Способ производства порошка из титановых сплавов


 


Владельцы патента RU 2478022:

Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") (RU)

Изобретение относится к порошковой металлургии, в частности к получению порошка титановых сплавов. Торец цилиндрической вращающейся заготовки расплавляют потоком плазмы в среде инертного газа, при этом применяют дополнительное охлаждение камеры с помощью отдельной, не зависимой от плазмотрона системой циркуляции инертного газа путем создания отдельного канала, через который нагретый газ забирается из камеры распыления, охлаждается до комнатной температуры и возвращается в камеру. Способ позволяет снизить количество несферических гранул при производстве порошка из титановых сплавов за счет дополнительного охлаждения частиц в полете, тем самым повысить выход годного порошка. 1 ил., 2 табл., 1 пр.

 

Известен способ производства гранул методом плазменной плавки и центробежного распыления, описанный в патенте РФ №2361698 от 20.07.09 г. «Способ получения сферических порошков и гранул». Он заключается в плазменной плавке и центробежном распылении вращающейся заготовки, причем распыление происходит по конической поверхности, что снижает пористость в гранулах. В данном способе не учтены особенности механизма кристаллизации капли расплава после отрыва от заготовки применительно его к титановым сплавам, что приводит к значительному снижению выхода годного порошка.

В качестве прототипа выбран способ получения гранул методом плазменной плавки и центробежного распыления на установке, конструкция которой описана в патенте РФ №2376111 от 20.12.09 г. «Установка для получения порошков и гранул». Недостатком данной конструкции является то, что забор газа из камеры распыления происходит только через систему циркуляции газа для плазмотрона, который осуществляется с помощью вакуумных насосов с целью обеспечения ионизации газа для последующего распыления плазмой торца вращающейся заготовки. Попадая в камеру, плазма снова превращается в газ и забирается компрессором, затем снова подается в плазмотрон. Охлаждение газа происходит через охлаждаемые стенки камеры распыления, однако газ на некотором расстоянии от охлаждаемых стенок камеры застаивается в нагретом состоянии, таким образом, понижая эффективность охлаждения капель металла в полете за счет конвекции. Получаемая степень охлаждения для производства гранул титановых сплавов явно недостаточна и ведет к получению частиц несферической формы, что приводит к понижению выхода годного порошка.

Вышеуказанные способы используются в основном для производства гранул жаропрочных никелевых сплавов. Возможно их использование и при производстве титановых гранул, однако при этом необходимо учитывать особенности такого производства.

При производстве титановых гранул возможно образование частиц несферической чешуйчатой формы. Это объясняется тем, что гранулы из-за недостаточного охлаждения в полете претерпевают существенное формоизменение при соударении со стенкой камеры распыления, вследствие чего они теряют сферическую форму [Статья в журнале «Технология легких сплавов», 2010, №2, с.44-48]. На некотором расстоянии от водоохлаждаемых стенок камеры распыления нагретый газ застаивается у стенок камеры распыления, а так как теплоотдача у титановых сплавов меньше, чем у никелевых, то гранулы не успевают полностью закристаллизоваться в полете. Поэтому при соударении со стенкой камеры происходит их пластическая деформация, что и ведет к образованию частиц несферической формы. Это, в свою очередь, приводит к понижению выхода годного порошка, так как при дальнейшей ситовой классификации гранул частицы такой формы не проходят через стандартную сетку и попадают в отсев.

В предлагаемом способе вводится еще одна, не зависимая от плазмотрона, система циркуляции газа с целью его дополнительного охлаждения. Принципиальная схема представлена на рис 1.

Принцип работы системы следующий: система вакуумируется вместе с установкой, затем в процессе плавки из камеры 2 с плазмотроном 1 газ по каналу 3 поступает через открытый вентиль 4 в охлаждаемый ресивер 5, потом через вентили 6, 7 и 9 он поступает обратно в камеру распыления под действием насоса 8 через фильтр 10 и вентиль 11. По окончании плавки вентили 11 и 4 закрывают и избыток спускают через вентиль 12.

ПРИМЕР. Была проведена серия плавок с плазменным распылением на гранулы крупностью 200 мкм до установки дополнительного канала охлаждения и после его установки. Результаты сведены в Таблицу 1 и Таблицу 2.

Из результатов видно, что выход годного порошка при производстве с дополнительным охлаждением вырос на 3%, что в условиях производства дает заметный экономический эффект. Увеличение выхода годного порошка является преимуществом плазменного распыления на гранулы по предложенному способу по сравнению с прототипом.

