Композиция для производства водостойкого пористого заполнителя

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства водостойкого пористого заполнителя содержит, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, золошлаковый материал от сгорания горючих сланцев с содержанием, мас.%: SiO2 - 3,5; Al2O3 - 15,8; Fe2O3 - 8,2; CaO - 12,5; MgO - 2,1; R2O - 5,4; п.п.п. 18,5 22-49. Технический результат - повышение прочности при сжатии и коэффициента размягчения пористого заполнителя. 3 табл.

 

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок.

Известна композиция для получения керамзита (пористого заполнителя) состава, мас.%: отходы флотации углеобогащения - 60, модифицированное жидкое стекло - 40 /Денисов Д.Ю. Использование отходов флотации углеобогащения в производстве керамзита /Д.Ю.Денисов, И.В.Ковков, В.З.Абдрахимов // Башкирский химический журнал. - 2008. - Том 15. - №2. - С.107-109/ [1].

Недостатком указанного состава керамической массы является относительно низкая прочность 1,7-1,9 МПа.

Наиболее близким к изобретению является композиция для получения водостойкого пористого заполнителя состава, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 - 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, - 1-3, отход от углеобогащения методом флотации с содержанием глинистой составляющей не менее 71% - 22-49 /Пат. 24067008 Российской Федерации, МПК C04B 14/24. Способ получения водостойкого пористого заполнителя /Мизюряев С.А., Иванова Н.В., Жигулина А.Ю., Мамонов А.Н.; заявитель и патентообладатель Самарский государственный архитектурно-строительный университет; заявлено 20.01.2009; опубл. 20.12.2010, Бюл. №21/ [2].

Недостатком указанного состава является относительно низкие прочность при сжатии (0,14-0,26) и коэффициент размягчения (55-92%). Принят за прототип.

Сущность изобретения - повышение прочности при сжатии и коэффициента размягчения пористого заполнителя.

Техническим результатом изобретения является повышение прочности при сжатии и коэффициента размягчения пористого заполнителя.

Указанный технический результат достигается тем, что в известную композицию для получения водостойкого пористого заполнителя, включающую натриевое жидкое стекло плотностью 1,41 г/см3 и хлорид натрия, размолотый до размера менее 0,3 мм, дополнительно вводят золошлаковый материал от сгорания горючих сланцев с содержанием, мас.%: SiO2 - 35,5; Al2O3 - 15,8; Fe2O3 - 8,2; CaO - 12,5; MgO - 2,1; R2O - 5,4; п.п.п. 18,5 при следующем соотношении компонентов, мас.%:

натриевое жидкое стекло плотностью 1,41 г/см3 50-75
хлорид натрия, размолотый до размера менее 0,3 мм 1-3
золошлаковый материал от сгорания горючих сланцев 22-49

Вид топлива и процесс его сгорания являются основными факторами, влияющими на химический и гранулометрический составы золошлакового материала. Горючий сланец с шахт Кашпирского рудника доставлялся на Сызранскую ТЭС по железной дороге, загружался в приемные бункеры и ленточными питателями подавался в молотковые дробилки и измельчался до 15 мм. Ленточным транспортером размолотый сланец поступал в расходные бункеры, откуда через тарельчатые питатели подавался в шахтные мельницы на вторую стадию измельчения. Потоком воздуха тонкий порошок через специальную форсунку вдувался в топку паровых водотрубных котлов. На Сызранской ТЭС сжигалось около 400 тыс.т сланцев в год, что при средней ее зольности в 70% обеспечивает получение примерно 280 тыс.т золошлакового материала в год.

Минералогический состав золошлакового материала представлен в виде неорганической и органической фаз. Неорганическая фаза включает аморфную и кристаллическую составляющие. Аморфная составляющая представлена стеклом и аморфизированным глинистым веществом. Кристаллическая составляющая включает, во-первых, слабоизмененные зерна минералов исходного топлива (кварц, полевые шпаты), а во-вторых, кристаллические новообразования, возникшие при сжигании топлива: муллит, гематит, анортит, волластонит и др.

Химический состав золошлакового материала от сгорания горючих сланцев представлен в таблице 1.

Таблица 1
Химический состав золошлакового материала от сгорания горючих сланцев
SiO2 Al2O3 Fe2O3 CaO MgO R2O П.п.п.
35,5 15,8 8,2 12,5 2,1 5,4 18,5

Известно, что основным условием, обеспечивающим вспучивание композиции при ее нагревании, является совмещение во времени пиропластического состояния композиции с интенсивным газовыделением внутри обжигаемого материала. Пиропластическое состояние композиции обеспечит жидкое стекло и содержание в золошлаковом материале от сгорания горючих сланцев - органики (п.п.п., таблица 1).

