Способ измерения частоты сигнала



Способ измерения частоты сигнала
Способ измерения частоты сигнала
Способ измерения частоты сигнала
Способ измерения частоты сигнала
Способ измерения частоты сигнала

 


Владельцы патента RU 2478213:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") (RU)

Изобретение относится к измерительной технике и может быть использовано в спектрометрии. Способ измерения частоты сигнала предполагает прием сигнала с последующим аналого-цифровым преобразованием, выполнение быстрого преобразования Фурье, преобразование числового массива во временной области в числовой массив в частотной области, определение номера jmax элемента числового массива, соответствующего максимальной амплитуде сигнала в частотной области, определяющего приближенное значение количества периодов сигнала в интервале наблюдения, создание 2к+1 эталонных сигналов во временной области, по форме соответствующих исходному массиву во временной области, количество периодов которых смещают по отношению к количеству периодов исходного сигнала на jmax*(s/k-l)*b, где s=0, 1, 2,…2k, где коэффициент b определяет размер окрестности, b=0…1 вблизи приближенного количества периодов сигнала jmax в интервале наблюдения, вычисление коэффициентов корреляции 2к+1 эталонных сигналов с исходным, аппроксимацию зависимости коэффициентов корреляции 2к+1 эталонных сигналов с исходным сигналом от номера m в частотной области KK[m], где m=jmах+jmах*(s/k-1)*b, передискретизацию на основе найденной аппроксимирующей зависимости с увеличением количества элементов массива в R раз, т.е. формирование массива KK1[m1], где m1=jmax+jmax*(s1/(k*R)-1)*b, s1=0, 1,…2k*R, R - коэффициент передискретизации больше 1, нахождение элемента m1max числового массива, соответствующего максимальному значению коэффициента корреляции KK1. Значение m1max принимают за уточненное значение количества периодов исходного сигнала вместо jmax. Повторяют далее все предыдущие операции обработки сигнала, уменьшая каждый раз величину b, определяющую размер окрестности вблизи найденного количества периодов сигнала в интервале наблюдения. После достижения требуемой точности приближения оценки положения центра отраженного сигнала вычисляют значение частоты f=m1max/(N*dt). Техническим результатом заявленного изобретения является повышение точности измерений. 5 ил.

 

Изобретение относится к области измерительной техники и может быть использовано в спектрометрии для определения частоты несущей эхо-сигнала спектрометра.

Известен способ измерения частоты сигнала [патент РФ №2008149062]. Способ заключается в измерении длительности периода Тх следования сигналов и в последующем определении частоты fx как величины, обратной периоду, причем для измерения периода Тх используют двоичный счетчик, в котором в процессе измерения каждого периода Тх в диапазоне от Txmin до Тхmах получают соответствующие числа NT, предварительно очищают число nmin младших разрядов этого счетчика, обеспечивающих измерение минимального периода Txmin с погрешностью дискретности, не превышающей δТ, определяют частоту fсч заполнения счетчика с учетом величины Txmin и числа NTKmin, получаемого в счетчике при измерении Txmin, определяют общее число nmах разрядов счетчика, исходя из величины максимального периода измеряемой частоты, отличается тем, что задают значение частоты fсч, округленное в сторону увеличения до ближайшей величины fсч=2Q*106 Гц, где Q - целое положительное или отрицательное число, подают числа NTK, получаемые после окончания периода Тх в nmin младших разрядах счетчика, на адресные входы постоянного запоминающего устройства (ПЗУ), в ячейках памяти которого хранятся предварительно записанные числа NПЗУ, пропорциональные соответствующим значениям fc частоты сигналов. При выполнении условия nmin<nизм nmах, nизм=nmin+m1 или nmin nизм<nmах, nизм=nmах-m2 производят m1 или m2 сдвиг числа NTK в сторону младших или старших разрядов. Запоминают число m1 или m2 проведенных сдвигов и определяют частоту fx1 или fx2 исследуемых сигналов.

