Способ управления самолетом при заходе на посадку



Способ управления самолетом при заходе на посадку
Способ управления самолетом при заходе на посадку
Способ управления самолетом при заходе на посадку
Способ управления самолетом при заходе на посадку
Способ управления самолетом при заходе на посадку
Способ управления самолетом при заходе на посадку
Способ управления самолетом при заходе на посадку

 


Владельцы патента RU 2478523:

Катькалов Валентин Борисович (RU)
Сергеева Валентина Георгиевна (RU)
Дикарев Виктор Иванович (RU)
Журкович Виталий Владимирович (RU)

Предлагаемый способ относится к области авиации и может быть использован в приборном оборудовании летательного аппарата для упрощения восприятия и переработки приборной информации летчиком при выполнении захода на посадку, посадке и полете по маршруту, в ручном и автоматическом режимах управления. Для реализации предлагаемого способа используют измерители высоты, скорости, путевого угла, дальности до ВПП, бокового уклонения от оси ВПП, формирователи и индикаторы сигналов изображения ВПП и метки глиссадной дальности, бортовую РЛС, спутниковый GPS-навигатор и наземные уголковые радиолокационные отражатели. Повышается безопасность и точности выполнения процедуры захода на посадку и посадки летательного аппарата в условиях плохой видимости. 7 ил.

 

Предлагаемый способ относится к области авиации и может быть использован в приборном оборудовании летательного аппарата для упрощения восприятия и переработки приборной информации летчиком, выполнения захода на посадку, посадки и полета по маршруту в ручном и автоматическом режимах управления для повышения регулярности полетов, безопасности полета и посадки самолетов, особенно в условиях полета по приборам.

Известно, что наиболее сложным этапом полета является заход, расчет на посадку и собственно посадка самолета. Задача выполнения снижения по заданной траектории при заходе на посадку и посадки по приборам оказывается настолько сложной, что летчик с ней не справляется, в то время как многие самолеты уже оборудованы автопилотами, способными производить автоматическую посадку. С другой стороны, грамотный летчик может выполнить визуальный полет от взлета до посадки на новом самолете, имея лишь указатель скорости или указатель угла атаки.

Большие скорости полета и требуемая высокая точность выполнения траекторного движения самолета при решении ряда тактических и навигационных задач возможны только при использовании средств автоматического и директорного управления. Прежде всего, вся сложность самолетовождения по заданной траектории в условиях больших скоростей полета вызвана необходимостью восприятия летчиком множества параметров движения самолета, их контроля и принятия логических решений для выработки действий органами управления. В ряде ответственных режимов полета, таких, например, как заход на посадку в сложных метеорологических условиях, при ограниченности времени на принятие решений может произойти изменение заданной траектории полета, потеря координации управления, что нередко приводит к летным происшествиям (Михалев И.А., Окосмов Б.Н., Павлина И.Г., Чикулаев М.С., Кисилев Ю.Ф. «Системы автоматического и директорного управления самолетом». - М.: Машиностроение, 1974, с.3)

Эти факты свидетельствуют о том, что самая точная и достоверная информация о параметрах полета, представляемая летчику, настолько для него оказывается сложной, что он не справляется с пилотированием самолета. А автопилот справляется. Тогда возникает неразрешимый вопрос об ответственности за исход полета: как летчик может контролировать автопилот, который летает лучше контролера? Да и не все самолеты оборудованы сложными и дорогими автопилотами с автоматами тяги, необходимыми для выполнения автоматических посадок.

На современных самолетах и вертолетах широкое распространение получили системы директорного управления. Способ директорного управления заключается в следующем.

При работе с директорной системой действия летчика сводятся к непрерывному устранению рассогласования между заданными и текущими значениями координаты управления, к обеспечению δ=0, т.е. Zт=Zзад. При этом слежение координаты Zт за координатой Zзад может быть осуществлено двумя методами:

- слежение с преследованием, когда летчик воспринимает как ход изменения координаты Zзад, так и координаты Zт;

- слежение компенсирующее; в этом случае летчик воспринимает только рассогласование между сигналами, т.е. сигнал δ=ΔZ.