Цикл распыления до применения дополнительного охлаждения
Таблица 1
№ п/п Вес заготовок, кг Количество заготовок, шт. Вес гранул, кг Выход годного, %
1 49 7 42,5 86,7
2 48,6 7 40 82,3
3 48,5 7 39 80,4
4 51,5 7 44 85,4
5 58,2 8 49 84,1
Средний выход годного 83,78
Цикл распыления после применения дополнительного охлаждения
Таблица 2
№ п/п Вес заготовок, кг Количество заготовок, шт. Вес гранул, кг Выход годного, %
1 55,8 8 48 86,1
2 55,5 8 48,5 87,3
3 47,6 7 42 88,2
4 55 8 46,3 84,1
5 47,5 7 42,5 89,4
Средний выход годного 87,02

Способ производства гранул из титановых сплавов, включающий расплавление потоком плазмы торца цилиндрической вращающейся заготовки в среде инертного газа, отличающийся тем, что проводят дополнительное охлаждение камеры распыления с помощью отдельной независимой от плазмотрона системы циркуляции инертного газа путем создания канала, через который нагретый газ забирают из камеры распыления, охлаждают до комнатной температуры и возвращают в камеру, при этом снижают количество несферических гранул за счет дополнительного охлаждения частиц в полете.



 

Похожие патенты:

Изобретение относится к порошковой металлургии, в частности к способам непрерывного получения металлического порошка. .

Изобретение относится к получению стабилизированного порошка металлического лития. .

Изобретение относится к порошковой металлургии, в частности к установкам по производству оксида свинца. .
Изобретение относится к получению композиционных материалов, а именно стеклометаллических микрошариков, которые могут быть использованы в технике, биотехнологии, электронике и в ювелирном деле.
Изобретение относится к области порошковой металлургии, а именно области получения магнитных гранул для электромагнитных аппаратов, и может быть использовано для получения рабочих тел, применяемых в электромагнитных аппаратах для процессов измельчения, смешивания, эмульгирования и т.п.
Изобретение относится к области порошковой металлургии, а именно области получения магнитных гранул для электромагнитных аппаратов, и может быть использовано для получения рабочих тел, применяемых в электромагнитных аппаратах для процессов измельчения, смешивания, эмульгирования и т.п.

Изобретение относится к области порошковой металлургии и направлено на получение порошков, состоящих из сферических гранул жаропрочных и химически активных сплавов.

Изобретение относится к методам гранулирования флюсов для сварки низколегированных хладостойких сталей и сплавов, широкого диапазона составов и может быть применено во всех отраслях промышленности, производящих сварочные материалы, для сварки сталей и сплавов широкого диапазона составов, в том числе для сварки стали магистральных трубопроводов.

Изобретение относится к испарителю для металлов и сплавов и может найти применение в порошковой металлургии для получения высокодисперсных и ультрадисперсных металлов и сплавов.

Изобретение относится к области порошковой металлургии, в частности к устройствам для получения сферических порошков и гранул из жаропрочных сплавов на основе никеля.

Изобретение относится к электрохимическому получению ультрадисперсных порошков интерметаллидов иттрия с кобальтом для создания магнитных материалов и ячеек хранения информации. Порошок получают путем электролиза расплава при температуре 700°С и плотностях катодного тока 2,6-3,2 А/см2, в среде четыреххлористого углерода, где в качестве источника иттрия используется растворимый иттриевый анод. В качестве расплава используют электролит, содержащий хлорид натрия, хлорид калия и хлорид кобальта при следующем соотношении компонентов, мол.%: KCl - 47,5-49,5; NaCl - 47,5-49,5; CoCl2 - 1,0-5,0. Способ позволяет получять изотропные по составу ультрадисперсные порошки интерметаллидов иттрия и кобальта при повышении скорости синтеза целевого продукта. 3 ил., 3 пр.
Изобретение относится к порошковой металлургии. Способ получения железного порошка включает подготовку железоуглеродистого расплава с содержанием углерода 3,9-4,3 мас.%, распыление его сжатым воздухом в воду, обезвоживание, сушку с получением порошка-сырца с отношением концентрации кислорода к углероду, равным 1,1-2,0, и измельчение до крупности частиц не более 0,250 мм. Измельченный порошок-сырец смешивают с гранулированными оксидами железа, полученными из отработанных солянокислых травильных растворов прокатного производства, с концентрацией примесей не более 2 мас.% и размером гранул не более 0,160 мм. Определяют концентрацию гранулированных оксидов железа в смеси с порошком-сырцом, а затем проводят отжиг полученной смеси в печи при 950-1000°C в течение 1,5-2 ч в слое высотой 25-35 мм на непрерывно движущейся ленте и последующее дробление с выделением годной фракции железного порошка с размером частиц менее 0,200 мм. Обеспечивается получение качественного железного порошка с высокой химической чистотой, удовлетворительной текучестью, высокой уплотняемостью и повышенной прочностью прессовки. 2 табл., 3 пр.

