Способ получения магнитоактивных покрытий на титане и его сплавах



Способ получения магнитоактивных покрытий на титане и его сплавах
Способ получения магнитоактивных покрытий на титане и его сплавах
Способ получения магнитоактивных покрытий на титане и его сплавах
Способ получения магнитоактивных покрытий на титане и его сплавах
Способ получения магнитоактивных покрытий на титане и его сплавах

 


Владельцы патента RU 2478738:

Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) (RU)

Изобретение относится к области получения тонких пленок магнитных материалов, в частности магнитоактивных оксидных покрытий на титане и его сплавах, и может найти применение при изготовлении электромагнитных экранов и поглотителей электромагнитного и высокочастотного излучения для различной аппаратуры, экранированных помещений, защищенных от утечки информации, а также для космической и авиационной техники. Способ включает плазменно-электролитическое оксидирование титановой подложки в водном электролите, содержащем, г/л: фосфат натрия 10-15, наночастицы кобальта 1,0-1,5 и додецилсульфат натрия 0,1-0,2, в гальваностатическом режиме при плотности тока 0,05-0,2 А/см2 в течение 10-20 мин с последующей обработкой центрифугированием в водной суспензии, содержащей 55-60 мас.% ультрадисперсного политетрафторэтилена (ПТФЭ) и 8,0-8,5% от массы сухого ПТФЭ продукта обработки смеси моно- и диалкилфенолов окисью этилена, и отжиг при 360-370°С в течение 10-15 мин. Технический результат - повышение коррозионной стойкости и срока службы магнитоактивных покрытий, а также обеспечение их стабильного качества за счет увеличения стабильности и рабочего ресурса электролита. 2 пр., 4 ил.

 

Изобретение относится к области получения тонких пленок магнитных материалов, а именно магнитоактивных оксидных покрытий на титане и его сплавах, и может найти применение при изготовлении электромагнитных экранов и поглотителей электромагнитного и высокочастотного излучения, применяемых для отдельных элементов, функциональных узлов и аппаратуры в целом, которые могут быть источниками либо рецепторами помех, в составе интегрированных панелей для облицовки внутренней поверхности специальных помещений, в частности, камер для настройки и испытаний электро- и радиоприборов на электромагнитную совместимость, экранированных помещений, защищенных от утечки информации, а также в космической и авиационной технике.

Для практического применения большое значение имеет возможность получения на металлической подложке материала заданного состава и структуры, от которых зависит его способность поглощать электромагнитное и высокочастотное излучение, при этом каждому конкретному составу соответствует максимальная поглощающая способность при определенных частотах. Электрохимическая обработка металлической подложки путем подбора соответствующего электролита и условий обработки обеспечивает такую возможность.

Известен способ получения наноструктурированных магнитных металл-оксидных слоев с заданными магнитными характеристиками толщиной 10-20 мкм на поверхности алюминия [Магнитные металлоксидные наноструктуры на поверхности алюминия. Болтушкин А.В. и др. Сборник докладов международной научной конференции «Актуальные проблемы физики твердого тела» ФТТ-2005, г.Минск 26-28 октября, с.244-247] путем электрохимической обработки алюминиевой подложки, включающий формирование пористой оксидной пленки анодированием в водном сернокислом электролите в течение 20-40 мин и последующее электролитическое осаждение Co-Cu и Fe-Cu в поры полученной анодной оксидной пленки переменным либо импульсным реверсивным токами из сернокислых электролитов. Однако полученные известным способом металл-оксидные слои обладают недостаточной коррозионной стойкостью, в ходе эксплуатации на их магнитных свойствах может отражаться воздействие высокой влажности, коррозионно-активных ионов и других неблагоприятных факторов окружающей среды.

