Микроструйное устройство и способ его изготовления и содержащий его сенсор



Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор
Микроструйное устройство и способ его изготовления и содержащий его сенсор

 


Владельцы патента RU 2478431:

КОНИНКЛЕЙКЕ ФИЛИПС ЭЛЕКТРОНИКС Н.В. (NL)

Изобретение относится к микроструйному устройству для молекулярного рассеивания или для обнаружения заданного вещества в пробе жидкости. Устройство содержит первую подложку, имеющую по существу плоскую первую поверхность, которая обеспечена первыми вырезами, и вторую подложку, имеющую по существу плоскую вторую поверхность, которая обеспечена вторыми вырезами. Часть первых вырезов заполнена пористым материалом. Чередующиеся первые вырезы и вторые вырезы образуют извилистый канал для пробы жидкости. Вторые вырезы могут быть заполнены другим пористым материалом. В одном варианте, в или на пористом материале размещается улавливающее вещество для связывания заданного вещества. Изобретение обеспечивает более высокие давления и скорости потока пробной текучей среды в процессе использования. 3 н. и 14 з.п. ф-лы, 20 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к микроструйному устройству. Устройство может быть частью, например, для биодатчика или устройства для обнаружения заданного вещества в пробе жидкости или может являться ими.

Применения включают в себя биодатчики молекулярной диагностики, датчики ДНК-цепочек, лекарства, окружающей среды и качества пищи. Рассматриваемое устройство может быть применено для разделения веществ (хроматография), например, для расшифровки ДНК-последовательности, экстрагирования ДНК или белка из пробы и молекулярного рассеивания.

Предшествующий уровень техники

В таких областях, как молекулярная диагностика, биодатчики используются для исследования или анализа пробы текучей среды, такой как кровь или другая текучая среда организма человека, на наличие одного или более заданных веществ. Такие заданные вещества включают в себя, например, антиген, микроорганизм и/или молекулы. С этой целью в одном типе биодатчика заданное вещество связывается или улавливается улавливающим веществом, которое иммобилизовано на поверхности в микроструйном устройстве. Зоны иммобилизации могут называться пятнами. Микроструйное устройство обычно используется из-за его способности обрабатывать небольшие количества пробы текучей среды, которые часто являются едва доступными. Наличие заданного вещества делается заметным путем присоединения метки, такой как флуоресцентная молекула или любая другая метка, которая создает физический эффект, который может быть обнаружен. Наиболее часто используемыми являются оптические метки. Для того чтобы обеспечить многократное обнаружение, т.е. обнаружение множественных заданных веществ последовательно или одновременно в пробе текучей среды одним биодатчиком, микроструйное устройство может содержать множественные улавливающие вещества, иммобилизованные в одном или более пятен, либо организованных, либо не организованных в ряд на одной из его поверхностей.

Два размещения устройств биодатчиков предложено и используется на практике, т.е. так называемый принцип перетекания и так называемый принцип протекания.

Биодатчик согласно принципу протекания использует пористую мембрану, имеющую средние размеры пор меньше одного микрона. Пятна, содержащие улавливающие вещества, присутствуют на мембранах. При пропускании пробы текучей среды через мембрану становятся очень небольшими диффузионные расстояния для биологических молекул, содержащихся в пробе текучей среды, так что диффузионный перенос не ограничивает кинетику адсорбции, и осуществляется эффективное улавливание заданного вещества.

В WO-2007/060580-A1 раскрывается микроструйное устройство, содержащее пористую мембрану, заключенную в две корпусные части. Мембрана обеспечена пятнами иммобилизованных улавливающих веществ для связывания заданных веществ. Две корпусные части содержат ряд вырезов. Вместе вырезы двух корпусных частей образуют канал для направления пробы текучей среды. Пятна предусматриваются в одной или более позициях, где канал пересекает мембрану. Пробная текучая среда, которая направляется через конкретный канал, проходит каждую мембрану указанного канала.

Раскрытие изобретения

Задачей настоящего изобретения является создание улучшенного микроструйного устройства и датчика, который вводит микроструйное устройство.

Изобретение определяется независимыми пунктами формулы изобретения. Зависимые пункты формулы изобретения определяют предпочтительные варианты.

Микроструйное устройство настоящего изобретения сочетает ряд характеристик, так что требуется небольшой объем пробы, при снижении или подавлении утечки пробной текучей среды из пористого материала в одном вырезе в пористый материал в другом вырезе через путь, который не является частью канала. Например, в устройстве из WO-2007/060580-A1 пробная текучая среда может вытекать через собственно мембрану таким образом, т.е. пробная текучая среда может транспортироваться через пористую мембрану, которая расположена между двумя корпусными частями, в направлении, ином, чем направление канала, т.е. в плоскости пористой мембраны. Средний размер пор мембраны в указанном устройстве поэтому ограничивается такими размерами, чтобы утечка пробы текучей среды ограничивалась до приемлемого уровня.

Конструкция микроструйного устройства настоящего изобретения является такой, что мембраны не пересекаются, так как в направлении канала отсутствует мембранный материал между последовательно расположенными мембранами. Отсюда утечка, имеющаяся в устройствах известного уровня техники, предотвращается совсем, и устройство настоящего изобретения обеспечивает более широкую сферу применимости.

Кроме того, конструкция микроструйного устройства настоящего изобретения интегрирует пористый материал в вырезы (в часть вырезов), так что стенки вырезов поддерживают и защищают пористый материал от деструкции в процессе использования. Устройство является более устойчивым и надежным и обеспечивает более устойчивое надежное функционирование.

Предпочтительно, вырезы являются по существу полностью заполненными. Так вырез, например, заполняется в зависимости от точности соответствующей технологии, которая используется для размещения пористого материала в вырезе. Выражение «по существу полностью заполненный» указывает, например, что по меньшей мере поперечное сечение канала, т.е. поперечное сечение вырезов, составляет более 80%, предпочтительно более 90%, наиболее предпочтительно более 95%, заполненных указанным пористым материалом. Не все вырезы должны заполняться пористым материалом. Вдоль канала заполняется по меньшей мере один или множество вырезов. Предпочтительно, вырез заполнен так, что пористый материал контактирует с по меньшей мере одной поверхностью выреза, которая не является параллельной главному направлению потока в канале, т.е. примыкает к углу канала, так что он расположен в углу выреза. Примыкание или контактирование в данном случае означает присоединение или даже физический контакт. В таком случае пористый материал поддерживается стенкой канала в направлении потока в канале. Альтернативно или дополнительно пористый материал может быть размещен так, что его размер вдоль продольного направления канала (параллельно главному направлению потока) в канале является большим, чем по меньшей мере один из его размеров в направлении поперечного сечения канала. Указанные расположения в углу и/или геометрические размеры пористого материала в канале придают повышенную устойчивость пористому материалу, так что он может теперь выдерживать большие давление и скорость потока, обеспечивающие увеличенную скорость работы микроструйного устройства или датчика, который использует микроструйное устройство. Кроме того, более вязкие пробы могут быть прокачаны через канал. Альтернативно, открытая пористость (как определено далее) пористого материала может быть увеличена без снижения устойчивости мембраны. Например, это позволяет снизить давления, используемые в устройстве для введения потока, и/или позволяет использовать более вязкие пробы без использования повышенного давления для введения потока.

Таким образом, в целом, поскольку сечения пористого материала заключены в полость сплошного материала, механическая нагрузка на пористый материал снижается, и пористый материал может быть хрупким и очень открытым. Выражение «хрупкий и очень открытый» здесь указывает на то, что пористый материал имеет относительно низкую сплошную фракцию. Данное изобретение позволяет использовать очень тонкие мембраны из хрупкого пористого материала.

В US-2004/0053422-A1 раскрываются микроструйные устройства, имеющие пористые мембраны для молекулярного рассеивания, дозирования и отделения жидких аналитов. В одном аспекте устройство включает в себя подложку, имеющую впускную и выпускную секции, разделенные пористой мембраной, формованной как единое целое с подложкой. В другом аспекте устройство включает в себя каскадные ряды верхних и нижних каналов, в которых каждая граница раздела верхний/нижний канал разделяется соответствующей пористой мембраной.

Пористые мембраны, содержащиеся в устройствах US-2004/0053422-A1, размещаются в канале перпендикулярно направлению потока пробной текучей среды. В противоположность данному изобретению компоновка согласно данному уровню техники испытывает недостаток в увеличенной стойкости, чтобы выдерживать усилие потока пробной текучей среды за пределами определенного интервала, как рассмотрено здесь выше.