Известен способ измерения частоты сигнала, выбранный за прототип [Цифровой спектральный анализ и его приложения. С.Л.Марпл-мл. М.: Мир, 1990, - 584 с.]. Способ основан на выполнении быстрого преобразования Фурье (БПФ). Измерение частоты сводится к определению количества периодов К сигнала с помощью БПФ на интервале наблюдения N*dt, где N - количество отсчетов, a dt - интервал дискретности измерения, и последующему вычислению частоты сигнала по формуле f=K/(N*dt). Разрешение по частоте df, т.е. абсолютная погрешность результата измерения частоты, равно l/(N*dt) или, что то же, f/K, отсюда относительная погрешность определения частоты δf=1/K. Таким образом, погрешность определения частоты этим известным способом может быть значительной, если количество периодов сигнала в интервале наблюдения мало. В частности, эхо-сигналы спектрометров содержат очень малое количество периодов, менее 10 [В.И.Тарханов, В.С.Тутыгин. Приборный комплекс для поиска и исследования сигналов ЯМР в магнитоупорядоченных веществах. Журнал «Научное приборостроение», 2003, том 13, №1], поэтому погрешность определения частоты достигает 10% и более. Погрешность будет еще больше, если сигнал будет зашумлен. Таким образом, недостаток известного способа определения частоты - недостаточно высокая точность.

Задачей изобретения является повышение точности измерения частоты сигнала.

Предложен способ измерения частоты сигнала, который включает прием сигнала с последующим аналого-цифровым преобразованием, быстрое преобразование Фурье, преобразующее числовой массив во временной области в числовой массив в частотной области, определение номера jmax элемента числового массива, соответствующего максимальной амплитуде сигнала в частотной области, определяющего приближенное значение количества периодов сигнала в интервале наблюдения, создание 2к+1 эталонных сигнала во временной области, по форме соответствующих исходному массиву во временной области, количество периодов которых смещают по отношению к количеству периодов исходного сигнала на jmax*(s/k-l)*b, где s=0, 1, 2,…2k, где коэффициент b определяет размер окрестности, b=0…1 вблизи приближенного количества периодов сигнала jmax в интервале наблюдения, вычисление коэффициентов корреляции 2к+1 эталонных сигналов с исходным, аппроксимацию зависимости коэффициентов корреляции 2к+1 эталонных сигналов с исходным сигналом от номера m в частотной области KK[m], где m=jmax+jmax*(s/k-l)*b, выполнение передискретизации на основе найденной аппроксимирующей зависимости с увеличением количества элементов массива в R раз, т.е. формирование массива KK1[m1], где m1=jmax+jmax*(s1/(k*R)-1)*b, S1=0, 1,…2k*R, R - коэффициент передискретизации больше 1, нахождение элемента m1max числового массива, соответствующего максимальному значению коэффициента корреляции KK1. Значение m1max принимают за уточненное значение количества периодов исходного сигнала вместо jmax. Повторяют далее все предыдущие операции обработки сигнала, уменьшая каждый раз величину b, определяющую размер окрестности вблизи найденного количества периодов сигнала в интервале наблюдения. После достижения требуемой точности приближения оценки положения центра отраженного сигнала вычисляется значение частоты f=m1max/(N*dt).