Известен способ получения магнитоактивных оксидных покрытий на вентильных металлах и их сплавах (пат. РФ №2420614, опубл. 2011.06.10), включающий электрохимическую обработку, осуществляемую плазменно-электролитическим оксидированием в гальваностатическом режиме при эффективной плотности тока 0,05-0,20 А/см2 и конечном напряжении формирования 60-380 В в течение не менее 5 мин в водном электролите, содержащем, г/л: фосфат натрия 20-30, борат натрия 10-15, вольфрамат натрия 1-3, оксалат железа 13-26 и/или ацетат никеля 10-20. Однако оксидные покрытия, полученные известным способом, не обнаруживают достаточно высокой устойчивости по отношению к неблагоприятным воздействиям окружающей среды, к которым, в первую очередь, следует отнести высокую влажность, особенно при повышенной температуре, присутствие агрессивных ионов.

Наиболее близким к заявляемому является описанный в работе Fanya J., Honghui Т., Jiong L., Liru S., Paul K.C. Structure and microwave-absorbing properties of Fe-particle containing alumina prepared by micro-arc discharge oxidation. (Surface and Coatings Technology. 201 (2006), p.292-295) способ получения магнитоактивных покрытий, содержащих около 16 мас.% железа, включающий плазменно-электролитическое оксидирование подложки из сплава алюминия в водном электролите, содержащем вольфрамат натрия NaWO3, фосфат натрия Na3PO4·12H2O и частицы железа, в гальваностатическом режиме при напряжении 300-450 В и средней плотности тока 8 А/дм2. Значения магнитной и диэлектрической проницаемости в области частот 6,5-18 GHz и толщина (около 50 мкм) полученных известным способом магнитоактивных покрытий обеспечивают их применение для экранирования микроволнового излучения.

Недостатком известного способа является недостаточная коррозионная устойчивость получаемых магнитоактивных покрытий, вследствие чего их магнитные свойства могут испытывать воздействие неблагоприятных факторов окружающей среды, а срок службы таких покрытий сокращается. Кроме того, используемый для его осуществления электролит является недостаточно стабильным: в течение короткого времени начинается оседание и выпадение в осадок диспергированных в нем частиц железа, что приводит к уменьшению рабочего ресурса электролита, плохой воспроизводимости результатов и не позволяет получить покрытия стабильного качества.

Задачей изобретения является создание способа получения на титане и его сплавах коррозионностойких магнитоактивных кобальтсодержащих покрытий стабильного качества.

Актуальность задачи обусловлена тем, что титан, который относится к парамагнитным металлам, не взаимодействующим с магнитным полем, используется в производстве специального немагнитного оборудования, техники, приборов и машин.

Технический результат изобретения заключается в повышении коррозионной устойчивости и срока службы получаемых магнитоактивных покрытий при одновременном обеспечении их стабильного качества за счет увеличения стабильности и рабочего ресурса электролита.

Указанный технический результат достигается способом получения магнитоактивных покрытий на титане и его сплавах, включающим плазменно-электролитическое оксидирование (ПЭО) титановой подложки в гальваностатическом режиме в водном электролите, содержащем фосфат натрия и частицы магнитного металла, в котором, в отличие от известного, ПЭО осуществляют при плотности тока 0,05-0,2 А/см2 в течение 10-20 мин в электролите, который в качестве частиц магнитного металла содержит наночастицы кобальта и дополнительно включает додецилсульфат натрия при следующем содержании компонентов, г/л:

фосфат натрия Na3PO4·12H2O 10-15
наночастицы кобальта 1,0-1,5
додецилсульфат натрия C12H25NaO4S 0,1-0,2,

при этом подложку со сформированным ПЭО покрытием обрабатывают путем центрифугирования (spin coating) в водной суспензии, содержащей 55-60 мас.% ультрадисперсного политетрафторэтилена (ПТФЭ) и 8,0-8,5% от массы сухого ПТФЭ продукта обработки смеси моно- и диалкилфенолов окисью этилена, и подвергают отжигу при 360-370ºС в течение 10-15 мин.

Способ осуществляют следующим образом.

Готовят электролит плазменно-электролитического оксидирования.