Кроме того, относительно трудно изготовить устройство, содержащее несколько свободно установленных пористых мембран, как в US-2004/0053422-A1, причем каждая мембрана, имеющая толщину в интервале от 100 мкм до нескольких миллиметров, является уязвимой в процессе изготовления. Выражение «свободно установленные» здесь указывает мембраны, которые размещены в канале перпендикулярно направлению потока пробной текучей среды, где края мембраны фиксируются в стенках канала. Устройство согласно настоящему изобретению не требует таких свободно установленных мембран и снижает уязвимость устройства с увеличением производительности.

Согласно предпочтительному варианту пористый материал имеет открытую пористость более 25% и менее 80%, предпочтительно в интервале 35-70%, наиболее предпочтительно в интервале 45-60%. Термин «открытая пористость Х%» здесь означает, что Х% объема пористого материала является незаполненным. Поры материала соединяются друг с другом и с наружной поверхностью материала. Термин «открытая пористость» указывает фракцию общего объема пористого материала, где эффективно имеет место течение текучей среды.

В другом варианте средний размер пор пористого материала составляет, например, от 10 нм до 10 мкм, предпочтительно от 20 нм до 2 мкм, более предпочтительно от 25 нм до 1 мкм и наиболее предпочтительно от 50 нм до 500 нм. Распределение пор по размеру является, предпочтительно, очень небольшим. ПШПМ (FWHM) (полная ширина при половине максимума) является, например, меньше фактора 2 среднего размера пор.

В одном варианте пористый материал включают в себя изотропный полимерный материал.

Описанная подложечная технология позволяет использовать более широкий ряд материалов, а также более тонкие пористые структуры в сочетании с улучшенными механической прочностью и жесткостью. Последняя обеспечивает более легкую обработку, например, в процессе применения пятен биомолекулярных захватывающих зондов. Устройство настоящего изобретения обеспечивает более высокие давления и скорости потока пробной текучей среды в процессе использования.

В одном варианте первый и второй вырезы расположены в различных подложках. Это является преимуществом в отношении изготовления микроструйного устройства в отношении сложности. Обе подложки могут быть переработаны независимо, и препятствия между стадиями способа снижаются или даже отсутствуют. Например, когда первые вырезы должны иметь другие улавливающие зонды, чем вторые вырезы. Однако за исключением снижения стоимости это обеспечивает массовое производство с получением заменяемого микроструйного устройства.

В одном варианте по меньшей мере часть вторых вырезов заполняется дополнительным пористым материалом. Предпочтительно, дополнительное улавливающее вещество для связывания заданного вещества размещается в или на дополнительном пористом материале по меньшей мере части вторых вырезов. Дополнительный пористый материал может включать в себя такой же материал, как первый пористый материал, и/или другие пористые материалы. Конструкция устройства настоящего изобретения воспроизводит любую комбинацию возможных пористых материалов.

В одном варианте улавливающее вещество для связывания заданного вещества размещается в или на пористом материале одного или более первых вырезов, и/или дополнительное улавливающее вещество для связывания заданного вещества размещается в или на дополнительном пористом материале одного или более вторых вырезов. Каждое пятно, содержащее улавливающее вещество, предпочтительно, контактирует с поверхностью противоположной подложки. Контакт между улавливающим веществом и поверхностью подложки улучшает сопряжение и улучшает отношение сигнал/помехи, например, в случае светового выходного обнаружения. Улавливающее вещество, например, содержится в классе люминесцентных веществ, таких как, например, флуоресцентные или фосфоресцентные вещества.

Устройство объединяет две подложки, причем обе имеют чередующиеся зоны пористого материала и сплошного материала. Меандрирующий канал поочередно следует по одному из первых вырезов и продолжается в одном из вторых вырезов и т.д. Наличие чередующихся сплошных и пористых, зон имеет преимущества по сравнению с прямым каналом, который обеспечен стенками из пористых материалов. Улавливающие зонды, или пятна, могут быть отпечатаны ближе вместе, так как предотвращается смешение различных улавливающих зондов. Кроме того, поток пробной текучей среды направляется к позициям соответствующих улавливающих зондов, т.е. пятен. Это ведет к лучшему рассеиванию раствора и к увеличенной скорости связывания заданного вещества (веществ).

В другом варианте стенки предусматриваются на границе раздела первой подложки и второй подложки для направления первого сигнала измерения улавливающего вещества в первом направлении и/или для направления второго сигнала измерения другого улавливающего вещества во втором направлении. Предпочтительно, второе направление является по существу противоположным первому направлению. Противоположные направления сигналов измерения улучшают световыходное сопряжение и снижают отношение сигнал/помехи. При интегрировании пористого материала и пятен в обеих подложках плотность пятен может быть удвоена при той же самой конструкции канала потока.

В одном варианте первый пористый материал контактирует со второй поверхностью второй подложки. В другом варианте второй пористый материал контактирует с первой поверхностью первой подложки. Таким образом, пористый материал полностью заполняет высоту канала и предотвращает пропускание пробной текучей среды пористым материалом вместо прохождения через пористый материал.

Рассмотренная конструкция обеспечивает улучшение оптических характеристик устройства, т.к. пятно, содержащее флуоресцентное улавливающее вещество, может быть вполне определенным, т.е. надежным и воспроизводимым, благодаря конструкции подложки. Устройство настоящего изобретения не основано на неопределенном крае печатной текучей среды с улавливающими зондами в пористой структуре.

В другом варианте пористый материал способен набухать в контакте с пробной текучей средой. Если имеется некоторое пространство между поверхностью подложки и пятном, заделанным в пористый материал, часть пробной текучей среды будет способна проходить пятно без взаимодействия, что дает хуже воспринимаемые сигналы. Пористый материал, который способен к набуханию, закрывает такое пространство и предотвращает пробу жидкости от прохождения пятна без взаимодействия. В процессе использования проба текучей среды производит набухание пористого материала. Материал оказывает давление на пятно, которое заделывается напротив поверхности противоположной подложки, таким образом улучшая контакт поверхности противоположной подложки и соответствующего пятна.

В одном варианте в пористый материал вводят гасящие вещества. Альтернативно, дно первых вырезов и/или вторых вырезов обеспечиваются поглощающим или отражающим слоем. Гасящие вещества и поглощающий или отражающий слой снижают люминесцентные фоновые помехи, такие как помехи, возникающие, например, от фоновой флуоресценции.

В одном варианте первые вырезы и/или вторые вырезы имеют скошенные, или наклонные, стенки. Скошенные, или наклонные, стенки сводят в параллельный пучок свет, испускаемый улавливающими веществами пятен.

В одном другом варианте боковые стенки первых вырезов и/или вторых вырезов обеспечиваются отражающим слоем. Отражающие слои направляют свет, который испускается улавливающими веществами пятен, для улучшения испускания света и отношения сигнал/помехи.

В одном варианте первая подложка и/или вторая подложка является по существу прозрачной. Прозрачная первая подложка и/или вторая подложка является, предпочтительно, прозрачной для излучения, имеющего длину волны в интервале 350-1000 нм. Интервал может включать в себя длину волны видимого света. Прозрачные подложки обеспечивают обнаружение заданных веществ с использованием люминесценции, такой как, например, флуоресценция и/или фосфоресценция.

Согласно другому аспекту предусматривается сенсорное устройство, содержащее микроструйное устройство и детектор. Детектор служит для обнаружения и приема сигналов, генерируемых заданными молекулами, которые улавливаются улавливающими веществами, иммобилизованными на микроструйном устройстве. В одном варианте пористый материал может использоваться для осуществления фильтрующих функций перед обнаружением на других участках. В другом варианте улавливающие зонды могут быть предусмотрены в пористом материале каналов микроструйного устройства.