Точность слежения с преследованием в 1,5-2,0 раза выше, чем компенсирующего (летчик имеет больше информации о процессе слежения), тем не менее, если входы в систему относятся к ультранизкочастотному диапазону (f=0÷6 Гц), регулирование методом компенсации предпочтительней. Так как максимальная собственная частота движений самолета не превышает f≤1,5 Гц, то командный прибор следует строить как прибор компенсационного слежения (регулирования). Задача летчика в этом случае сводится к удержанию командной стрелки в центре прибора с помощью перемещения рычагов управления так, чтобы скомпенсировать действия факторов, вызывающих ее отклонение от центра. Так как управление самолетом происходит по двум координатам - Zзад и Zбок, то командный прибор имеет две командные стрелки - горизонтальную для ΔZпрод и вертикальную для ΔZбок, образующие перекрестие в центре неподвижной шкалы (Михалев И.А., Окосмов Б.Н., Павлина И.Г., Чикулаев М.С., Кисилев Ю.Ф. «Системы автоматического и директорного управления самолетом». - М.: Машиностроение, 1974, с.99).

На современных самолетах и вертолетах широко используются электронные (жидкокристаллические) индикаторы, на которых обеспечивается формирование и индикация сигналов изображения взлетно-посадочной полосы (ВПП), сигналов отклонения от зон курса и глиссады, директорных сигналов управления самолетом (вертолетом) по крену и тангажу.

Однако даже самые современные системы индикации и директорные сигналы, как способ управления, не позволяют выполнять регулярные полеты при метеоусловиях хуже 1 категории (60 м нижний край облачности и 800 м видимости на ВПП /САО - Международная Организация гражданской авиации/). Для выравнивания и посадки директорные стрелки не используются, поскольку летчик не справляется с управлением по этим стрелкам задолго до достижения высоты начала выравнивания.

Для выполнения автоматических и директорных заходов на посадку на командно-пилотажном приборе, кроме директорных планок, размещают планки положения или совмещенный индекс отклонения от зон курса и глиссады («Чемодан»). Планки положения обычно дублируются на навигационно-пилотажном приборе. Директорные планки никак не связаны с углами крена и тангажа. Известны случаи, когда летчики не замечали отказов авиагоризонта при директорном управлении. Поэтому существующие директорные стрелки можно разместить на любом другом отдельном приборе (на НПП, например) без потери качества управления.

Известны способы управления самолетом при заходе на посадку (патенты РФ №№2.061.624, 2.095.293, 2.156.720, 2.199.472, 2.214.943, 2.267.749; патенты США №№2.393.337, 3.964.015; патент Франции №2.007.336; патенты Германии №№920.729, 1.817.149; патент Японии №1.119.500; Глухов В.В. и др. Авиационное и радиоэлектронное оборудование летательных аппаратов. Транспорт, 1983; Черный И. Второй полет космического корсара. - Новости космонавтики, №5, 2011, с.43 и другие).

Из известных способов наиболее близким к предполагаемому является «Способ управления самолетом при заходе на посадку» (патент РФ №2.267.747, G01C 21/06, 2004), который и выбран в качестве базового объекта.

Известный способ управления самолетом и система индикации при выполнении полета по заданной траектории включает измерение и индикацию параметров полета: высоты, скорости, путевого угла, дальности до взлетно-посадочной полосы, бокового уклонения от оси ВПП, а также формирование и индикацию сигналов изображения ВПП и метки глиссадной дальности. Боковое уклонение от оси ВПП формируют и индицируют с обратным знаком в виде метки обратного бокового уклонения, в процессе выхода на линию заданного пути удерживают метки обратного бокового уклонения между изображениями ВПП и вектора скорости, а при полете по линии заданного пути удерживают метку вектора скорости на метке обратного бокового уклонения. На экране индицируют также тангажно-глиссадную метку, индицирующую отклонение от глиссады по высоте или дальности с обратным знаком, при подходе к глиссаде снижения удерживают тангажно-глиссадную метку между вектором скорости и меткой глиссадной дальности, а при снижении по глиссаде удерживают метку вектора скорости самолета на тангажно-глиссадной метке. Индикация на пилотажном индикаторе отклонений от курса и глиссады относительно шкал курса и тангажа с обратным знаком позволяет совместить на одной планке функцию планки положения и директорной планки, обойтись без изображения осевой линии ВПП, не требует точного обнуления каких-либо сигналов при больших отклонениях от заданной траектории.

Однако в известном способе используется большой арсенал средств навигации, устанавливаемый на современных летательных аппаратах, который при всех его положительных достоинствах не всегда играет решающую роль. Подтверждением тому является то, что большинство (53%) летных происшествий происходит при выполнении заходов на посадку в сложных метеоусловиях. При этом важная роль отводится разрешенному профилю снижения по высоте (вертикальной плоскости посадочного курса). Об этом свидетельствует и ряд последних авиационных катастроф, одной из основных причин которых было грубое нарушение разрешенного профиля снижения по высоте.