В необходимое количество дистиллированной воды вносят расчетное количество наночастиц кобальта и с помощью ультразвуковой обработки частотой не менее 20 кГц в течение не менее 120 секунд получают водную дисперсию наночастиц кобальта, к которой добавляют водный раствор анионного поверхностно-активного вещества - додецилсульфата натрия (синонимы: додецилсульфат натриевой соли, натрий лаурилсульфат). Полученную смесь вновь подвергают ультразвуковой обработке с получением суспензии с достаточной седиментационной и агрегативной устойчивостью.

Отдельно готовят водный раствор фосфата натрия.

Смешивают в рассчитанном соотношении подготовленную суспензию и водный раствор фосфата натрия и механически перемешивают полученную смесь в течение не менее 30 мин.

Образец (подложку) из титана либо его сплава погружают в свежеприготовленный электролит и подвергают плазменно-электролитическому оксидированию в монополярном гальваностатическом режиме при эффективной плотности тока 0,05-0,2 А/см2 в течение 10-20 мин. Титановая подложка при этом является анодом.

После оксидирования образец промывают дистиллированной водой и высушивают при 100ºС в течение 1 часа.

Толщина сформированного ПЭО покрытия (оксидного слоя) составляет не менее 10 мкм.

На подготовленное ПЭО покрытие наносят защитный слой ультрадисперсного ПТФЭ.

Для этого готовят водную суспензию, содержащую 55-60 мас.% ультрадисперсного ПТФЭ с размером частиц 0,06-0,4 мкм, в которую для стабилизации суспензии и улучшения смачивания частиц ПТФЭ вводят неионогенное поверхностно-активное вещество в количестве 8,0-8,5% от массы сухого ПТФЭ.

Используемое в предлагаемом способе неионогенное поверхностно-активное вещество (ПАВ) представляет собой продукт обработки смеси моно- и диалкилфенолов окисью этилена с условной структурной формулой

где R - алкильный радикал, содержащий 8-12 атомов углерода; n=10-12 (вспомогательное вещество ОП-10 в соответствии с ГОСТ 8433-81).

Расчетное количество указанного неионогенного ПАВ, которое играет роль одновременно смачивателя и эмульгатора, вводят в виде водного раствора.

Водную дисперсию ПТФЭ с добавкой указанного неионогенного ПАВ перемешивают в течение 10-20 мин с помощью высокооборотной мешалки и наносят на титановую подложку со сформированным ПЭО покрытием. Нанесение осуществляют методом центрифугирования (spin coating) с последующим отжигом при 360-370ºС в течение 10-15 мин.

Полученное покрытие с нанесенным защитным слоем после отжига имеет толщину до 15 мкм. Поверхность покрытия темно-серого цвета, с порами «запечатанными» полимером.

Внешний вид поверхности покрытия показан на фиг.1 (фотография получена с помощью сканирующего электронного микроскопа Evex Mini-SEM при увеличении ×1000).

Состав магнитоактивного слоя покрытия, по данным рентгеновской фотоэлектронной спектроскопии, включает Со(ОН)2, СоО, Со2О3, а также металлический Со, при этом содержание Со, которое приходится на его ферромагнитные соединения, составляет в среднем 1,5 ат.%.

Значение коэрцитивной силы полученного магнитоактивного слоя покрытия составляет около 500 Э при комнатной температуре и не менее 1000 Э при температуре 2 К, что характеризует его ферромагнитные свойства.

Модуль импеданса (полного сопротивления переменному току) поверхности покрытия при частоте тестового сигнала 0,02 Гц (|Z|f=0,02Гц) составляет 7,7·108 Ом·см2, что свидетельствует о высоких защитных свойствах покрытия.

Примеры конкретного осуществления способа

Магнитные измерения осуществляли с помощью SQUID магнетометра MPMS XL фирмы Quantum Design, используя две методики: охлаждение образца без внешнего магнитного поля - zero field cooling (ZFC) и охлаждение во внешнем магнитном поле - field cooling (FC).

Толщину покрытий определяли с помощью вихретокового толщиномера ВТ-201.