Сенсорное устройство имеет выгоду от преимуществ микроструйного устройства в отношении увеличенной скорости потока или получаемого давления в канале с преобразованием среди прочего в увеличенную скорость восприятия сигналов, чувствительность восприятия сигналов, увеличенную устойчивость и/или увеличенную надежность в процессе использования и/или изготовления. Микроструйное устройство может быть частью сенсорного устройства в постоянной конструкции, т.е. оно может образовывать интегральную часть сенсорного устройства. В данном случае сенсорное устройство также имеет выгоду от преимуществ, обеспечиваемых изготовлением микроструйного устройства. Альтернативно, микроструйное устройство может быть удаляемым из сенсорного устройства. В последнем случае пробная текучая среда может подаваться в микроструйное устройство так, что устройство осуществляет свои функции фильтрации и/или улавливания заданных веществ перед введением в сенсорное устройство для того, чтобы осуществлять анализ обработанной пробной текучей среды.

Сенсорным устройством может быть биодатчик. Устройство согласно изобретению особенно используется в биомолекулярной области технологии, так как текучие среды, анализируемые в данной области, такие как текучие среды организма или препараты таких текучих сред, будут едва доступными и обычно имеются в небольших количествах. Кроме того, применение устройств согласно настоящему изобретению в данной области технологии, включая медицинскую диагностику и анализ загрязнения окружающей среды или отравление пищи, требует, чтобы рассматриваемые заданные вещества обнаруживались как можно надежно и воспроизводимо часто при очень низких концентрациях в текучих средах. Кроме того, часто большое число различных заданных веществ или молекул должно одновременно обнаруживаться таким образом.

Чувствительность определяется эффективностью иммобилизации заданных веществ и чувствительностью принципа сенсора. Иммобилизация заданных веществ зависит от концентрации заданных веществ, их диффузии и кинетики реакции, площади поверхности улавливающих веществ и их доступности. Чувствительность принципа сенсора, главным образом, определяется фоном сигнала (включая все виды помех) и, в случае оптического обнаружения, эффективностью сбора фотонов.

Скорость связывания заданных веществ или молекул при очень низких концентрациях в пробной текучей среде ограничивается диффузией в подложку сенсора. Скорость связывания ограничивается даже больше для молекул с высокой молекулярной массой. Настоящее изобретение обеспечивает улучшенные характеристики, что дает улучшенную чувствительность и надежность.

Согласно другому аспекту настоящее изобретение предусматривает способ изготовления микроструйного устройства.

Для изготовления подложек согласно настоящему изобретению может использоваться низкозатратный способ рулонного изготовления по сравнению, например, с изготовлением CD и DVD. Таким образом, стоимость изготовления может быть низкой с обеспечением экономически жизнеспособного получения одноразовых устройств.

Микроструйное устройство согласно настоящему изобретению имеет преимущества по отношению к устройствам уровня техники, имеющим поперечные мембраны с перетоком или многочисленные параллельно расположенные проточные мембраны. Это благодаря тому, что при прокачивании пробной текучей среды через мембрану или мембраны такого устройства уровня техники все пятна, содержащие улавливающие вещества, подвергаются воздействию одновременно. Однако, поскольку каждое пятно проверяет только очень ограниченную часть объема пробной текучей среды (обычно менее 1% или даже меньше), истощение раствора ограничивает достижимую чувствительность измерения. Размещение текучей среды для проточной системы также может ограничить доступность областей зондов для оптических компонентов, которые требуются для люминесцентного обнаружения. Кроме того, неравномерности проницаемости мембраны могут привести к сильным колебаниям эффективно проверяемого объема пробной текучей среды на пятно. Хотя в таких случаях гомогенность может быть улучшена циркуляцией пробной текучей среды и/или реверсированием потока после каждого прохода мембраны, это требует рабочего времени, что является дорогостоящим. В дополнение к увеличенному объему пробной текучей среды также требуются дополнительные меры смешения для гарантированного гомогенного и эффективного смешения. Смешение в микроструйных каналах является особенно трудным, когда поток пробной текучей среды является по существу ламинарным благодаря низким числам Рейнольдса. Пробная текучая среда должна быть повторно рециркулирована для значительного улучшения рассеивания заданных веществ. Однако повторная циркуляция пробной текучей среды является слишком непрактичной для рассеивания по существу 100% всех заданных веществ. Все указанные недостатки могут быть снижены или предотвращены микроструйным устройством согласно настоящему изобретению.

Краткое описание чертежей

Другие характеристики и преимущества настоящего изобретения будут видны из прилагаемых чертежей, на которых:

на фиг.1 представлен вид сверху микроструйного устройства согласно изобретению;

на фиг.2 представлен вид в разрезе варианта согласно фиг.1;

на фиг.3 представлен вид в разрезе другого варианта устройства согласно изобретению;

на фиг.4 представлен подробный вид в разрезе варианта выполнения устройства согласно изобретению;

на фиг.5 представлен подробный вид в разрезе варианта выполнения подложки устройства согласно изобретению, имеющей вырезы со скошенными стенками;

на фиг.6А-6D показаны типовые стадии изготовления для изготовления подложки устройства согласно изобретению;

на фиг.7 представлен вид сверху шаблона для получения первой подложки;

на фиг.8 представлен вид сверху шаблона для получения второй подложки;

на фиг.9 показана деталь шаблона согласно фиг.7;

на фиг.10 представлено сечение на виде сбоку устройства согласно настоящему изобретению;

на фиг.11 представлено сечение на виде сверху второй подложки;

на фиг.12 представлено сечение на виде сбоку устройства согласно настоящему изобретению;

на фиг.13 представлено схематическое изображение пористого материала, подходящего для устройства согласно изобретению;

на фиг.14 представлено схематическое изображение пористого материала, подходящего для устройства согласно изобретению;

на фиг.15 представлена СЭМ-микрофотография пористого материала, подходящего для устройства согласно изобретению;

на фиг.16 представлена СЭМ-микрофотография пористого материала, подходящего для устройства согласно изобретению;

на фиг.17 схематически показано сечение сенсорного устройства изобретения.

Подробное описание вариантов

На фиг.1 показано микроструйное устройство 100 согласно варианту осуществления настоящего изобретения. Устройство содержит двухслойный ламинат, включающий в себя канал 104 для направления пробной текучей среды от впуска 106 до выпуска 108. Впуск 106 и выпуск 108 имеют большее поперечное сечение, чем канал, для обеспечения более легкого соединения наружных контейнеров текучей среды (не показано). Канал 104 содержит: впускную часть канала 110 и выпускную часть канала 112, участки пористого материала 114 и пустые участки 118 между участками пористого материала 114. Впускная часть канала 110 и выпускная часть канала 112, а также пустые участки 118 обеспечивают открытый проход газообразных или жидких проб через канал.

Двухслойная ламинатная структура микроструйного устройства 100 дополнительно поясняется на виде в разрезе на фиг.2, где показано, что микроструйное устройство 100 содержит первую подложку 120, имеющую по существу плоскую первую поверхность 122, первые вырезы 124, и вторую подложку 128, имеющую по существу плоскую поверхность 126 и имеющую вторые вырезы 130 в ней. Вторая поверхность 126 контактирует с первой поверхностью 122 так, что первая и вторая поверхности образуют двухслойный ламинат. В ламинате образуется граница раздела между первой и второй контактирующими поверхностями, на которых расположены первые и вторые вырезы. Таким образом, вырезы в подложках образуют канал 104, который меандрирует в плоскости поперечного сечения. Первые и вторые вырезы, предпочтительно, сформированы в виде вытянутых канавок, т.е. канавок, которые являются относительно неглубокими, узкими и длинными. Подробности и примеры вырезов описаны ниже в отношении фиг.7-9.

Канал 104 варианта, представленного на фиг.2, меандрирует через поверхность контакта двух подложек, так как первые вырезы находятся в первой подложке, а вторые вырезы - во второй подложке. В другом варианте весь канал расположен в одной из подложек. В данном другом варианте как первые вырезы, так и вторые вырезы расположены в первой подложке. Первые и вторые вырезы расположены по отношению друг к другу таким образом, что они образуют канал, который меандрирует в плоскости устройства, т.е. в направлении, перпендикулярном площади поперечного сечения. В данном варианте не требуется, чтобы вторая подложка имела образованные в ней вырезы для того, чтобы определять каналы в устройстве. Вторая подложка может иметь по существу плоскую вторую поверхность, так что она действует как крышка или колпак при контактировании с первой подложкой.

Согласно изобретению по меньшей мере часть первых вырезов 124 заполняется пористым материалом 114. Присутствие пористого материала позволяет использовать микроструйное устройство как микрофильтрующее устройство с пористым материалом в вырезе, образующем один микрофильтр. Альтернативно, пористый материал может обеспечить расширение эффективной площади поверхности, которая находится в контакте с пробой газа или жидкости, текущей через канал. Оба назначения могут также использоваться одновременно или последовательно в одном устройстве.