Отличительными существенными признаками предлагаемого способа является обработка исходного сигнала, в результате чего частота сигнала определяется точно как при целом, так и при не целом количестве периодов, а при наличии шума в несколько раз с большей точностью, чем при использовании известного способа, основанного на использовании БПФ. Идея предлагаемого способа измерения частоты сигнала заключается в том, что значение центра jmax сигнала в частотной области, определенное с помощью БПФ [фиг.1] по принципу положения максимума амплитуды сигнала в частотной области и вычисленного на его основе значения количества периодов сигнала во временной области, используется только в качестве грубой оценки (начального приближения) количества периодов. Для получения более точного значения количества периодов производится формирование во временной области 2к+1 эталонных сигналов, соответствующих по форме исходному сигналу [фиг.2], но имеющих другое количество периодов, а именно со сдвигом jmax*(s/k-l)*b, где s=0, 1, 2,…2k, значение b задается с учетом возможной погрешности приближенного значения количества периодов в интервале от 0 до 1. Например, b=0.1, если погрешность оценки приближенного значения количества периодов не превышает 10%, k=3, если погрешность оценки приближенного значения количества периодов не превышает 10%, если возможна ошибка грубой оценки до 90%, то задают значения b=0.9 и k=25. Далее вычисляют коэффициенты корреляции исходного анализируемого сигнала со всеми эталонными KK[m], m=jmax+jmax*(s/k-l)*b, m отражает количество периодов измеряемого сигнала, в общем случае нецелое, находят с помощью аппроксимации непрерывную функциональную зависимость F (m), соответствующую массиву KK[m], выполняют передискретизацию на основе найденной функциональной зависимости F (m) для массива KK[m] с увеличением количества элементов массива в R раз, т.е. формирование массива KK1[m1], где m1=jmax+jmax*(s1/(k*R)-l)*b, s1=0, 1, 2,…2k*R, R - коэффициент передискретизации, например, равный 10, находят элемент массива m1max, соответствующий максимальному значению коэффициента корреляции KK1. Значение m1max принимают за уточненное (в общем случае нецелое) количество периодов сигнала. Упомянутая функция F (m) имеет вид параболы, обращенной вершиной вверх как в случае незашумленного, так и зашумленного сигнала, что и позволяет определить количество периодов сигнала более точно. При наличии шума форма функции сохраняется, уменьшается лишь абсолютное значение максимума. Процесс уточнения значения количества периодов итерационно повторяется, вначале итерации в качестве начального приближения используется уточненное значение m1max, полученное в результате предыдущей итерации. Повторение операций обработки прекращают после достижения требуемой точности приближения оценки значения количества периодов сигнала, которую оценивают по величине разности между вычисленными значениями количества периодов в результате текущего и предыдущего приближений. После этого вычисляют значение частоты как f=m1max/(N*dt), где dt - шаг дискретности по времени при измерении сигнала. В результате будет получено значение количества периодов и частоты с меньшей погрешностью в R раз, чем разрешение по частоте при использовании БПФ. Кроме того, при зашумленности отраженного сигнала, значение частоты сигнала предлагаемым способом будет получено в несколько раз более точно по сравнению с известным способом. Таким образом, совокупность отличительных признаков необходима и достаточна для решения поставленной задачи.

Схема устройства для возможной реализации предлагаемого способа измерения частоты сигнала представлена на фиг.3. Устройство включает 1 - генератор синхронизирующих импульсов СИ1 и СИ2, 2 - источник сигнала, 3 - аналого-цифровой преобразователь, 4 - счетчик адреса оперативного запоминающего устройства (ОЗУ), 5 - ОЗУ, 6 - вычислитель. На фиг.4 приведена временная диаграмма синхронизирующих импульсов СИ1 и СИ2. На фиг.5 приведена блок-схема алгоритма работы вычислителя 6.

Пример реализации предлагаемого способа в устройстве фиг.3

Генератор синхронизирующих импульсов 1 вырабатывает синхронизирующий импульс СИ1, который производит сброс счетчика адреса записи в ОЗУ и запускает источник сигнала 2. С момента формирования синхронизирующего импульса СИ1 начинается формирование синхроимпульсов СИ2 генератором 1, аналого-цифровое преобразование ожидаемого входного сигнала с помощью аналого-цифрового преобразователя 3 и запись результатов преобразования в оперативное запоминающее устройство 5 по адресу, задаваемому адресным счетчиком 4. При этом будет зафиксировано N дискретных отсчетов сигнала. Далее вычислитель 6 производит чтение и обработку зарегистрированного и хранящегося в оперативном запоминающем устройстве 5 дискретизированного сигнала в соответствии с алгоритмом, представленным на фиг.5. Действия обработки выполняются в следующем порядке:

1. Производят чтение зарегистрированного в оперативном запоминающем устройстве 5 входного сигнала, представленного в виде набора из N отсчетов.

2. Производят быстрое преобразование Фурье, в результате чего формируют массив частотного спектра в виде набора из N чисел.

3. Определяют номер элемента jmax массива частотного спектра, которому соответствует максимальное значение. Этот номер jmax является грубой оценкой количества периодов сигнала.