Пример 1

Для приготовления электролита готовят суспензию наночастиц кобальта: к 300 мл дистиллированной воды добавляют 0,45 г Со и обрабатывают с помощью ультразвукового гомогенизатора Bandelin SONOPULS HD 3200 при мощности 125 Вт в течение 120 с. В полученную суспензию добавляют 100 мл водного раствора додецилсульфата натрия (0,1 г на 100 мл дистиллированной воды); смесь подвергают обработке в ультразвуковой ванне Bandelin RK 31 в течение 30 мин. Далее в электролит вводят фосфат натрия в виде водного раствора (10 г на 600 мл воды), при этом на 400 мл подготовленной суспензии, включающей наночастицы Со и додецил сульфат натрия, используют 600 мл подготовленного фосфата натрия. Электролит перемешивают с помощью механической высокооборотной мешалки Heidolph RZR-1 (верхнеприводная с крыльчаткой лопастного типа) в течение 30 мин.

Пластину из технически чистого титана ВТ 1-0 размером 2х2 см толщиной 0,2 см подвергают плазменно-электролитической обработке в гальваностатическом режиме при плотности тока 0,05 А/см2 в течение 20 мин в подготовленном электролите, содержащем, г/л:

фосфат натрия 10
наночастицы кобальта 1,5
додецилсульфат натрия 0,1.

Для нанесения защитного слоя готовят водную суспензию, содержащую на 100 мл дистиллированной воды: 55 г ультрадисперсного ПТФЭ и 4,4 г продукта обработки смеси моно- и диалкилфенолов окисью этилена, которую перемешивают с помощью механической высокооборотной мешалки Heidolph RZR-1 в течение 15 мин.

Подготовленную водную суспензию наносят на сформированное ПЭО покрытие методом центрифугирования (spin coating) с помощью SpinCoater VTC-100 в 2 этапа: сначала в течение 30 сек при 500 об/мин, затем в течение 30 сек при 2000 об/мин.

После высыхания нанесенной эмульсии на воздухе образец помешают в муфельную печь SNOL 7,2/1100 L на 10 мин при 360ºС.

На поверхности магнитоактивного ПЭО покрытия образуется равномерная тонкая полимерная пленка толщиной примерно 2 мкм с диэлектрическими свойствами, устойчивая по отношению к различным неблагоприятным факторам окружающей среды, обеспечивающая его защиту при механических воздействиях и стабильность свойств при изменении температуры, влажности и т.д.

Общая толщина магнитоактивного покрытия - 12 мкм, значение коэрцитивной силы при комнатной температуре 524 Э, при 2 К - 1024 Э.

Значение модуля импеданса поверхности |Z|f=0,02Гц составляет 7,7·108 Ом·см2.

Кривые намагничивания и петля гистерезиса для полученного покрытия показаны на фиг.1 (а - при 300 К (комнатная температура); б - при 2 К (охлаждение без внешнего магнитного поля); в - при 2 К (охлаждение во внешнем магнитном поле).

Пример 2

Аналогично примеру 1 предварительно готовят суспензию наночастиц кобальта (на 300 мл дистиллированной воды 0,30 г Со), к которой добавляют 200 мл водного раствора додецилсульфата натрия (0,1 г на 100 мл воды). К полученной суспензии, включающей наночастицы Со и додецил сульфат натрия, добавляют фосфат натрия в виде водного раствора (15 г на 500 мл воды), при этом на 500 мл суспензии берут 500 мл раствора фосфата натрия.

Пластину размерами по примеру 1 из сплава титана ОТ4-0 (%: Ti 96,3-98,6, Al 0,4-1,4, Mn 0,5-1,3, Fe до 0,3, Zr до 0,3, прочие примеси 0,4) подвергают плазменно-электролитической обработке в гальваностатическом режиме при плотности тока 0,2 А/см2 в течение 10 мин в электролите, содержащем, г/л:

фосфат натрия 15
наночастицы кобальта 1,0
додецилсульфат натрия 0,2.