Для приготовления сырьевой смеси использовались следующие компоненты:

1) товарное натриевое жидкое стекло плотностью 1,41 г/см3 (см. ГОСТ 13075-81);

2) хлористый натрий (ГОСТ 13830-97, производства ОАО «Бассоль»), размолотый до размера менее 0,3 мм;

3) в качестве тонкомолотого компонента - золошлаковый материал от сгорания горючих сланцев

Сведения, подтверждающие возможность осуществления изобретения. Композиции (таблица 2) для производства пористого заполнителя готовили путем тщательного перемешивания всех компонентов, аналогично технологии, представленной в прототипе. Получение смеси производилось в мешалке принудительного действия в следующем порядке. Сначала в мешалку загружались тонкомолотый золошлаковый материал от сгорания горючих сланцев, затем в готовую сухую смесь при включенной мешалке заливалось натриевое жидкое стекло тонкой струйкой. Перемешивание производилось до получения однородной массы, но менее 5 минут.

Таблица 2
Составы композиции для производства пористого заполнителя
Компоненты Содержание компонентов, мас.% Прототип
1 2 3
Натриевое жидкое стекло 75 60 50 50-75
Хлорид натрия 3 2 1 1-3
Тонкомолотый глиносодержащий компонент - отход от углеобогащения - - - 22-49
Тонкомолотый золошлаковый материал от сгорания горючих сланцев 22 38 49 -

Полученная смесь системой ножей разрезалась на отдельные гранулы, которые термообрабатывались при 250-300°C в печном грануляторе, вспучиваясь при этом и образуя шарообразные высокопористые гранулы. Полученные гранулы помещались в электрическую печь, разогретую до температуры 790°C, и выдерживались там 10 минут. После изотермической выдержки гранулы охлаждались при скорости охлаждения 40°C/мин. Физико-механические показатели пористого заполнителя представлены в таблице 3.

Таблица 3
Физико-механические показатели пористого заполнителя
Показатель Состав Прототип
1 2 3
Прочность на сжатие, МПа 2,20 2,23 2,22 0,14-0,26
Насыпная плотность, кг/м3 130 160 210 85-170
Потери при 5-минутном кипячении, % 0,10 0,07 0,05 0,12-0,7
Коэффициент размягчения, % 94 95,5 96 55-92

Как видно из таблицы 3, пористые заполнители из предложенных составов имеют более высокие прочность на сжатие и коэффициент размягчения, чем прототип.

Полученное техническое решение при использовании предложенных составов позволяет повысить прочность на сжатие и коэффициент размягчения пористого заполнителя.

Использование техногенного сырья при получении пористого заполнителя способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для керамических материалов.

Источники информации

1. Денисов Д.Ю. Использование отходов флотации углеобогащения в производстве керамзита /Д.Ю.Денисов, И.В.Ковков, В.З.Абдрахимов // Башкирский химический журнал. - 2008. - Том 15. - №2. - С.107-109.

2. Пат. 24067008 Российская Федерация, МПК C04B 14/24. Способ получения водостойкого пористого заполнителя. /Мизюряев С.А., Иванова Н.В., Жигулина А.Ю., Мамонов А.Н.; заявитель и патентообладатель Самарский государственный архитектурно-строительный университет; заявлено 20.01.2009; опубл. 20.12.2010, Бюл. №21.

Композиция для производства водостойкого пористого заполнителя, включающая натриевое жидкое стекло плотностью 1,41 г/см3 и хлорид натрия, размолотый до размера менее 0,3 мм, отличающаяся тем, что она дополнительно содержит золошлаковый материал от сгорания горючих сланцев с содержанием мас.%: SiO2 - 35,5; Al2O3 - 15,8; Fe2O3 - 8,2; CaO - 12,5; MgO - 2,1; R2O - 5,4; п.п.п. 18,5 при следующем соотношении компонентов, мас.%:

натриевое жидкое стекло плотностью 1,41 г/см3 50-75
хлорид натрия, размолотый до размера менее 0,3 мм 1-3
золошлаковый материал от сгорания горючих сланцев 22-49


 

Похожие патенты:
Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок.
Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также огнеупорных теплоизоляционных засыпок.
Изобретение относится к промышленности строительных материалов. .
Изобретение относится к композициям для производства пористого заполнителя. .
Изобретение относится к области строительных материалов, в частности к пористым заполнителям для бетонов. .
Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок.
Изобретение относится к области получения строительных материалов, конкретно к получению теплоизоляционных заполнителей, используемых в качестве утеплителей в различных конструкциях и элементах зданий и сооружений строительных.
Изобретение относится к составам отделочных материалов, используемых в производстве стеновых железобетонных панелей. .
Изобретение относится к области строительных материалов, в частности к пористым заполнителям для бетонов. .
Изобретение относится к области строительных материалов, в частности к пористым заполнителям для бетонов. .
Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок

