода закачивается питательным насосом 25 в коллектор питательной воды 7, из которого питательная вода поступает в парогенераторы 3 по трубопроводам питательной воды 10.

При отключении реактора отвод остаточного тепла осуществляется через парогенераторы и промперегреватель в воздух системой СПОТ 26.

Для промежуточного перегрева пара необходимо по балансу примерно 25% тепла. Поэтому для четырехпетлевой установки достаточно иметь всего один корпус промперегревателя с одинаковой газодувкой в составе отдельной петли.

Применение перегревателя в виде отдельного корпуса и в составе одной из четырех петель позволяет осуществить реновацию газомазутных и угольных блоков без изменения конструкции их паротурбинной части, что обеспечивает оптимальность материальных и финансовых затрат, простоту и эффективность конструкционных привязок, повышает ремонтопригодность, удобство эксплуатации, возможность оперативной замены и вариантной комплектации различных типов ядерных паропроизводительных установок (ЯПУ) и паротурбинных установок газомазутного или угольного блока ГРЭС.

Использование паротурбинной части ГРЭС и ее инфраструктуры позволит сократить капитальные затраты и сроки создания таких ядерных энергоблоков, а главное, существенно уменьшит издержки производства электроэнергии, обеспечит существенное уменьшение капиталовложений. Одновременно будет освобождено для экспорта большое количество газа и нефти. Реновация угольных блоков позволит решить также социально важную задачу, обусловленную аварийностью на угольных шахтах.

1. Ядерная паропроизводительная установка (ЯПУ), включающая высокотемпературный гелиевый реактор, газодувки, парогенераторы, промперегреватель, а также систему очистки и хранения гелия, отличающаяся тем, что ЯПУ снабжена средствами подключения по острому пару и пару промежуточного давления к паротурбинной установке газомазутного или угольного блока ГРЭС посредством введенной в схему связующей части, включающей соединяющие трубопроводы, при этом промперегреватель выполнен в отдельном корпусе, в составе, по крайней мере, одной отдельной петли, образованной выходом цилиндра высокого давления с входом в промперегреватель и выходом из промперегревателя с входом в цилиндр среднего давления.

2. Ядерная паропроизводительная установка (ЯПУ) по п.1, отличающаяся тем, что трубопроводами связующей части соответственно соединены: коллектор острого пара с входом в цилиндр высокого давления ЦВД, выход питательного насоса с коллектором питательной воды.



 

Похожие патенты:

Реактор // 2475870
Изобретение относится к теплообменной технике и предназначено для использования в качестве моноблочных корабельных высоконапряженных ядерных энергетических устройств (ЯЭУ) большой единичной мощности.

Изобретение относится к области атомной энергетики и может быть использовано в реакторах типа ВВЭР с активной зоной на основе микротвэлов, включающих тепловыделяющие сборки с поперечным течением теплоносителя.

Изобретение относится к эксплуатации главного циркуляционного насоса (ГЦН) в составе реакторной установки с интегральной компоновкой бассейнового типа, охлаждаемой тяжелым жидкометаллическим теплоносителем.

Изобретение относится к реакторостроению, в частности к конструкциям топливных пучков (14) активной зоны (10) ядерного реактора. .

Изобретение относится к ядерной энергетике в области обеспечения теплоснабжения и может быть использовано при создании атомных станций малой мощности для обслуживания трубопроводных транспортных систем нефтепродуктов.

Изобретение относится к ядерной технике, а именно к конструкции отражателей нейтронов ядерных реакторов на быстрых нейтронах. .

Изобретение относится к области ядерной энергетики и может быть использовано при строительстве и модернизации АЭС, а также при управлении авариями в условиях промышленных и природных катаклизмов.

Изобретение относится к атомной энергетике и может использоваться в быстрых реакторах с жидкометаллическим теплоносителем. .

Изобретение относится к ядерной технике, а именно к конструкции активной зоны (AЗ) быстрых U-Pu реакторов с различными видами топлива и теплоносителя и процессам, происходящим в ней.

Изобретение относится к ядерной энергетике, в частности к способу снаряжения фольгой оболочки тепловыделяющего элемента и устройству для его осуществления, и может быть использовано в процессе изготовления твэлов