4. Создают 2k+l эталонных сигналов по форме соответствующих исходному, количество периодов эталонных сигналов смещают по отношению к исходному на величину jmax*(s/k-l)*b, где s=0, 1, 2,…2k, b - постоянный коэффициент, задаваемый от 0 до 1 в зависимости от величины возможной ошибки грубой оценки количества периодов сигнала, например, b=0.1, если возможная ошибка равна 10%, при этом k=3. Если возможна ошибка до 90%, то задают значение b=0.9, при этом k=25. Коэффициент b=0…1 определяет размер окрестности вблизи количества периодов входного сигнала. В этой окрестности будут находиться значения количества периодов эталонных сигналов.

5. Вычисляют коэффициенты корреляции эталонных сигналов с исходным. Результат представляется в виде числового массива, содержащего 2k+l элементов, каждому элементу соответствует число m=jmax+jmax*(s/k-l)*b и значение коэффициента корреляции KK[m].

6. Производят аппроксимацию зависимости коэффициентов корреляции эталонных сигналов с исходным KK(m) от числа m, которое определяет значения количества периодов эталонных сигналов m=jmax+jmax*(s/k-l)*b.

7. Производят передискретизацию на основе найденной аппроксимирующей зависимости F(m) для массива KK[m] с увеличением количества элементов массива в R раз, т.е. формируют массив KK1[m1], где m1=jmax+jmax*(s1/(k*R)-l)*b, s1=0, 1, 2,…2k*R, R - коэффициент передискретизации, например, равный 10.

8. Определяют значение m1max массива KK1[m1], которому соответствует максимальное значение коэффициента корреляции KK1.Значение m1max принимают за уточненное количество периодов исходного сигнала.

9. Повторяют далее все предыдущие операции обработки сигнала, начиная с п.4, уменьшая каждый раз величину b, определяющую размер окрестности вблизи приближенного значения количества периодов сигнала, в качестве приближенного значения количества периодов сигнала выбирают значение m1mах, определенное в п.8. Повторение операций обработки прекращают после достижения требуемой точности оценки количества периодов исходного сигнала, точность оценивают по величине разности между вычисленными значениями количества периодов в результате текущего и предыдущего приближений.

10. Вычисляют значение частоты f=m1max/(N*dt), где m1max - уточненное количество периодов исходного сигнала, dt - шаг дискретности по времени при измерении сигнала.

Способ обеспечивает увеличение точности измерения количества периодов и частоты сигнала в несколько раз за счет многократного повторения операций обработки сигнала с одновременным уменьшением размера окрестности вблизи приближенного значения количества периодов анализируемого сигнала.

Способ измерения частоты сигнала, включающий аналого-цифровое преобразование сигнала и измерение количества периодов сигнала с помощью быстрого преобразования Фурье, отличающийся тем, что определяют номер jmax элемента числового массива, соответствующего максимуму сигнала в частотной области, создают 2k+1 эталонных сигналов, по форме соответствующих исходному, количество периодов каждого смещают по отношению к количеству периодов исходного сигнала на величину jmax·(s/k-l)·b, где s=0, 1, 2,…2k, s - номер эталона, k - коэффициент больший или равный 3, b - постоянный коэффициент от 0 до 1, определяющий размер окрестности вблизи приближенного значения количества периодов измеряемого сигнала, вычисляют коэффициенты корреляции эталонных сигналов с исходным, производят аппроксимацию зависимости коэффициентов корреляции 2k+1 эталонных сигналов с исходным KK[m], где m=jmax+jmax·(s/k-l)·b, производят передискретизацию на основе найденной аппроксимирующей зависимости для массива KK[m] с увеличением количества элементов массива в R раз, формируют массив KK1[m1], где m1=jmax+jmax·(s1/(k·R)-l)·b, s1=0, 1, 2,…2k·R, R - коэффициент передискретизации, больший 1, определяют значение m1max массива KK1[m1], которому соответствует максимальное значение коэффициента корреляции KK1, значение m1max принимают за уточненное количество периодов исходного сигнала, далее повторяют операции обработки сигнала с одновременным уменьшением коэффициента b, определяющего размер окрестности вблизи приближенного значения количества периодов сигнала, после чего вычисляют значение частоты f=m1max/(N·dt), где m1max - уточненное количество периодов исходного сигнала, dt - шаг дискретности по времени при измерении сигнала.