Следует отметить, что на показания штатного высотомера и других бортовых приборов из-за дефицита времени посадки и сложности посадочной обстановки летчик не всегда уделяет должное внимание. Поэтому измерение высоты при посадке в сложных метеоусловиях должно быть в автоматическом режиме и своевременно сигнализировать летчику о нарушении разрешенного профиля снижения по высоте.

Кроме того, известный способ не использует возможности и свойства дифференциальной GPS навигации при посадке самолетов в условиях плохой видимости (туман, дождь и т.п.) и слепой посадки.

Технической задачей изобретения является повышение безопасности и точности выполнения такой сложной процедуры как заход на посадку и ее осуществление в условиях плохой видимости.

Поставленная задача решается тем, что способ управления самолетом при заходе на посадку, включающий, в соответствии с ближайшим аналогом, стабилизацию с помощью органов управления заданной траектории при снижении по глиссаде и выравнивании, измерение и индикацию параметров полета: высоты, скорости, путевого угла, дальности до взлетно-посадочной полосы, бокового уклонения от оси ВПП, а также формирование и индикацию изображения ВПП (метки заданного путевого угла /ЗПУ/, метки глиссадной дальности, при этом сигнал бокового уклонения от оси ВПП формируют и индицируют на выбранной дальности с обратным знаком в виде метки обратного бокового уклонения, в процессе выхода на линию заданного пути удерживают метки обратного уклонения между метками ВПП или меткой ЗПУ при полете по маршруту и вектора скорости, а стабилизацию заданной траектории осуществляют путем удерживания метки вектора скорости на метке обратного бокового уклонения, формируют пропорциональный углу между вектором скорости и направлением на метку обратного бокового уклонения сигнал рассогласования по курсу, который обнуляется автопилотом обычным образом, при превышении заданного порога и отличии знака рассогласования от знака обратного бокового уклонения формируют сигнал разовой команды управления по курсу, который индицируют на экране и подают в наушники (головные телефоны) летчика, отличается от ближайшего аналога тем, что на борту самолета устанавливают спутниковый GPS-навигатор, в аэронавигационные карты которого закладывают карты аэродромов посадки и взлетно-посадочных полос, точно привязанные к существующей сетке наземных координат, определяют с помощью спутникового GPS-навигатора проекцию координат самолета по отношению к земле, вектор скорости и высоту над землей, используя текущие координаты центра масс и высоту самолета, полученные с помощью спутникового GPS-навигатора, и, постепенно снижаясь по глиссаде по разрешенному профилю высоты, с помощью экрана навигатора совмещают направление горизонтального вектора скорости с осевой линией ВПП, а по краям взлетно-посадочной полосы размещают несколько уголковых радиолокационных отражателей, отражающих сигнал от бортовой радиолокационной станции обратно на воздушное судно с соответствующим отображением засветок точечных отражателей на экране монитора, причем информацию спутникового GPS-навигатора совмещают с радиолокационным изображением уголковых радиолокационных отражателей, работу спутникового GPS-навигатора осуществляют в дифференциальном режиме.

Формирование меток по предлагаемому способу показано на чертежах, на которых

- Фиг.1 показывает схему формирования метки обратного бокового уклонения, где обозначено:

1 - продольная ось летательного аппарата;

2 - вектор скорости;

3 - боковое уклонение от оси ВПП;

4 - обратное боковое уклонение от оси ВПП;

5 - метка обратного бокового уклонения;

- Фиг.2 показывает схему формирования тангажно-глиссадной метки по обратному отклонению от глиссады по высоте, где обозначено:

7 - заданная глиссада снижения;

2 - вектор скорости;

8 - отклонение от глиссады по высоте;

9 - обратное отклонение от глиссады по высоте;

10 - тангажно-глиссадная метка;

6 - ВПП.

- Фиг.3 показывает схему формирования тангажно-глиссадной метки по обратному отклонению от глиссады по дальности, где обозначено:

11 - фактическая глиссада снижения;

12 - отклонение от глиссады по дальности;

13 - обратное отклонение от глиссады по дальности;

14 - тангажно-глиссадная метка;

2 - вектор скорости;

15 - метка глиссадной дальности.

- Фиг.4 показывает схему формирования метки выравнивания, где обозначено:

16 - расчетная траектория выравнивания;

17 - касательная к расчетной траектории выравнивания, которая определяет расчетный угол тангажа выравнивания;

18 - метка выравнивания;

2 - вектор скорости;

19 - метка вектора скорости.