Изобретение относится к производству пористых заполнителей для бетонов. Шихта для производства пористого заполнителя содержит, мас.%: глину монтмориллонитовую 50,0-65,0, доломит 5,0-10,0, молотое силикатное стекло 30,0-40,0. Технический результат - повышение прочности пористого заполнителя, полученного из шихты. 1 табл.
Изобретение относится к производству искусственных пористых заполнителей для бетонов. В способе изготовления искусственного пористого заполнителя, включающем послойную укладку гранулированного материала и его спекание в слоях, для образования, по меньшей мере, двух слоев толщиной 10-15 мм каждый, в качестве гранулированного материала используют бой стекла фракции 3-5 мм и гранулированный доменный шлак фракции 0,6-5 мм, после чего спекают при температуре 900-1050°C, охлаждают, подвергают дроблению и фракционированию. Технический результат - упрощение технологии изготовления пористого заполнителя при обеспечении его морозостойкости. 2 пр.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, алюмосодержащий наноразмерный шлам щелочного травления алюминия 22-49. Технический результат - повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 3 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, сланцевый шлак, размолотый до прохода через сито 0,14 мм и содержащий, мас.%: SiO2 - 22,4; Al2O3 - 12,2; Fe2O3 - 7,8; MgO - 1,3; CaO - 17,3; R2O - 5,2; п.п.п. - 33,8, 22-49. Технический результат - повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 4 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм 1-3, сланцевую золу, содержащую, мас.%: SiO2 - 30,8, Аl2О3 - 13,8, Fе2О3 - 7,2, MgO - 1,4, CaO - 15,2, R2О - 4,2, п.п.п. - 27,4, 22-49. Технический результат - повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 4 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-70, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, отход углепереработки, образующийся при обогащении коксующихся углей, содержащий мас.%: SiO2 - 53,05, Al2O3 - 17,4, Fe2O3 - 3,74, MgO - 1,90, CaO - 3,52, R2O - 3,81, п.п.п. - 16,52, 22-49. Технический результат - повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 4 табл.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя содержит, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, горелые породы, размолотые до прохода через сито 0,14 мм, 12-34, нефелиновый отвальный шлам, размолотый до прохода через сито 0,14 мм с содержанием оксидов, мас.%: SiO2 - 31,9, Al2O3+TiO2 - 5,8, Fe2O3 - 4,3, CaO - 55,7, MgO - 1,4, R2O - 1,8, SO3 - 0,5, 10-15. Технический результат - повышение прочности на сжатие и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 4 табл.

Изобретение относится к области строительных материалов, в частности к производству жаростойких композитов (бетонов) на основе химических связующих. К химическим связующим, применяемым в жаростойких бетонах, относятся жидкое стекло, силикат-глыба (прозрачный стекловидный сплав щелочных силикатов - полуфабрикат жидкого стекла) и фосфатные связки. Техническим результатом изобретения являются повышения предела прочности при сжатии и термостойкости жаростойких композитов, которые достигаются добавлением в композицию кремнийсодержащей формовочной земли с содержанием оксидов, мас.%: SiO2 - 95,8; Al2О3 - 3,01; Fe2O3 - 0,88; СаО - 0,31 при следующем соотношении компонентов, мас.%: отработанный катализатор ИМ-2201 15-20, щебень 30-45, Н3РО4 12-17, кремнийсодержащая формовочная земля с содержанием оксидов, мас.%: SiO2 - 95,8, Al2O3 - 3,01, Fe2O3 - 0,88, СаО - 0,21 28-33. Полученное техническое решение при использовании кремнийсодержащей формовочной земли позволяет повысить показатели по механической прочности и термостойкости жаростойкого бетона. Использование техногенного сырья при получении жаростойкого композита (бетона) способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для строительных материалов. 4 ил.

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, горелые породы, размолотые до прохода через сито 0,14 мм, 12-34, шлакопыльевый отход от производства низкоуглеродистого феррохрома с размером частиц от 0,001 до 1 мм и содержанием оксидов, мас.%: SiO2 - 25,4; Al2O3 - 6,2; Fe2O3 - 1,2; CaO - 47,5; MgO - 12,47; Cr2O3 - 5,6; R2O - 1,63, 10-15. Технический результат - повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 3 табл.
Наверх