Далее обработку проводят аналогично примеру 1, используя подготовленную суспензию: на 100 мл дистиллированной воды 60 г ультрадисперсного ПТФЭ и 5,1 г продукта обработки смеси моно- и диалкилфенолов окисью этилена.

Отжиг защитного покрытия осуществляют при 370ºС в течение 15 мин.

Общая толщина покрытия - 14 мкм, значение коэрцитивной силы при комнатной температуре 510 Э, при 2 К - 1004 Э.

Значение модуля импеданса поверхности |Z|f=0,02Гц составляет 7,7·108 Ом·см2.

Способ получения магнитоактивных покрытий на титане и его сплавах, включающий плазменно-электролитическое оксидирование (ПЭО) титановой подложки в гальваностатическом режиме в водном электролите, содержащем фосфат натрия и частицы магнитного металла, отличающийся тем, что ПЭО осуществляют при плотности тока 0,05-0,2 А/см2 в течение 10-20 мин в электролите, который в качестве частиц магнитного металла содержит наночастицы кобальта и дополнительно включает додецилсульфат натрия при следующем содержании компонентов, г/л:

фосфат натрия 10-15
наночастицы кобальта 1,0-1,5
додецилсульфат натрия 0,1-0,2,

затем подложку со сформированным ПЭО покрытием обрабатывают путем центрифугирования в водной суспензии, содержащей 55-60 мас.% ультрадисперсного политетрафторэтилена (ПТФЭ) и 8,0-8,5% от массы сухого ПТФЭ продукта обработки смеси моно- и диалкилфенолов окисью этилена, и подвергают отжигу при 360-370°С в течение 10-15 мин.



 

Похожие патенты:
Изобретение относится к области гальванотехники и может быть использовано в авиационной, судостроительной, нефте- и газодобывающей, перерабатывающей промышленности, приборостроении и медицинской технике.
Изобретение относится к области электрохимической обработки вентильных металлов и может быть использовано в атомной энергетике для защиты от воздействия агрессивных сред и изоляции оболочек тепловыделяющих элементов из циркония.

Изобретение относится к получению покрытий из диборида титана путем высокотемпературного электрохимического синтеза. .

Изобретение относится к области гальванотехники и может быть использовано для защиты от гальванокоррозии металлоконструкций из разнородных металлов и сплавов, работающих в водных коррозионно-активных средах.

Изобретение относится к области гальванотехники и может быть использовано в двигателестроении. .

Изобретение относится к способам получения магнитных материалов, в частности магнитоактивных оксидных покрытий на вентильных металлах, преимущественно алюминии и его сплавах и титане и его сплавах, и может найти применение в конструкциях электромагнитных экранов и поглотителей электромагнитного излучения.
Изобретение относится к сварочным материалам для специальных наплавок при изготовлении изделий из титановых сплавов. .

Изобретение относится к электрохимической обработке поверхности титановых сплавов, а именно к способам получения защитного покрытия на титановых сплавах методом анодного оксидирования.
Изобретение относится к способам получения материалов, содержащих пирофосфат циркония ZrP2О7. .

Изобретение относится к сварочным материалам для антифрикционных наплавок при изготовлении изделий из титановых сплавов
Изобретение относится к области получения декоративных покрытий на изделиях из стекла, керамики и других материалов с оптически гладкой поверхностью и может быть использовано при нанесении декоративных покрытий на товары народного потребления, отделочно-декоративные и художественные изделия в различных областях народного хозяйства