Заявленное изобретение относится к способу осуществления взрывной реакции, в том числе ядерной или термоядерной. В заявленном способе взрывная реакция осуществляется путем периодического взрывания заряда внутри прочного герметичного корпуса, принимающего образуемую от взрыва энергию, которую отводят из корпуса для ее дальнейшего использования. Взрывание заряда производят внутри массивного металлического тела, расплавляемого в результате взрыва, при этом образующийся внутри герметичного корпуса расплав металла периодически выпускают, освобождая корпус для следующего цикла взрывной реакции. Техническим результатом является возможность оптимизации размеров установок для осуществления взрывной реакции, в том числе ядерной или термоядерной. 9 ил.
Изобретение относится к созданию энергетических ядерных реакторов нового поколения на быстрых нейтронах, активная зона которых представляет собой расплавленные смеси хлоридов, содержащих делящиеся изотопы непосредственно контактирующими с жидким теплоносителем -расплавленным свинцом. Предложен способ очистки свинцового теплоносителя энергетического реактора с активной зоной в виде солевого расплава. Выводимый из контура теплоносителя ядерного реактора свинец, загрязненный радионуклидами деления (изотопами ниобия, молибдена, технеция, рутения, родия, палладия и серебра), подвергают двукратной электролитической очистке с использованием биполярного свинцового электрода и электролита (хлорид натрия - хлорид свинца с мольным отношением 1:2) при температуре 460-470°C с анодной плотностью тока, не превышающей 0,2 А/см2. Изобретение позволяет очистить свинец от растворимых в нем примесей и от нерастворимых шламов без предварительной операции фильтрования.

Группа изобретений относится к конструктивным элементам активной зоны ядерного реактора. Тепловыделяющая сборка ядерного реактора выполнена с обеспечением возможности расширения содержащегося в ней ядерного топлива. Тепловыделяющая сборка ядерного реактора включает оболочку, стенки которой герметично закрывают пену ядерного топлива, включающую множество взаимосвязанных открытых полостей или множество закрытых полостей. Полости предоставляют возможность расширения пены в сторону полостей; данное расширение может быть обусловлено выработкой тепла и/или образованием газообразных продуктов деления. Полости сжимаются или уменьшаются в объеме при расширении пены. Давление на стенки оболочки существенно снижается из-за того, что пена расширяется в сторону или даже внутрь полостей, а не в сторону стенок оболочки. Таким образом, полости обеспечивают пространство, в которое может расширяться пена. Технический результат - снижение вероятности выхода продуктов деления в теплоноситель. 7 н. и 147 з.п. ф-лы, 18 ил.

Изобретение относится к ядерной технике и может быть использовано в интегральных водо-водяных ядерных реакторах. Интегральный водо-водяной ядерный реактор содержит корпус (1) с составной крышкой, состоящей из центральной части (2) и кольцевой периферийной части (3). В полости корпуса (1) установлены секции (5) парогенератора с трубопроводами (6) пара и воды, проходящими через отверстия, выполненные в кольцевой периферийной части (3) крышки. Между крышкой и секциями (5) парогенератора установлена плита (7) с обечайкой (8). Обечайка (8) установлена на плите (7) и соединена с ней неразъемно, а с кольцевой периферийной частью (3) крышки - разъемно. Плита (7) выполнена с отверстиями, при этом секции (5) парогенератора верхней частью установлены в упомянутых отверстиях и разъемно соединены с плитой (7). Техническим результатом изобретения является улучшение прочностных свойств реактора за счет уменьшения концентраторов напряжения в крышке, а также сокращение времени проведения монтажных и демонтажных работ при одновременном повышении качества их выполнения. 3 з.п. ф-лы, 2 ил.

Изобретение относится к ядерным реакторам для производства изотопов. Реактор содержит бак, заполненный теплоносителем и разделенный герметичной вертикальной перегородкой на бассейн реактора, в котором размещены активная зона и оборудование реактора, и бассейн хранилища, в котором размещены устройства для хранения свежих и отработавших тепловыделяющих сборок и облучательных устройств. В нижней части вертикальной перегородки выполнена ниша, обращенная к бассейну реактора и открытая со стороны бассейна хранилища, в которой размещен перегрузочный барабан, установленный с возможностью вращения вокруг вертикальной оси. Барабан снабжен по меньшей мере тремя вертикальными ячейками, а в потолке ниши выполнено сквозное загрузочное отверстие. Технический результат - возможность перегрузки изотопной продукции и слитков кремния на работающем реакторе как в штатном, так и в аварийном режимах. 4 з.п. ф-лы, 2 ил.

Изобретение относится к ядерной технике и может быть использовано в ядерных реакторах на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем. Способ эксплуатации ядерного реактора осуществляют в замкнутом топливном цикле с переходом в течение нескольких кампаний к работе на нитридном уран-плутониевом топливе в равновесном режиме. В качестве топлива стартовой загрузки используют нитрид обогащенного до 12,5-14 процентов урана, в который вводят нептуний в количестве от 1,5 до 3 процентов от массы тяжелых атомов топлива. Нитрид обогащенного урана содержит изотоп 15N в количестве не менее 80 процентов от общего количества азота. В каждой последующей загрузке содержание изотопа 15N в нитриде смеси топлива уменьшают на 10-30 процентов по сравнению с предыдущим количеством до достижения его природного значения. Техническим результатом является уменьшение массы загружаемого топлива при старте до массы уран-плутониевого топлива равновесного состава, что позволяет исключить корректировку критической массы топлива в переходный период. 2 ил.
Наверх