Возможны многочисленные вариации комбинаций пористого материала в устройстве для того, чтобы обеспечить все виды функций фильтрации или увеличить эффективную площадь поверхности. Так, в одном варианте только первые вырезы содержат пористый материал, так что непрерывный сплошной меандрирующий канал 104 содержит чередующиеся пористые и пустые части. Альтернативно, в другом варианте, показанном на фиг.3 и 4, пористый материал 114 интегрируется как в первые вырезы 124, так и во вторые вырезы 130, так что образуется меандрирующий непрерывный канал пористого материала.

В устройстве согласно настоящему изобретению, как проиллюстрировано вариантами на фиг.2, 3 и 4, первая и вторая подложки являются, например, склеенными, локально расплавленными или сжатыми вместе, так что первая подложка 120 и вторая подложка 128 непосредственно контактируют друг с другом. Пористый материал расположен так, что отсутствует мембранный слой пористого материала, расположенный между контактирующими поверхностями подложек, через который может иметь место утечка текучей среды, как в случае устройств уровня техники. Вместо этого пористые секции погружаются в подложки так, что пористые секции образуют интегральную часть структурированной подложки. Поскольку пористые структуры разделяются и замыкаются в «полость» сплошного материала, они не подвергаются значительной механической нагрузке, и поэтому они могут быть хрупкими и очень открытыми (низкая сплошная фракция). Пористый материал может быть расположен так, чтобы быть в контакте с угловой частью канала, обеспечивающей улучшенное поддерживание пористого материала стенкой канала. Микроструйное устройство, таким образом, обеспечивает улучшенное функционирование и является более устойчивым.

Согласно предпочтительному варианту пористый материал имеет открытую пористость более 25% и менее 80%, предпочтительно от 35% до 70%, наиболее предпочтительно 45-60%. Термин «открытая пористость Х%» здесь означает, что Х% объема пористого материала является пустым. Поры материала соединяются друг с другом и с наружной поверхностью материала, так что обеспечивается канал от одного выреза до следующих вырезов через пористый материал. Термин «открытая пористость» показывает фракцию общего объема пористого материала, в которой эффективно имеет место течение текучей среды.

В другом варианте средний размер пор пористого материала составляет, например, от 10 нм до 10 мкм, предпочтительно от 20 нм до 2 мкм, более предпочтительно от 25 нм до 1 мкм и наиболее предпочтительно от 50 нм до 500 нм. Распределение пор по размеру является, предпочтительно, очень малым. ПШПМ является, например, меньше фактора 2 среднего размера пор.

В одном варианте весь пористый материал в устройстве изобретения может содержать один и тот же пористый материал. Например, пористый материал может осуществлять функцию увеличения эффективной площади поверхности в контакте с пробой газа или жидкости, текущей через канал в устройстве. В альтернативном варианте различные вырезы могут иметь различные пористые материалы и/или различную пористость, так что в направлении потока канала размер пор снижается. Это представляет преимущество в том, что, когда микроструйное устройство используется в качестве микрофильтра для фильтрующихся частиц, более крупные частицы являются менее подходящими для закупоривания очень мелких фильтров (пористых материалов), имеющих очень мелкую пористость. Для того чтобы регулировать давление, необходимое для введения потока конкретной пробы через пористый материал, может регулироваться пористость. Таким образом, когда, например, средний размер пор пористого материала снижается от одного выреза к следующему, пористость может увеличиваться с компенсацией снижения скорости потока, которое вызвано снижением размера пор. Увеличение размера пор часто сопровождается снижением прочности пористого материала, т.к. меньше материала доступно на единицу объема. Отсюда для таких случаев устройство настоящего изобретения обеспечивает преимущество увеличения прочности.

В варианте, показанном на фиг.1, пористый материал 114 по меньшей мере в части первых вырезов 124 обеспечен пятнами 116, содержащими одно или более улавливающих веществ. Это позволяет отфильтровывать заданные вещества из газообразной или жидкой пробы, текущей через каналы, если они могут улавливаться улавливающими веществами. В альтернативном варианте, показанном на фиг.3 и 4, вторые вырезы также обеспечены пористым материалом, несущим пятна улавливающих веществ. Вследствие этого плотность пятен удваивается по отношению к устройству, показанному на фиг.1, которое имеет такую же конструкцию проточного канала.

Улавливающие вещества могут либо присутствовать только в части выреза, либо улавливающие вещества могут быть распределены по всему объему выреза. Также улавливающие вещества могут быть размещены на дне соответствующего выреза, как показано, например, на фиг.5.

Согласно вышеуказанным характеристикам микроструйное устройство согласно настоящему изобретению может быть использовано в сенсорном устройстве, обеспечивая сенсор с фильтрующей функцией. Однако, дополнительно или альтернативно, сенсорное устройство может дать характеристику обнаружения с использованием изобретения. С этой целью пятна независимо от того, где они расположены в вырезах с пористым материалом, должны быть способными обеспечивать сигнал измерения, когда заданные молекулы улавливаются улавливающими веществами в пятнах. Сигнал измерения означает любое различие между начальным положением перед улавливанием и конечным положением после улавливания, которое может быть обнаружено сенсорным устройством. Таким образом, начальным положением может быть положение, когда измеряется сильный сигнал, который снижается после улавливания или наоборот. Например, улавливающие вещества в пятнах 116 испускают радиочастотное излучение, такое как оптическое излучение, если контактируют с одним или более заданных веществ. Излучение может происходить от химической реакции в пятне, т.е. хемолюминесценция. Альтернативно, излучением может быть люминесценция, такая как флуоресценция или фосфоресценция, которая испускается при выходе люминесцентных частиц, которые испускаются в процессе или после облучения пятна испускаемым излучением. Люминесценция может быть облучена химическим или физическим комплексом улавливающего и заданного вещества либо в сочетании, либо без сочетания с частицами метки, или маркера, последнее для обеспечения, например, люминесцентной характеристики. В способе может быть использован любой способ, обеспечивающий сигнал после того, как заданное вещество взаимодействует с улавливающим веществом, либо с внешним влиянием, либо без него. Сигнал также может включать изменение поглощения или излучения, т.е. после улавливания поглощение специального излучения снижается или увеличивается. Такие преобразования хорошо известны в технике. Взаимодействие может включать в себя физическое и/или химическое связывание.

В одном варианте участки пористого материала содержат оптические вещества-гасители, например, в форме частиц, которые закрепляются на пористом материале 114. В процессе возможного действия обнаружения вещества-гасители снижают оптические фоновые сигналы, не перегораживаясь от меток, которые используются для определения, имеет ли место улавливание заданного вещества улавливающим веществом в пятне.

В варианте, показанном на фиг.4, устройство 300 включает в себя первую подложку 120 и вторую подложку 128. Подложки содержат первые вырезы 124 и вторые вырезы 130, соответственно, которые вместе образуют меандрирующий канал 104. Те и другие вырезы заполнены пористым материалом 114. В середине зоны пористого материала 114 в вырезах 124 первой подложки 124 устройство содержит пятна 1-16, в которых иммобилизованы улавливающие молекулы. Две подложки 120, 128 свариваются вместе, так что пробная текучая среда прогоняется, следуя по пути 132, в котором чередуются первые вырезы 124 и вторые вырезы 130. Последовательные вырезы разделяются стенками, или штампами, 134, 135, которые представляют собой участки сплошного материала подложки. Хотя не требуется, в данном варианте стенки 134 контактируют с вырезами и/или улавливающими веществами в пятнах 116. Если оптические метки, или маркеры, которые включены в пятна 116, испускаются, сигнал 140 будет отсоединяться через штампы 134 прозрачной второй подложки 128. Таким образом, стенки 134 служат для собирания и направления сигналов 140, которые происходят от пятен, когда улавливающие вещества улавливают заданные вещества. Это улучшает чувствительность и специфичность в процессе обнаружения.