- Фиг.5 показывает положение меток и индексов на экране при выходе на посадочный курс и глиссаду снижения (самолет находится правее оси ВПП и ниже глиссады, выше заданной траектории выравнивания), где обозначено:

5 - метка обратного бокового уклонения;

6 - ВПП;

19 - метка вектора скорости;

10 - тангажно-глиссадная метка;

18 - метка выравнивания;

15 - метка глиссадной дальности.

- Фиг.6 показывает положение меток и индексов на экране при выравнивании, где обозначено:

5 - метка обратного бокового уклонения.

- Фиг.7 показывает схему формирования разрешенного профиля снижения по высоте, где обозначено:

20 - траектория планирования;

21 - разрешенный профиль снижения по высоте (вертикальная плоскость посадочного курса);

22 - линия посадки (осевая линия ВПП).

Предлагаемый способ управления самолетом при заходе на посадку и посадке реализуется следующим образом.

В процессе полета измеряют и индицируют параметры полета: высоту, скорость, путевой угол, дальность до ВПП, боковое уклонение от оси ВПП, формируют и индицируют сигналы изображения ВПП (метки заданного путевого угла), метки глиссадной дальности.

1. Формируют сигнал обратного бокового уклонения от оси ВПП.

Определяют боковое отклонение от оси ВПП. На осевой линии ВПП (на линии заданного пути (ЛЗП) при полете по маршруту) определяют точку начала координат на постоянной дальности от самолета, что обеспечивает постоянную точность (это важно при полете по маршруту), или на постоянной дальности от торца ВПП, что обеспечивает увеличение точности по мере снижения на посадочном курсе. На линии, перпендикулярной, осевой линии ВПП (перпендикулярно ЛЗП) откладывают боковое уклонение самолета от оси ВПП (от ЛЗП) с обратным знаком и выбранным масштабным коэффициентом (4, фиг.1). Полученная точка определяет положение метки обратного бокового уклонения, которую индицируют на экране пилотажно-навигационного индикатора (5, фиг.6).

На пилотажном индикаторе индицируют изображение ВПП (6, фиг.5, 6), вектор скорости (19, фиг.5, 6), метку обратного бокового уклонения (5, фиг.5, 6), которая индицирует боковое отклонение от оси ВПП с обратным знаком (на фиг.5 самолет находится справа от оси ВПП, метка обратного бокового уклонения - слева) и масштабным коэффициентом (Kz≈1÷15). В процессе выхода на ЛЗП удерживают метку обратного бокового уклонения между меткой ВПП и вектором скорости (фиг.5), а при полете на ЛЗП и при движении на земле (на разбеге и пробеге) удерживают метки вектора скорости на метке обратного бокового уклонения (фиг.6).

Формируют сигнал рассогласования по курсу, который пропорционален углу между вектором скорости (2, фиг.1) и направлением на метку обратного бокового уклонения (5, фиг.1). Полученный сигнал рассогласования обнуляется автопилотом обычным образом и при превышении заданного порогового значения используется для формирования сигнала разовой команды управления по курсу. Если сигнал рассогласования по курсу имеет тот же знак, что и сигнал обратного бокового уклонения (фиг.1, 5), то сигнал разовой команды управления по курсу не формируют.

Если сигнал рассогласования по курсу имеет знак, противоположный знаку сигнала обратного бокового уклонения, и превышает некоторое выбранное пороговое значение (1-2°), то формируют сигнал разовой команды управления по курсу: «Влево три!» («Вправо три!» - в зависимости от знака бокового уклонения), индицируют его на экране (со стороны, противоположной направлению разворота,- сигнал «Влево три!» индицируют справа от центра экрана) и подают в наушники летчика.

2. Формируют сигнал обратного отклонения от заданной глиссады снижения по высоте.

Измеряют отклонение от заданной глиссады снижения по высоте (4, фиг.2). На боковом уклонении от осевой линии ВПП, определяемом меткой обратного бокового уклонения, определяют точку начала координат. Определяют заданную глиссаду снижения (7, фиг.2) и продолжают ее до пересечения с вертикальной осью начала выбранной системы координат. От полученной точки откладывают измеренное отклонение от заданной глиссады снижения по высоте с обратным знаком и выбранным масштабным коэффициентом (9, фиг.2). Полученная точка определяет положение тангажно-глиссадной метки (10, фиг.2) относительно шкалы тангажа (ось «О-Y», фиг.2), которую индицируют на экране пилотажно-навигационного индикатора (10, фиг.5, 6).