 

Похожие патенты:

Изобретение относится к области контрольно-измерительной техники и предназначается для выявления и оценки различных видов нелинейных искажений в звукотехнической аппаратуре, в частности в предварительных усилителях и усилителях мощности.

Изобретение относится к способам определения спектра электрических сигналов. .

Изобретение относится к экспериментальным исследованиям приводов систем автоматического управления и предназначено для определения запасов устойчивости рулевого привода.

Изобретение относится к области электронных измерений, к средствам измерения широкого применения. .

Изобретение относится к области контрольно-измерительной техники и предназначено для выявления и оценки гармонических искажений сигнала, вносимых усилителями сигналов звуковой частоты.

Изобретение относится к технике спектрального анализа электрических сигналов. .

Изобретение относится к области контрольно-измерительной техники и предназначено для имитации различных видов нелинейных искажений электрического сигнала. .

Изобретение относится к области гидроакустики и радиотехники и может быть использовано для построения систем обнаружения сигнала. .
Изобретение относится к радиотехнике, а именно к способам точной оценки частоты одиночного гармонического колебания в ограниченном диапазоне

Изобретение относится к радиотехнике и может найти применение в системах радиосвязи

Изобретение относится к радиотехнике и может быть использовано для целей радиоконтроля, радиомониторинга, определения характеристик источников радиоизлучения

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения частоты, амплитуды, фазы и начальной фазы непрерывного или импульсного гармонического сигнала по одному и тому же минимальному набору исходных данных

Изобретение относится к испытательной технике и может быть использовано для выделения и фильтрации исследуемых сигналов из воспроизводимого стационарного случайного процесса и измерения в реальном времени параметров сигнала. Система обработки сигналов, содержащая перестраиваемый по частоте фильтр, характеризующаяся тем, что в систему введены виброиспытательный комплекс, анализатор, прибор визуального контроля, формирователь нестационарного процесса, источник управляющего сигнала и блок стробирования, при этом фильтр своим первым входом подключен к выходу виброиспытательного комплекса, а выходом соединен с входом прибора визуального контроля, первый и второй выходы которого подключены соответственно к первому и второму входам анализатора, третьим входом соединенного с первым выходом формирователя нестационарного процесса, одновременно подключенного также ко входу виброиспытательного комплекса, причем анализатор своим четвертым входом соединен с первым входом системы, а выходом подключен к ее выходу, причем второй выход формирователя нестационарного процесса соединен с первым входом блока стробирования, выходом подключенного к второму входу фильтра, а вторым входом соединенного с выходом источника управляющего сигнала, входом подключенного к второму входу системы. Технический результат заключается в повышении точности обработки. 3 з.п. ф-лы, 16 ил.

Изобретение относится к области цифровой обработки сигналов и может быть использовано для определения наличия гармонических составляющих и их частот в сигналах различного происхождения при решении задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа. Согласно способу производят прямое преобразование Фурье анализируемого дискретного сигнала в форме быстрого преобразования Фурье размерностью 2n, определяют комплексно-сопряженные значения результатов прямого преобразования Фурье анализируемого дискретного сигнала, попарно умножают полученные комплексные сигналы прямого преобразования Фурье анализируемого дискретного сигнала с комплексно-сопряженными значениями прямого преобразования Фурье анализируемого дискретного сигнала, из полученного произведения Pj выбирают значения и формируют m сигналов Mk, полученные сигналы Mk подвергают обратному преобразованию Фурье Zk=F-1[Mk], определяют частотно-временную автокорреляционную функцию. По полученным результатам строят график частотно-временной автокорреляционной функции R(f, t), по которому судят о наличии в анализируемом дискретном сигнале гармонических составляющих и их частотах. Технический результат - определение наличия гармонических составляющих и их частот в дискретном сигнале по автокорреляционной функции. 4 ил., 1 табл.