В одном варианте предусматривается дополнительный поглощающий или отражающий слой 136. Указанный отражающий слой может служить цели снижения нежелательных оптических фоновых сигналов. Дополнительно отражающий слой 138 наносят на боковые стенки вырезов 130 для направления сигналов 140, испускаемых пятнами 116. Отражающие слои могут иметь другой коэффициент отражения, чем материал подложки, так что, например, имеет место общее внутреннее отражение. Отражающие слои могут быть выполнены из металла, такого как алюминий или золото, напыленного в вырезы до того, как обеспечивается пористый материал. Направление сигналов 140 увеличивает сигнал измерения, снижает отношение сигнал/помехи и улучшает световое отсоединение. Контакт между пятном 116 и так называемым штампом 134, предпочтительно, является как можно более хорошим для улучшения соединения и направления сигналов 140.

Другой отражающий слой (не показано на фиг.4) может быть предусмотрен на дне вырезов, которые имеют пятна в пористом материале. Данный отражающий слой может изменять направление излучения в направлении, в котором сигнал 140 выходит из подложки, увеличивая этим восприимчивость сигнала.

В одном варианте вырезы в подложке 128 варианта, показанного на фиг.4, могут содержать пятна в дополнение к уже присутствующим пятнам, как, например, показано в варианте на фиг.4. В таком случае стенки 135 могут контактировать с дополнительными пятнами в вырезах в подложке 128. Как описано по отношению к фиг.4, отражающие слои могут использоваться с преимуществом для сигнала, происходящего от других пятен и который выходит из подложки 120 в направлении, противоположном сигналу 140. Отражающие слои обеспечивают подходяще средство для отделения испускаемого излучения и/или сигналов, генерируемых пятнами, от подложки 128 и подложки 120.

В одном варианте пористый материал 114 способен набухать при контактировании с пробной текучей средой. Если между пятном 116 и стенкой 134 имеется небольшое пространство, часть пробной текучей среды может проходить соответствующее пятно 116 без взаимодействия с улавливающими веществами пятна, что дает низкую интенсивность сигнала измерения. Когда пористый материал 114 способен набухать, пористый материал будет закрывать любое отверстие между пятном 116 и стенкой 134, таким образом, предотвращая прохождение пробной текучей среды без взаимодействия с улавливающими веществами. Пробная текучая среда будет способствовать набуханию пористого материала. Расширенный пористый материал будет прижиматься к поверхности противоположной подложки, таким образом, обеспечивая хороший контакт противоположной подложки и соответствующего пятна.

Как показано на фиг.5, боковые стенки 150, 152 первых и/или вторых вырезов могут быть скошенными, или наклонными, т.е. боковые стенки могут быть расположены под углом менее 90 градусов по отношению к дну выреза. Угол по отношению к дну выреза или к поверхности подложки составляет, например, менее примерно 75 или 70 градусов. Боковые стенки 150, 152, показанные на фиг.5, могут быть скошенными в продольном направлении выреза 124 и/или в поперечном направлении. Дно 154 и/или скошенные боковые стенки отражают и сводят в параллельный пучок сигнал (флуоресцентного) излучения 140, испускаемый пятнами.

Первая и/или вторая подложка могут быть прозрачными для длины волны сигнала 140, используемого для обнаружения случая улавливания.

В микроструйном устройстве согласно настоящему изобретению наличие чередующихся участков сплошного материала 134, 135 и пористого материала 114 в одной подложке имеет преимущества. Во-первых, различные улавливающие зонды могут быть напечатаны ближе друг к другу, поскольку смешение различных улавливающих зондов предотвращается сплошной границей. Во-вторых, соединение сигнала с подложкой может быть улучшено использованием среди прочего вышеуказанных отражающих слоев и/или структуры или формы вырезов. Это улучшает отношение сигнал/помехи. Но наиболее важно, что поток пробной текучей среды направляется к улавливающим зондам, таким образом предотвращается утечка через другую пористую часть 134 и/или 135, обеспечивая улучшенное рассеивание пробной текучей среды и, следовательно, увеличенную скорость связывания заданных веществ с улавливающими веществами.

В другом варианте коэффициент отражения первого или второго пористого материала согласуется с коэффициентом отражения пробы текучей среды, чтобы избежать светового рассеивания. Избегание светового рассеивания улучшает чувствительность обнаружения заданного вещества.

В практическом варианте подложки содержат матрицу из, например, примерно 120 вырезов. Могут быть использованы другие количества вырезов в зависимости от необходимости и конструкции. Подложки содержат примерно 120 пятен. Каждое пятно имеет диаметр примерно 200 мкм. Пятна и/или вырезы расположены с шагом примерно 400 мкм. Впускной и выпускной каналы 110, 112 определяются по существу таким же образом, как проточный канал 104.

Части впускного и выпускного каналов 110, 112 предназначены в качестве примера для удобного соединения для испытания устройства согласно настоящему изобретению. В практическом применении части впускного и выпускного каналов могут быть, например, интегрированы в картридж (не показано). Картридж может обеспечить другую функциональность, например, в отношении получения пробы, экстракции ДНК и амплификации.

Устройство, описанное выше, может быть изготовлено с использованием способа согласно настоящему изобретению. Фиг.6А-6D иллюстрируют результаты после последовательных стадий способа.

Сначала вырезы 124 располагают в поверхности 122 сплошной подложки 120 (фиг.6А). Вырезы, например, микроструктурируются копированием или тиснением структуры от формы в деформируемом (и/или противодействующем) материале. Такие способы включают в себя, например, литье под давлением и горячее тиснение. Способы могут механически обрабатывать тонкие гибкие подложки, а также толстые жесткие подложки, например CD- или DVD-носитель. Альтернативно, используется технология травления. Особенно, когда диаметры являются такими небольшими, что технология тиснения или копирования не является больше предпочтительной.

Структурированную подложку 120, содержащую вырезы 124, затем покрывают вторым материалом 156 (фиг.6В), например полимерным раствором или смесью, содержащей так называемый «нерастворитель», который представляет собой растворитель, который не растворяет материал подложки 122. Избыток материала 156 удаляют, так что только вырезанные участки 124 заполняются материалом.

На следующей стадии вызывают фазовое разделение материала 156. Фазовое разделение инициируется, например, введением химической реакции, такой как термо- или фотополимеризация. После разделения одну фазу удаляют (например, экстракцией), так что остается пористая структура 114 (фиг.6С). Размер пор пористого материала 114 может варьироваться в широком интервале в зависимости от условий изготовления (концентрация, температура, растворители и т.д.). На фиг.15 и 16 показаны типичные примеры пористых микроструктур, УФ-отверждаемый акрилат и термически отверждаемый эпоксид, соответственно. Материалы, показанные на фиг.15 и 16, являются подходящими для соответствующих применений.

После сушки пористой фазы могут быть нанесены улавливающие зонды 116 (фиг.6D), если они требуются в микроструйном устройстве. Пятна с иммобилизованными улавливающими веществами, например, печатаются на пористом материале. Нанесение пятен 116 включает в себя, например, струйную, трансферную и/или контактную печать. Альтернативно, пористый материал замачивается в растворе, содержащем улавливающие вещества, так что пористый материал поглощает раствор с улавливающими веществами, после чего избыточный раствор удаляют из непористых частей подложки. После нанесения может быть применена постобработка для превращения улавливающих зондов 116 в стабильные и противодействующие, которые распределяются в открытой пористой структуре пористого материала 114.

Вторая подложка может либо не содержать вырезы, пустые вырезы, либо может быть обработана по существу таким же образом, как первая подложка, с обеспечением вырезов, имеющих пористый материал с или без пятен с улавливающими зондами и предусмотренных, как описано для первых вырезов. Различные пятна могут быть удобно обеспечены с использованием струйной печати. Наличие первых и вторых вырезов в различных подложках является преимуществом, когда пористый материал и/или материал улавливающих зондов должны быть различными для первых и вторых вырезов. Способы применения тогда не влияют, т.к. первая и вторая подложка могут обрабатываться независимо.

По выбору отражающие слои могут быть нанесены на некоторые части подложек, такие как, например, стенки выреза. Это может быть выполнено соответствующей технологией для нанесения тонкого покрытия металла (Al, Au, Ag, Cu и других), такой как электроосаждение, печать напылением и т.д. Может быть использована подходящая технология печати, как известно в уровне техники. Альтернативно или дополнительно могут быть созданы зеркально отражающие слои нанесением слоев на подложку, которые имеют коэффициенты отражения, которые достаточно различаются для осуществления общего внутреннего отражения. С использованием известной в уровне техники технологии также могут быть нанесены поглощающие слои.