Формируют сигнал рассогласования по тангажу, который пропорционален углу между вектором скорости (2, фиг.2) и направлением на тангажно-глиссадную метку (10, фиг.2).

Если сигнал рассогласования по тангажу имеет знак, противоположный знаку сигнала обратного отклонения по высоте (фиг.2) и превышает некоторое выбранное пороговое значение (0,5°), то формируют сигнал разовой команды управления по тангажу: «Глиссада!».

3. Тангажно-глиссадная метка может быть определена и по обратному отклонению от заданной глиссады по дальности.

На пилотажном индикаторе индицируют тангажно-глиссадную метку (10, фиг.2, 14, фиг.3, 10, фиг.5, 6), которая перемещается параллельно осевой линии ВПП, на боковом уклонении от нее.

4. Формируют сигнал выравнивания.

Определяют расчетную траекторию выравнивания (16, фиг.4). В первом приближении - это дуга окружности. Определяют касательную к расчетной траектории выравнивания (17, фиг.4). Эта касательная определяет положение метки выравнивания (18, фиг.4) на шкале тангажа (ось Y, фиг.4).

Формируют сигнал рассогласования по траектории выравнивания, который пропорционален углу между вектором скорости (2, фиг.4) и направлением на метку выравнивания (18, фиг.4).

При снижении ниже расчетной траектории выравнивания (или ниже безопасной высоты полета) формируют, индицируют на экране и подают в наушники летчика сигнал разовой команды управления по тангажу: «Выравнивай, дурак старый!»

Формирование сигналов разовых команд управления в зависимости от величины и знака рассогласования позволят своевременно информировать летчика об отклонениях от расчетной траектории полета (что поможет парировать отказы датчиков и автопилота) и избавиться от ненужных подсказок (при правильном пилотировании разовые команды управления не формируются и не выдаются даже при больших уклонениях от заданной траектории полета).

5. Определяют пространственное местоположение самолета с использованием спутникового GPS-навигатора

На борту самолета устанавливают спутниковый GPS-навигатор, в аэронавигационные карты которого закладывают карты аэродромов посадки и взлетно-посадочных полос, точно привязанных к существующей сетке наземных координат. Определяют с помощью спутникового GPS-навигатора проекцию координат самолета по отношению к земле, вектор скорости и высоту над землей. Используя текущие координаты центра масс и высоту полета, полученные с помощью спутникового GPS-навигатора, и, постепенно снижаясь по глиссаде по разрешенному профилю высоты, с помощью экрана навигатора совмещают направление горизонтального вектора скорости с осевой линией ВПП.

Точность в 6 метров (Мясников В. ГЛОНАСС для всех нас. Независимое военное обозрение, №20, 2010, с.10) позволяет вывести воздушное судно на осевую линию полотна ВПП, даже в условиях плохой видимости или ее отсутствии. Безусловно, летчику для ориентировки также очень важно при снижении до определенной критической высоты (20-30 м) с помощью своего зрительного канала наблюдать землю и наземные посадочные огни.

Для предоставления дополнительной информации летчику о правильности курса в ближней зоне по краям ВПП устанавливают уголковые радиолокационные отражатели, отражающие сигнал от бортовой РЛС обратно на воздушное судно, с соответствующим отображением засветок точечных (уголковых) отражателей на экране монитора. Причем информацию с GPS-навигатора можно совместить с данным радиолокационным изображением.

Имея основную (GPS/ГЛОНАСС) информацию, пилот будет способен с помощью полученной дополнительной радиолокационной картинки произвести более точную посадку воздушного судна на ВПП в условиях плохой видимости. Кроме этого, радиолокационное изображение отраженных сигналов от уголковых отражателей дополнительно подтвердит, что пилот действительно производит посадку на взлетно-посадочную полосу (дублирование информации).

Для повышения точности определения местонахождения самолета и разрешенного профиля его снижения по высоте применяют метод дифференциальных поправок, который основан на использовании известного в радионавигации принципа дифференциальных навигационных измерений.