Способ относится к области испытаний и исследований динамических систем. Способ определения амплитудно-фазовых частотных характеристик динамического объекта предполагает проведение анализа завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания и проводится на каждой частоте входного моногармонического сигнала до тех пор, пока средние определяемые значения коэффициентов Фурье выходного сигнала не станут достаточно постоянными, т.е. до тех пор, пока относительные разности между вновь вычисленными средними значениями коэффициентов Фурье выходного сигнала и предыдущими значениями этих параметров не станут по модулю меньше наперед заданного точностного параметра. При этом анализ завершенности переходного процесса втягивания динамического объекта в вынужденные периодические колебания проводится по нескольким дополнительным гармоникам. В этом случае окончание переходного процесса втягивания динамического объекта в вынужденные периодические колебания определяется числом необходимых периодов для завершения переходного процесса той гармоники, для которой оно является максимальным. Технический результат - повышение точности определения амплитудно-фазовых частотных характеристик. 1 ил.

Изобретение относится к области измерений в свободном пространстве параметров сигналов, излучаемых радиопередающими устройствами базовых станций в сетях связи с временным разделением дуплексных (входящего и исходящего) каналов. Технический результат изобретения - повышение точности измерений параметров сигналов исходящего канала базовой станции в условиях, когда в пределах одной и той же полосы частот попеременно присутствуют сигналы исходящего и входящего каналов станции. Способ измерения основан на управлении разверткой используемого анализатора спектра при помощи сигнала, формируемого детектором мощности на промежуточной частоте, и заключается в том, что пороговый уровень запуска развертки повышают до появления на спектрограмме заметной асимметрии либо провалов и/или выбросов в пределах номинальной полосы канала, снижают его до значения, при котором восстанавливается равномерная форма спектра, характеризующаяся отсутствием указанных выше искажений спектрограммы, определяют и фиксируют значение этого порогового уровня, а измерения проводят при уровне запуска развертки ниже зафиксированного порогового уровня, но выше уровня сигналов входящего канала и/или радиошума. 3 ил.

Изобретение относится к области дистанционного беспробоотборного газоанализа, а именно к способам формирования баз спектральных данных для дистанционных газоанализаторов на основе Фурье-спектрорадиометров. Способ заключается в беспробоотборном определении мгновенных значений концентрации вещества по данным контроля оптической плотности модельного облака на характеристических спектральных линиях в момент регистрации его спектра с использованием лабораторного стенда для создания и контроля концентраций газообразных веществ путем регистрации спектра пропускания модельного облака и расчетом по закону Бугера-Ламберта-Бера на основании значений молярной массы и молекулярного сечения поглощения вещества. Регистрация спектров для базы данных производится при достижении значения оптической плотности облака порядка 1,105÷1,112. Технический результат заключается в обеспечении возможности снижения погрешности при определении спектральных коэффициентов поглощения излучения для веществ из перечня формируемой базы спектральных данных для Фурье-спектрорадиометра. 2 ил.

Изобретение относится к измерительной технике и автоматике и может использоваться для прецизионного измерения отклонений частоты от номинального значения в определенном диапазоне частот. Способ измерения номинальной частоты синусоидальных сигналов предполагает осуществление настройки измеряемой номинальной частоты фазовращателем, управляемым генератором пилообразного напряжения. Настройка осуществляется до равенства фаз с частотой, поступающей непосредственно на второй вход компаратора, время срабатывания которого пропорционально числу импульсов, измеряемых счетчиком и обрабатываемых микроконтроллером. При этом фазовращатель состоит из RC-звеньев, в которых роль емкости C выполняют варикапы, а микроконтроллер содержит программу, обеспечивающую возможность градуировки различных типов датчиков для линеаризации зависимостей значений физических параметров от частоты. Результаты измерений выводят на индикатор. Устройство для измерения номинальной частоты синусоидальных сигналов содержит генератор образцовой частоты, ключ, схему «И», счетчик импульсов, блок индикации, микроконтроллер, вход которого соединен с выходом счетчика импульсов, а выход - с индикатором, компаратор фаз, одновибратор, запускающий генератор пилообразного напряжения, который управляет фазовращателем до равенства фаз на компараторе. Технический результат - обеспечение высокой надежности, точности способа, быстродействия и универсальности применения. 2 н.п. ф-лы, 3 ил., 1 табл.
Наверх