Первая и вторая подложки могут быть собраны с образованием замкнутой микроструйной системы, показанной, например, на фиг.2 или 3. Подложки могут быть склеены или зажаты вместе в зависимости от механических свойств подложек, общей конструкции и других требований.

Как описано, подложки устройства согласно настоящему изобретению могут быть изготовлены технологией копирования или формования с использованием технологии эталон/форма. Изготовление начинается литографическим экспонированием и разработкой резиста на стеклянной или кремниевой подложке. Разработанный резист на подложке переносят в материал формы, такой как Ni, электроосаждением.

На последующей стадии структуру копируют на полимере литьевым формованием или тиснением. Технология получения является по существу подобной технологии, которая используется для получения оптических носителей информации, таких как CD.

На фиг.7 и 8 показаны конструкции шаблонов 420, 428 для получения первой подложки и второй подложки, соответственно. На фиг.9 показана деталь микроструктуры согласно фиг.7.

Части 434, 435 шаблона предназначены для формования повышенных участков соответствующей подложки, части 424, 430 предназначены для формования вырезов. Структуры пористого материала по существу размещаются в вырезах. Части 410, 412 образуют впускные и выпускные части канала 410, 412, а части 406, 408 образуют впуск и выпуск 406, 408.

Структуру изготавливают, например, с использованием фотолитографии с SU-8-резистом и с использованием шаблона, показанного на фиг.7 и 8. Шаблоны согласно фиг.7 и 8 могут представлять собой низкостоимостный печатный шаблон на фольге.

Первые и вторые шаблоны и/или подложки включают в себя маркеры центровки 460, 462 для обеспечения корректирования центровки первой подложки на второй подложке. Кроме того, с использованием вышеописанной технологии могут быть реализованы различные конструкции подложки. Число и размер (биологических) пятен может варьироваться в широком интервале в пределах фотолитографии.

Поток пробной текучей среды может быть оптимизирован согласованием геометрических размеров вырезов и микроканала. Например, снижение высоты канала будет увеличивать гидравлическое сопротивление.

На фиг.10-12 представлены примеры, рассматривающие размеры вырезов и их соотношения.

А и С указывают длину стенок или штампов. В и С указывают длину первых и вторых вырезов, соответственно. Отношение А:В (фиг.10) находится, например, в интервале от 1:2 до 1:5. Более предпочтительно отношение А:В находится в интервале от 1:2,5 до 1:4. Наиболее предпочтительно отношение А:В составляет примерно 1:3. Отношения C:D, С:В и A:D могут быть в тех же пределах. Здесь А обращено к D, и С обращено к В. Необходимо отметить, что отношение 1:1 не будет работать.

В практическом варианте А и/или С составляет, например, от 10 мкм до 500 мкм и более предпочтительно от 30 мкм до 200 мкм. В и/или D составляет, например, от 10 мкм до 500 мкм и более предпочтительно от 30 мкм до 200 мкм.

Т1 и Т2 указывают глубину, или высоту, первых и вторых вырезов, соответственно. Отношение Т1:Т2 (фиг.10) находится, предпочтительно, в интервале от 1:3 до 3:1, более предпочтительно от 1:2 до 2:1 и наиболее предпочтительно примерно 1:1.

T1 и/или Т2 составляют от 10 мкм до 1000 мкм, предпочтительно от 50 мкм до 200 мкм.

W1 и/или W2 составляют от 30 мкм до 1000 мкм, предпочтительно от 100 мкм до 500 мкм.

В одном варианте высота вырезов, образующих канал, находится в интервале 20-200 мкм. Вырезы являются, например, шириной примерно 250 мкм (W2 - ширина вторых вырезов, показанных на фиг.11) и длиной примерно 450 мкм. В другом варианте вырезы являются по существу прямоугольными для улучшения потока пробы текучей среды.

На фиг.13 показаны несколько пунктирных линий 11, 12 и 13 через канал. В предпочтительном варианте поперечное сечение канала (т.е. площадь поперечного сечения F=T*W, допуская, что канал имеет прямоугольное поперечное сечение) является по существу идентичным в позициях, указанных линиями 11, 12 и 13. Т.е. различие поперечного сечения канала составляет меньше фактора 2. В другом варианте, который принимает в расчет пористость (как фактор), различие эффективной площади поперечного сечения канала является меньше фактора 2.

В улучшенном варианте первая и вторая подложки могут быть смещены по отношению друг к другу в плоскостном направлении. Плоскостное направление указывается осью - x и осью - y, где x представляет собой направление по длине канала, а y представляет собой направление по ширине. При этом (первый) канал может прерваться, например, при смещении в направлении оси x до тех пор, пока А не станет сверху С, а В сверху D (фиг.10). Затем подложка может быть смещена в y-направлении для открывания других (вторых) каналов, или со вторыми каналами могут быть открыты контакты. Один или более других каналов могут идти параллельно вышеописанному первому каналу или могут идти, например, в y-направлении.

Смещение подложек обеспечивает, например, более быстрые стадии промывки или очистки. Т.е. подложки могут быть смещены после того, как проба текучей среды полностью проходит первый канал. Смещение подложек может также обеспечить удаление пузырьков воздуха/газа в первом канале.

На фиг.13 и 14 показаны схематически представленные СЭМ-микрофотографии типов мембран. На фиг.13 и 14 показаны микрофотографии сканирующего электронного микроскопа (СЭМ) различных типов мембран.

На фиг.13 показана мембрана из изотропного полиамида.

На фиг.14 показан анизотропно протравленный глинозем 514, имеющий поры 516, образующие вытянутые каналы, имеющие средний диаметр порядка одного микрона или меньше.

На фиг.15 представлена СЭМ-микрофотография пористой мембраны, полученной фотополимеризацией индуцированным фазовым разделением.

На фиг.16 представлена СЭМ-микрофотография пористой эпоксидной сетки, полученной термоотверждением смеси эпоксидной смолы и ПММА. ПММА-фаза удаляется после фотополимеризацией индуцированного фазового разделения.

Поры материалов, показанных на фиг.13, 15 и 16, имеют статистическую структуру. Альтернативно, пористый материал в устройстве согласно настоящему изобретению может содержать регулярную пористую структуру, как известно в области химического катализа.

Микроструйное устройство может быть частью сенсорного устройства или аналитического устройства. Оно может быть постоянно закреплено в таком устройстве, так что оно образует неотъемлемую часть сенсорного устройства. Альтернативно оно может быть съемным/вставляемым в устройство. В последнем случае микроструйное устройство может быть устройством одноразового пользования, используемым в более сложном и/или дешевом сенсорном устройстве.

Пример сенсорного устройства показан на фиг.17. В одном варианте оно может содержать микроструйное устройство 300, как показано на фиг.3 или фиг.4, которое не будет дополнительно описываться здесь. Сенсорное устройство дополнительно содержит источник излучения 1 для обеспечения поступающего излучения 2 к одному или более пятен 116 через преломляющий или фокусирующий элемент 3, такой как линза. Выходящее излучение, испускаемое пятном, если имеет место улавливание заданных частиц, обнаруживается через элемент 3 и посылается к детектору 4 через разделитель пучка (в данном случае цветоизбирающее зеркало, т.к. поступающее излучение имеет другой диапазон длин волн, чем выходящее излучение). Устройство может быть оборудовано всеми видами оптических элементов, как известно специалистам в данной области техники.

Хотя не приведено, может быть использовано микроструйное устройство, которое обеспечивает обнаружение более плотного разделения каналов. В таком случае может быть использовано, например, устройство, представленное на фиг.3. Оно имеет улавливающие пятна в пористом материале первых и вторых вырезов. Пятна могут быть измерены, как описано выше. В предпочтительном варианте пятна первых вырезов могут быть измерены с первого направления, а пятна вторых вырезов могут быть измерены со второго направления, которое является противоположным первому. Первым направлением может быть сторона первой подложки. Однако альтернативно и преимущественно первым направлением может также быть сторона второй подложки. Это обеспечивает наладку для примера, показанного на фиг.17, где сигналнаправляющие стенки и/или ориентация стенок предусматриваются в частях 135, которые являются подобными частям 138 на фиг.4. В этом случае обеспечивается эффективное разделение сигналов и снижение помех между сигналами, возникающих от соседства, при тесно расположенных пятнах (первые и вторые вырезы). Это увеличивает количество пятен на единицу площади на микроструйном устройстве и обеспечивает дополнительную миниатюризацию микроструйного устройства и/или сенсорного устройства или детектора.