Дифференциальный режим позволяет определить координаты и высоту самолета с точностью до 1 м и выше. Дифференциальный режим реализуется с помощью контрольного GPS-приемника, установленного на диспетчерском пункте. Последний располагается на аэродроме в месте с известными координатами (долгота, широта) и дает возможность одновременно отслеживать со стационарной позиции GPS-спутники. Сравнивая известные координаты, полученные в результате прецизионной геодезической съемки, с измеренными, контрольный GPS-приемник вырабатывает дифференциальные поправки, которые передаются на борт самолета по радиоканалу в заранее установленном формате. Дифференциальные поправки, принятые от диспетчерского пункта, автоматически вносятся в результаты собственных измерений самолета. Для пилота это означает, что существует возможность инструментальной посадки (даже при нулевой видимости) вплоть до касания ВПП.

Таким образом, предлагаемый способ по сравнению с базовым объектом и другими техническими решениями аналогичного назначения обеспечивает повышение безопасности и точности выполнения такой сложной процедуры как заход на посадку и ее осуществление в условиях плохой видимости. Это достигается путем использования спутникового GPS-навигатора, работающего в дифференциальном режиме и установленного на борту самолета.

Способ управления самолетом при заходе на посадку, включающий стабилизацию с помощью органов управления заданной траекторией при снижении по глиссаде и выравнивании, измерение и индикацию параметров полета: высоты, скорости, путевого угла, дальности до взлетно-посадочной полосы (ВПП), бокового уклонения от оси ВПП, а также формирование и индикацию изображения ВПП (метки заданного путевого угла (ЗПУ), метки глиссадной дальности, при этом сигнал бокового уклонения от оси ВПП формируют и индицируют по выбранной дальности с обратным знаком в виде метки обратного уклонения, в процессе выхода на линию заданного пути удерживают метку обратного бокового уклонения между метками ВПП или меткой ЗПУ при полете по маршруту и вектора скорости, а стабилизацию заданной траектории осуществляют путем удерживания метки вектора скорости на метке обратного бокового уклонения, формируют пропорциональный углу между вектором скорости и направлением на метку обратного бокового уклонения сигнал рассогласования по курсу, который обнуляется автопилотом обычным образом, при превышении заданного порога и отличии знака рассогласования от знака обратного бокового уклонения формируют сигнал разовой команды управления по курсу, который индицируют на экране и подают в наушники летчика, отличающийся тем, что на борту самолета устанавливают спутниковый GPS-навигатор, в аэронавигационные карты которого закладывают карты аэродромов посадки и взлетно-посадочных полос, точно привязанных к существующей сетке наземных координат, определяют с помощью спутникового GPS-навигатора проекцию координат самолета по отношению к земле, вектор скорости и высоту над землей, используя текущие координаты центра масс и высоту полета, полученные с помощью спутникового GPS-навигатора, и, постепенно снижаясь по глиссаде по разрешенному профилю высоты, с помощью экрана навигатора совмещают направление горизонтального вектора скорости с осевой линией ВПП, а по краям взлетно-посадочной полосы размещают несколько уголковых радиолокационных отражателей, отражающих сигнал от бортовой радиолокационной станции обратно на воздушное судно с соответствующим отображением засветок точечных отражателей на экране монитора, причем информацию спутникового GPS-навигатора совмещают с радиолокационным изображением уголковых радиолокационных отражателей, работу спутникового GPS-навигатора осуществляют в дифференциальном режиме.



 

Похожие патенты:

Изобретение относится к системам дистанционного управления самолетами. .

Изобретение относится к легкомоторной авиации. .

Изобретение относится к бортовым системам автоматического управления беспилотными летательными аппаратами. .

Изобретение относится к способам автоматического управления полетом высокоманевренного летательного аппарата, в частности к способам управления продольным движением.

Изобретение относится к области систем автоматического управления минимально-фазовыми объектами, в частности систем управления самолетом по углу тангажа. .

Изобретение относится к области архитектуры авионики. .

Изобретение относится к способам подавления боковых колебаний с большими амплитудами и может быть использовано в системах управления маневренных самолетов с дифференциальным стабилизатором.

Изобретение относится к измерительным комплексам летательных аппаратов (ЛА) - самолетов и вертолетов. .

Изобретение относится к системам автоматического управления. .

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления (САУ) турбовинтовыми силовыми установками (СУ) самолетов. Сущность изобретения заключается в том, что дополнительно контролируют величину рассогласования между заданным и измеренным значениями угла установки лопастей воздушного винта (ВВ), если рассогласование превышает наперед заданную величину, определяемую расчетно-экспериментальным путем, корректируют темп изменения расхода топлива. Повышается надежность работы СУ и безопасность полетов самолета за счет обеспечения баланса между располагаемой мощностью свободной турбины и потребной мощностью, «снимаемой» ВВ с вала свободной турбины. 1 ил.