Изобретение относится к области цветной металлургии. Установка для получения гранул сплавов центробежным распылением расплава содержит печь, герметичный плавильник с плавильным стаканом, герметичную камеру грануляции расплава, диспергатор в виде перфорированного стакана с приводом вращения, электрообогреваемый металлопровод, выполненный в виде сифона, один конец которого размещен в плавильнике, а другой - в камере грануляции расплава, и контейнер для сбора гранул. В полость плавильника введен газопровод. Конец газопровода выполнен с изгибом и размещен вблизи дна плавильника с обеспечением по отношению к его цилиндрической стенке тангенциального направления движения газа из выходного отверстия газопровода. В крышке плавильника установлен штуцер для соединения с линией сброса избыточного давления, плавильный стакан выполнен с наклонным дном и снабжен одной или несколькими перфорированными корзинами для каждого легирующего компонента. Диспергатор электроизолирован от корпуса камеры грануляции расплава. Обеспечивается увеличение выхода металла в гранулы, повышение однородности гранул по химическому составу. 3 ил.

Изобретение относится к получению порошков металлов газофазным методом. Варианты устройства и способа позволяют получить ультрадисперсный и наноразмерный монопорошок металла. Устройство содержит камеры плавления, испарения и конденсации и испаритель. Испаритель по первому варианту устройства оснащен плавильной камерой, в нижней части которой установлен плавающий зонт-ловушка. Для стабилизации температурного режима в камере испарения испарителя на его нижней тарели установлен теплоизолирующий экран, расположенный над верхним торцом многоканальной форсунки. Каналы форсунки для выпуска металлического пара выполнены под углом 5-12° к ее оси, а по отношению к внешней конусообразной поверхности форсунки под углом 90°. Камера конденсации выполнена из набора полых цилиндрических секций с рубашкой охлаждения и смотровыми окнами. По второму варианту устройства над верхней поверхностью одноканальной форсунки соосно с ней установлен брызгоотражатель с вертикальными боковыми прорезями шириной 0,8-1,2 мм по периметру вертикальной цилиндрической стенки. Варианты способа позволяют получить ультрадисперсные порошки металлов со средним размером частиц 0,1-1 мкм и монодисперсные порошки металлов, в том числе нанодисперсных размеров, со средним размером частиц менее 100 нм. Использование изобретения обеспечивает повышение качества металлического порошка при увеличении производительности. 4 н. и 2 з.п. ф-лы, 5 ил., 1 пр.
Изобретение относится к порошковой металлургии и может быть использовано при послойном нанесении материала по аддитивной технологии. Проводят предварительное механическое легирование исходной порошковой смеси из порошков титана и элементов, способных образовывать с ним твердые растворы замещения, в инертной среде в мельнице с дозой энергии от 5 до 15 кДж/г, достаточной для образования гранул из указанного твердого раствора замещения. К полученной смеси добавляют порошок алюминия и подвергают ее механическому легированию в инертной среде с дозой энергии от 20 до 30 кДж/г до образования гранул с аморфной фазой, состоящей из равномерно распределенных атомов титана, алюминия и легирующих элементов. Затем проводят искровое плазменное спекание смеси одновременно с прессованием. Полученные заготовки термообрабатывают. При необходимости соединяют несколько полученных заготовок по торцевым поверхностям с помощью сварки. Обеспечивается снижение пористости и увеличение химической однородности электрода, а также получение заданного фазового состава материала электрода. 2 з.п. ф-лы, 5 пр.

Изобретение относится к получению монодисперсных сферических гранул. Расплавляют в тигле химически активный материал, содержащий по крайней мере один металл из группы редкоземельных металлов, формируют ламинарную струю при истечении расплава через фильеру, выполненную из тугоплавкого металла, формируют поток монодисперсных капель при распаде струи под действием накладываемых на струю возмущений с заданной частотой и амплитудой и собирают гранулы, образовавшиеся в результате соединения монодисперсных капель. При этом на внешнюю поверхность фильеры наносят пленку окисла диспергируемого редкоземельного металла, а расплав в тигле перед подачей в фильеру перемешивают и очищают от механических примесей, перед подачей расплава в фильеру на ее внешнюю поверхность наносят слой окисла диспергируемого редкоземельного металла, проводят барботаж расплава гелием и очистку его от механических примесей. Обеспечивается улучшение качества гранул при длительном времени гранулирования. 5 ил., 1 табл.
Наверх