Устройство согласно настоящему изобретению может использоваться для многих целей в зависимости от осуществляемого метода анализа. Так оно может быть использовано в качестве фильтра при прокачивании пробной текучей среды через канал. Альтернативно или дополнительно устройство может показывать способность улавливать заданное вещество, как описано выше, и, таким образом, осуществлять заданное специфическое фильтрование. Дополнительно или альтернативно устройство может иметь функцию восприятия и образовывать часть сенсорного устройства.

Устройство согласно настоящему изобретению, например, применимо для обнаружения присутствия белка в биологической пробе. Также устройство может использоваться для селективного улавливания и/или высвобождения биомолекул, таких как белок, гормоны, пептиды и/или одно- или вдвойне скрученные олигонуклеотиды.

Один или более реагентов могут быть размещены в или на пористом материале в любых из первых или вторых вырезов. Реагент может, например, растворяться в пробной текучей среде. Растворенный реагент может, например, улучшать, поддерживать или индуцировать частную реакцию или действовать как катализатор. При проведении биологического испытания пользователь будет прокачивать, например, буферный раствор или воздух через канал 104 до или после пробной текучей среды с достижением более точного измерения.

Приведенные выше варианты иллюстрируют, но не ограничивают изобретение, и специалисты в данной области техники будут способны разработать множество альтернативных вариантов без отступления от объема прилагаемой формулы изобретения. В формуле изобретения любые ссылочные символы, помещенные между круглыми скобками, не должны восприниматься как ограничивающие формулу изобретения. Слово «содержащий» не исключает присутствия элементов или стадий, иных, чем перечисленные в формуле изобретения. Единственное число, связанное с элементом, не исключает присутствия множества таких элементов. В пунктах формулы, относящихся к устройству, перечислены некоторые значения, некоторые из которых могут быть реализованы одним и тем же предметом технических средств. Фактически некоторые меры изложены во взаимно отличающейся зависимости.

1. Микроструйное устройство, содержащее:
- первую подложку (120), имеющую первую поверхность (122);
- вторую подложку (128), имеющую вторую поверхность (126);
причем вторая поверхность обращена к первой поверхности, и между первой и второй подложкой образована граница раздела;
- первые вырезы (124) и вторые вырезы (130), предусмотренные на границе раздела;
при этом первые вырезы и вторые вырезы образуют канал (104), меандрирующий в плоскости под прямыми углами к границе раздела; и
по меньшей мере часть вырезов содержит пористый материал (114), отличающееся тем, что вторая поверхность контактирует с первой поверхностью, образуя при этом указанную границу раздела между первой и второй подложкой.

2. Микроструйное устройство по п.1, в котором первые вырезы (124) расположены в первой поверхности (122), а вторые вырезы (130) расположены во второй поверхности (126).

3. Микроструйное устройство по п.1, в котором по меньшей мере часть вырезов (124, 130) заполнена другим пористым материалом.

4. Микроструйное устройство по п.2, в котором по меньшей мере часть вырезов (124, 130) заполнена другим пористым материалом.

5. Микроструйное устройство по одному из пп.1-4, в котором пористый материал (114) примыкает к углу выреза (124, 130).

6. Микроструйное устройство по одному из пп.1-4, в котором, при использовании, пористый материал (114) в первом вырезе (124) контактирует со второй поверхностью (126), и/или в котором, при использовании, пористый материал (114) во втором вырезе (130) контактирует с первой поверхностью (122).

7. Микроструйное устройство по одному из пп.1-4, в котором улавливающее вещество (116) для связывания заданного вещества размещается в или на пористом материале (114) одного или более вырезов (124, 130).

8. Микроструйное устройство по п.7, в котором при использовании улавливающее вещество (116) в первом вырезе (124) контактирует со второй поверхностью (126) и/или в котором при использовании улавливающее вещество (116) во втором вырезе (130) контактирует с первой поверхностью (122).

9. Микроструйное устройство по одному из пп.1-4, в котором пористый материал (114) способен набухать в контакте с пробной текучей средой.

10. Микроструйное устройство по п.7, в котором на границе раздела первой подложки (120) и второй подложки (128) предусмотрены стенки (134, 135) для направления первого сигнала измерения улавливающего вещества (116) в первом направлении и/или для направления второго сигнала измерения другого улавливающего вещества во втором направлении.

11. Микроструйное устройство по п.10, в котором второе направление является по существу противоположным первому направлению.

12. Микроструйное устройство по одному из пп.1-4, в котором первые вырезы (124) и/или вторые вырезы (130) имеют скошенные стенки (150, 152).

13. Микроструйное устройство по одному из пп.1-4, в котором дно первых вырезов (124) и/или вторых вырезов (130) обеспечено поглощающим или отражающим слоем (136).

14. Микроструйное устройство по одному из пп.1-4, в котором боковые стенки первых вырезов (124) и/или вторых вырезов (130) обеспечены отражающим слоем (138).

15. Микроструйное устройство по одному из пп.1-4, в котором пористый материал (114) содержит по меньшей мере один реагент для растворения в пробной текучей среде.

16. Сенсорное устройство, содержащее микроструйное устройство по любому из предшествующих пунктов, причем сенсорное устройство дополнительно содержит детектор (4) для измерения ответного сигнала, генерированного в микроструйном устройстве.

17. Способ изготовления микроструйного устройства, включающий следующие стадии:
- обеспечение первых вырезов (124) и вторых вырезов (130) в первой поверхности (122) первой подложки (120) и/или во второй поверхности (126) второй подложки (128);
- обеспечение, по меньшей мере, части первых вырезов пористым материалом (114) и, опционально, обеспечение по меньшей мере части вторых вырезов другим пористым материалом; и
- приведение в контакт первой поверхности со второй поверхностью с образованием границы раздела между первой и второй подложкой, так что первые вырезы и вторые вырезы образуют канал (104), меандрирующий в плоскости под прямыми углами к границе раздела.



 

Похожие патенты:

Изобретение относится к области иммунодиагностического тестирования, а более конкретно к имеющей множество прозрачных камер карте иммунодиагностического тестирования, используемой для тестирования полученного у пациента образца и получения реакции агглютинации, причем карта дополнительно включает в себя индикаторы для объективной градации каждой реакции.
Изобретение относится к способу тестирования партий кончиков для пипеток, который содержит этапы калибровки пипетки, предназначенной для тестирования, с использованием рекомендованного эталонного кончика, установки на пипетки кончика, предназначенного для тестирования и выполнения второй калибровки и повторной калибровки пипетки, используя эталонный кончик.

Изобретение относится к медицине и касается устройства для разделения плазмы крови и красных кровяных телец, где разделительные средства (1) включают сжимающее приспособление (20) для продавливания по меньшей мере части крови через фильтр (26), в котором предусмотрены по меньшей мере первый сборный отсек (27) для сбора отделенной кровяной плазмы и по меньшей мере один реагент, который размещен в первом сборном отсеке (27) или может быть введен в него для реакции с субстанциями или организмами, присутствующими в плазме крови.

Изобретение относится к медицине и может быть использовано для фиксации предметных стекол в кассете. .

Изобретение относится к области аналитической химии, в частности к технике капельного анализа водных растворов методами колориметрии на основе хромогенных реакций.

Изобретение относится к картриджу для детектирования присутствия, отсутствия или количества специфических последовательностей ДНК или РНК. .
Изобретение относится к установке для кристаллизации адипиновой кислоты, содержащей резервуар для кристаллизации, снабженный средствами для перемешивания, средствами для охлаждения и/или концентрирования раствора адипиновой кислоты, где по меньшей мере часть стенок резервуара для кристаллизации и/или средств для охлаждения и/или концентрирования, находящихся в контакте с раствором адипиновой кислоты, выполнена из материала, выбранного из аустенитных нержавеющих сталей типа AISI 310L в соответствии с номенклатурой AISI (USA) или XlCrNi25-21 (1.4335) в соответствии с европейской номенклатурой

Группа изобретений относится к области биохимии. Предложен сосуд из пластика для сорбирования нуклеиновых кислот из жидкой среды. На внутренней поверхности сосуда нанесено покрытие из оксида кремния, выполненное посредством тонкопленочного синтеза, включающего ионно-плазменное напыление, реализованное при сверхвысоком вакууме распылением мишени оксида кремния потоком ионов Ar+. При этом толщина данного покрытия выполнена в пределах 2÷400 нм. Также предложены способы выделения и очистки нуклеиновых кислот из жидкой среды (варианты) с использованием данного сосуда. Сначала осуществляют сорбцию нуклеиновых кислот на внутренних стенках сосуда и промывку от примесей. После добавления элюирующего раствора сосуд нагревают до 95°С для выделения ДНК или до 65°С для выделения РНК, интенсивно встряхивают и отбирают раствор нуклеиновых кислот в другую емкость. Изобретения позволяют повысить сорбционные свойства сосуда, обеспечивают равномерность покрытия по всей поверхности сосуда, причем как на большой площади, так и на ограниченном участке повышают оптическую прозрачность сосуда, уменьшают количество выполняемых операций при выделении и очистке нуклеиновых кислот. 4 н. и 11 з.п. ф-лы, 1 ил.