Изобретение относится к области применения беспилотных летательных аппаратов (БПЛА) и может быть использовано для систематического дистанционного контроля состояния нефте- и газопроводов, хранилищ, высоковольтных ЛЭП и других протяженных объектов. Способ автоматической посадки БПЛА включает измерение высоты полета H, горизонтальной дальности до расчетной точки касания D, отклонения от вертикальной плоскости, проходящей через ось взлетно-посадочной полосы ΔZ, определении трех составляющих скорости и ускорения в расчетной точке касания, формирование опорной траектории снижения H0(D,D0) и Z0(D,D0) из точки начала снижения, находящейся на расстоянии D0 от расчетной точки касания, определение отклонения БПЛА от опорной траектории снижения Δh=H-H0(D,D0) и ΔZ=Z-Z0(D,D0), формирование управляющих сигналов по результатам измерений и подачу их на исполнительные механизмы рулей БПЛА. В каждой точке траектории задают контрольный створ траектории снижения БПЛА в виде круга, лежащего на плоскости, перпендикулярной линии опорной траектории, и с центром, лежащим на линии опорной траектории снижения. При выходе БПЛА за область контрольного створа формируют новую опорную траекторию снижения. Повышается надежность работы и безопасность полетов БПЛА. 2 з.п. ф-лы, 2 ил.

Изобретение относится к транспортным средствам для перемещения в воздушной среде и по поверхности дороги. Способ формирования подъемной силы для подъема и перемещения груза в воздушной среде включает использование двух основных дисков на двух сторонах транспортного корпуса с возможностью вертикального разворота посредством разворотного механизма. Над основными дисками располагают спиралевидные последовательности ребер одной ориентации для формирования пониженного давления над их поверхностями путем их вращения посредством дополнительного диска от привода, который выполняют с зубчатой передачей. Разворотный механизм выполняют с линейным приводом и с двумя параллельными цилиндрическими направляющими, функционально связанными с втулками продольного перемещения, которые закрепляют на диаметрально противоположных сторонах ограничительной шайбы и соединяют с линейным приводом. На ограничительной шайбе фиксируют с возможностью вращения несколько пар ограничительных роликов. Между роликами каждой пары располагают внутреннее П-образное ребро жесткости с зубчатой поверхностью колеса наземного перемещения, которую связывают с зубчатой передачей привода. Изобретение обеспечивает минимизацию габаритных размеров. 2 з.п. ф-лы, 6 ил.

Изобретение относится к области формирования подъемной силы в воздушной среде. Способ формирования подъемной силы для подъема и перемещения груза в воздушной среде включает расположение двух основных дисков на двух сторонах транспортного корпуса с возможностью вертикального разворота. Над каждым основным диском располагают спиралевидные последовательности ребер одной ориентации для формирования пониженного давления путем вращения дополнительного диска. Предусмотрено отверстие для расположения и фиксации на устройстве разворота привода для выполнения вращения дополнительного диска. На устройстве разворота соосно с основным диском закрепляют шайбу жесткости. На шайбе фиксируют зубчатую передачу, связанную с редуктором привода, и несколько пар ограничительных роликов. Между ограничительными роликами каждой пары располагают внутреннее П-образное ребро жесткости с зубчатой поверхностью колеса наземного перемещения. Зубчатую передачу связывают с зубчатой поверхностью П-образного ребра жесткости колеса наземного перемещения для его вращения. Изобретение направлено на минимизацию габаритных размеров. 9 ил.

Изобретение относится к воздухоплаванию. Способ управления, стабилизации и создания дополнительной подъемной силы дирижабля, имеющего корпус, хвостовое оперение, гондолу с полезным грузом и бортовые системы, характеризуется тем, что устойчивость и управляемость дирижабля для требуемых характеристик взлета, полета и посадки обеспечена путем использования на нем автожирного винта с управляемым вектором полной аэродинамической силы. Предусмотрен наклон оси вращения автожирного винта (1) относительно продольного и поперечного направлений в присутствии отдельных маршевых силовых установок, выполняющих свои тяговые функции механически независимо от автожирного винта. Изобретение направлено на упрощение управления. 1 ил.