Группа изобретений относится к лабораторной диагностике и может быть использована для проведения анализов, основанных на реакции агглютинации частиц. Аналитический наконечник (100), предназначенный для выполнения визуально детектируемой реакции агглютинации после всасывания в него реактивов и образца, включает: первое отверстие (110) для приложения отрицательного или положительного давления к внутреннему объему аналитического наконечника; камеру для образца (120); по меньшей мере, одну боковую камеру (130), которая расположена по периметру камеры для образца; камеру детектирования (150), находящуюся в жидкостной связи с камерой для образца; переходную зону (140) между камерой детектирования и камерой для образца для вращательного перемешивания образца; второе отверстие (160) для всасывания реактивов и образца во внутренний объем аналитического наконечника или для удаления их оттуда. Группа изобретений относится также к способу выполнения реакции агглютинации в указанном аналитическом наконечнике и к набору для выполнения визуально детектируемых реакций агглютинации, включающему указанный аналитический наконечник и реактивы для агглютинации. Группа изобретений обеспечивает возможность автоматизации анализов по типу реакции агглютинации, позволяя тем самым повысить безопасность и надежность их проведения. 3 н. и 15 з.п. ф-лы, 10 ил., 1 табл., 1 пр.

Изобретение относится к микрожидкостному устройству, которое может быть использовано для проведения химических, биохимических или физических процессов. Микрожидкостное устройство содержит множество камер и путь прохождения, соединяющий множество камер, выполненных с возможностью размещения, по меньшей мере, одной магнитной частицы, проходящей одну за другой множество камер. Камеры разделены, по меньшей мере, одной структурой, подобной клапану, выполненной с возможностью разрешения прохождения, по меньшей мере, одной магнитной частицы из одной из множества камер в другую из множества камер. Камера также содержит, по меньшей мере, одну замедляющую структуру, выполненную с возможностью замедления перемещения, по меньшей мере, одной магнитной частицы вдоль пути прохождения посредством остановки и возобновления перемещения управляемым способом, по меньшей мере, одной магнитной частицы. Причем остановка и возобновление перемещения частицы выполняются посредством изменения магнитного поля. Замедляющая структура содержит геометрическую структуру и выполнена с возможностью перемещения, по меньшей мере, одной магнитной частицы относительно геометрической структуры, прикладывая магнитное поле. 9 з.п. ф-лы, 12 ил.

Объектом изобретения является контейнер, предназначенный для хранения обезвоженного биологического материала в контролируемой атмосфере, в частности, при температуре окружающей среды и в особенности ДНК, содержащий оболочку (12) из газонепроницаемого материала, отличающийся тем, что оболочка (12) выполнена из металлического материала и цилиндрической формы, закрытой с одной стороны, и содержит пробку (16), предназначенную для герметичного соединения с упомянутой оболочкой. 7 з.п. ф-лы, 5 ил.

Группа изобретений относится к кювете для хранения биологического образца, способу ее изготовления, а также к способу проверки подлинности кюветы и способу анализа биологического образца, такого как пробы крови, с использованием указанной кюветы. Кювета (10) изготовлена из формуемого материала, который содержит частицы (15a, 15b) в концентрации, находящейся в заданном диапазоне. Частицы (15a, 15b) распределены случайно с формированием уникального узора. Кроме того, частицы (15a, 15b) обладают поддающимися измерению физическими свойствами, что позволяет детектировать уникальный узор с применением методики детектирования, используемой для анализа биологического образца. Уникальные свойства, придаваемые случайно распределенными частицами (15a, 15b), делают копирование практически невозможным, поскольку распределить частицы согласно заданному узору сложнее, чем позволить им распределяться случайно. Достигаемый при этом технический результат заключается в повышении достоверности полученных результатов анализа. 5 н. и 6 з.п. ф-лы, 4 ил.

Изобретение относится к медицинской технике, а именно к устройству и способу легкого сбора, разбавления, перемешивания и дозирования жидкостей для анализа в изолированной системе. Настоящее изобретение может быть использовано в сочетании с множеством испытательных средств для проведения химических, биохимических или биомедицинских качественных или количественных анализов в области как клинического, так и гигиенического исследования. Устройство для втягивания и дозирования образца содержит контейнер и пробоотборник. Контейнер содержит герметичную камеру, ограниченную, по меньшей мере, с одной стороны проницаемым элементом. Герметичная камера содержит текучую среду. Пробоотборник образует канал, открытый на обоих концах. По меньшей мере, участок канала проходит от первого конца, содержащего капиллярный канал, способный к втягиванию образца посредством капиллярного действия. Пробоотборник содержит проникающее средство, выполненное с возможностью проникать внутрь указанного проницаемого элемента таким образом, чтобы указанный канал находился в сообщении с указанной герметичной камерой после того, как проницаемый элемент был перфорирован. Указанный канал сообщен с герметичной камерой для разрешения смешивания образца и текучей среды и дозирования смешанного образца с текучей средой из устройства через капиллярный канал. Способ втягивания и дозирования образца с использованием вышеуказанного устройства включает следующие этапы: втягивание образца текучей среды в указанный капиллярный канал посредством капиллярного действия, проникание внутрь указанного проницаемого элемента для вхождения в зацепление с проницаемым элементом таким образом, чтобы указанный канал находился в сообщении с герметичной камерой, приведения в действие проницаемого элемента в качестве поршня для смешивания образца и текучей среды и дозирования смешанного образца и текучей среды из устройства через капиллярный канал. 2 н. и 22 з.п. ф-лы, 23 ил.

Изобретение относится к устройствам для проведения иммуноанализа и может использоваться для лабораторной диагностики вирусных инфекций. Микрофлюидная система включает канал для анализируемой жидкости и еще четыре канала, расположенных перпендикулярно к каналу для анализируемой жидкости и одним концом соединяющихся с ним, при этом один из этих каналов является измерительным и в него помещены рецепторы в жидкой среде, другой канал является опорным и содержит только жидкую среду, а в два остальных канала помещены флуоресцентные метки с иммобилизованным на них субстратом в жидкой среде. Достигается повышение надежности и упрощение эксплуатации. 6 з.п. ф-лы, 1 пр., 3 ил.

Микрофлюидальное устройство для дозирования жидкостей в микрофлюидальной сети содержит микрофлюидальные каналы или камеры, которые по меньшей мере частично сформированы введением подходящих структур в пленку над держателем подложки так, что по меньшей мере часть потока текучей среды через сеть проходит в плоскости подложки. Чтобы сформировать в пленке стабильную структуру канала или структуру камеры в зоне кромки, между неприкрепленной и прикрепленной частями сформирован клин материала за счет вязкого течения материала пленки в процессе прикрепления пленки к подложке, который образует переход между стенкой камеры и подложкой и поднимает стенку камеры над плоскостью подложки. В способе изготовления законченной микрофлюидальной структуры, плоская планарная пленка ламинируется к плоской листообразной подложке. В процессе ламинирования в пленку и подложку вдавливается под действием давления и тепла шаблон, имеющий по меньшей мере одно углубление или окно. Пленка при этом доводится до температуры, при которой возникает вязкое течение пленки и материала подложки в области углубления или окна так, что формируется клин материала, и пленка вспучивается в области углубления, формируя камеру. Изобретение обеспечивает создание простого способа изготовления подобных структур в подложках, не требующего никакого предварительного формирования структуры в подложках. 2 н. з. 12 з. п. ф-лы, 15 ил.
Наверх