Изобретение относится к области авиации, в частности к способам управления летательными аппаратами. Способ управления летательным аппаратом (1) с вращающейся несущей поверхностью с высокой скоростью движения, содержащим фюзеляж (2), по меньшей мере, один несущий винт (3), по меньшей мере, один тяговый винт (4) изменяемого шага, по меньшей мере, два полукрыла (11, 11'), расположенные с одной и другой стороны фюзеляжа (2), по меньшей мере, одно горизонтальное оперение (20), оборудованное подвижной поверхностью (21, 21'), и, по меньшей мере, одну силовую установку (2), приводящую во вращение упомянутый несущий винт (3) и каждый тяговый винт (4), включает определение общей подъемной силы летательного аппарата, регулирование подъемной силы каждого полукрыла (11, 11'), воздействуя на привод закрылков (12) таким образом, чтобы подъемная сила полукрыльев была равна первой заранее определенной процентной части общей подъемной силы. При этом разность подъемной силы между полукрыльями (11,11') позволяет компенсировать влияние несущего винта (3) на полукрылья (11, 11'). Достигается возможность автоматического поддержания положения гибридного вертолета при устойчивой фазе полета. 2 н. и 16 з.п. ф-лы, 6 ил.

Изобретение относится к области гиперзвуковых летательных аппаратов (ГЛА). Способ управления аэродинамическими характеристиками гиперзвукового летательного аппарата включает установку плоских МГД-генераторов попарно симметрично относительно плоскости симметрии элементов оперения ГЛА, а между ними располагают магнитоэкранирующие пластины, выполненные из ферромагнитного материала с точкой Кюри, превышающей рабочую температуру элементов ГЛА, обеспечивающих устойчивость, управляемость и балансировку. Управляющие команды от бортовой системы управления подают на соленоиды плоских МГД-генераторов, расположенных под той обтекаемой поверхностью элементов оперения ГЛА, на которую производят управляющее усилие. Магнитоэкранирующую пластину изготавливают из кобальта. Изобретение направлено на расширение функциональных возможностей управления ГЛА по каналам тангажа, рыскания и крена. 1 з.п. ф-лы, 4 ил.

Изобретение относится к маневрирующим в атмосфере сверхзвуковым летательным аппаратам (ЛА). Способ управления обтеканием включает изменение направления воздушного потока со встречного на радиальное истечение относительно ЛА. На набегающий воздушный поток направляют через газопроницаемые пористые вставки, изолированные друг от друга и от корпуса ЛА, расположенные симметрично относительно продольной оси в его носовой части. Осуществляют одновременный или поочередный нагрев газопроницаемых пористых вставок с возможностью создания симметричного или асимметричного воздействия на набегающий воздушный поток. Нагрев газопроницаемых пористых вставок осуществляют с помощью тлеющего электрического разряда, либо каталитического горения горючей смеси, либо электрического омического нагревателя. Газопроницаемые пористые вставки выполнены тепло- и электроизолированными либо теплоизолированными друг от друга и от корпуса ЛА. Изобретение направлено на повышение быстродействия управления обтеканием. 3 з.п. ф-лы, 3 ил.

Группа изобретений относится к стендам для прочностных испытаний самолетов. При способе стабилизации планера самолета в пространстве при прочностных испытаниях формируют непрерывные сигналы коррекции по крену и тангажу планера самолета и осуществляют аварийную защиту по максимальной величине углов наклона при помощи системы автоматического управления. Устройство для стабилизации планера самолета в пространстве при прочностных испытаниях содержит систему автоматического управления, каналы нагружения и датчики по крену и тангажу планера самолета, расположенные в центре тяжести фюзеляжа. Каналы нагружения содержат сервоприводы с электрогидравлическими распределителями, гидроцилиндры, тензодинамометры. Обеспечивается стабилизация планера самолета в пространстве. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области летательных аппаратов. Способ повышения безопасности полета летательного аппарата при отказе двигателя, работающего в момент отказа на максимальном или форсажном режиме и расположенного на той плоскости крыла, на которую у летательного аппарата имеется увеличивающийся угол крена, основан на использовании аэродинамических поверхностей. На возникшие из-за отказа двигателя моменты рыскания и крена воздействуют за счет дополнительно управляющихся поверхностей, расположенных на левой и правой консолях крыла, боковых поверхностях фюзеляжа, при отклонении которых изменяется картина обтекания каждой консоли крыла, фюзеляжа, приводящем к устранению моментов крена и рыскания. Это достигается изменением кривизны профиля той консоли крыла, на которой расположен отказавший двигатель, приводящей к увеличению ее подъемной силы и к уменьшению момента крена, уменьшением угла атаки путем отклонения консолей стабилизатора, и приводящей к уменьшению подъемной силы левой и правой плоскости крыла, а следовательно, и момента крена. Изобретение направлено на повышение безопасности полета. 5 ил.
Наверх