Изобретение относится к области гальванотехники и может быть использовано в области наноэлектроники. Способ включает формирование слоя пористого анодного оксида анодным окислением титанового образца в потенциостатическом режиме в электролите на неводной основе, при этом после формирования слоя пористого анодного оксида проводят электрохимический процесс его отделения в слабом водном растворе неорганической кислоты катодной поляризацией титанового образца в потенциостатическом режиме, затем анодным окислением титанового образца в потенциостатическом режиме в электролите на неводной основе формируют вторичный слой пористого анодного оксида титана, при этом анодное окисление титанового образца для формирования слоя и вторичного слоя пористого анодного оксида проводят при термостабилизации зоны протекания электрохимической реакции. Технический результат: повышение воспроизводимости формирования пористого оксида титана с высокой степенью упорядоченности наноструктуры. 2 з.п. ф-лы, 2 ил., 1 пр.
Изобретение относится к области гальванотехники и может быть использовано для получения защитно-декоративных покрытий в промышленности, в частности для формирования тонких пленок нитрида титана на поверхностях из титана и его сплавов. Способ включает электролитическое получение тонкого слоя нитрида титана на поверхности титана, при этом формирование покрытия осуществляют методом анодной поляризации при постоянном токе в электролитах на основе полярных органических растворителей с добавлением воды в присутствии 0,1-0,5 мас.% электропроводящих добавок с барботированием азотсодержащим газом, при этом электролиз проводят при комнатной температуре электролита. Технический результат: получение тонких, плотных, равномерных слоев нитрида титана различной толщины, в том числе на деталях различной конфигурации. 8 пр.

Изобретение относится к электролитическим методам обработки поверхности металлических материалов и может быть использован в стоматологическом протезировании. Способ заключается в получении биосовместимого покрытия на стоматологических имплантатах, выполненных из титана и его сплавов, включающий помещение изделий в водный раствор электролита, содержащий гидроксид калия и наноструктурный гидроксиаиатит в виде водного коллоидного раствора, возбуждение на поверхности изделий микродуговых разрядов, при этом оксидирование обрабатываемых изделий осуществляют в химически стойкой непроводящей ванне; в раствор электролита помещают одновременно две партии обрабатываемых изделий, предварительно закрепив изделия одной партии к клеммам для обрабатываемых деталей, изделия другой партии - к клеммам вспомогательного электрода; а электролит дополнительно содержит гидроксид натрия, гидрофосфат натрия, натриевое жидкое стекло, метасиликат натрия, в следующих соотношениях, из расчета массы сухого вещества в граммах на литр состава: гидроксид калия КОН - 2, гидроксида натрия NaOH - 1, гидрофосфата натрия Na2HРО4×12H2О - 5, жидкое стекло nNa2O·mSiO2 (М=3,2) - 5, метасиликат натрия Na2SiO3×9H2O - 8, нанодисперсный гидроксиапатит - 0,5÷5, причем отклонения от указанных концентраций компонентов электролита не превышают ±10%. 1 табл., 4 ил., 1 пр.
Изобретение относится к области медицинской техники, в частности к биологически совместимым покрытиям на имплантате, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из конструкционных материалов. Покрытие на имплантате из корундовой или циркониевой керамики содержит промежуточный слой титана толщиной 5-50 мкм на имплантате, нанесенный в плазме непрерывного вакуумного дугового разряда, и слой кальций-фосфатного соединения, нанесенный электрохимическим методом анодирования титана в режиме искрового или дугового разрядов. Технический результат - расширение номенклатуры материалов для основы имплантатов, на которые можно наносить кальций-фосфатные биоактивные покрытия электрохимическим методом в условиях искрового или дугового разрядов. 3 пр.

Изобретение относится к области гальванотехники и может быть использовано для увеличения удельной поверхности деталей из сплавов устройств различной функциональности, в частности, при создании каталитически активных устройств. Способ изготовления детали из сплава титан-алюминий с нанопористой поверхностью включает изготовление детали с пористой поверхностью из спеченного порошка сплава титан-алюминий с размерами гранул 1-10 мкм, промывку детали в этаноле, сушку, промывку в дистиллированной воде, сушку при температуре 80-90°С и формирование нанопористого оксида на поверхности детали анодированием в 10,0% растворе серной кислоты с добавкой 0,15% фтористоводородной кислоты при постоянной плотности тока. Технический результат: увеличение удельной поверхности деталей. 1 пр., 1 ил.
Изобретение относится к области гальванотехники и может быть использовано в промышленности для формирования тонких слоев защитно-декоративных покрытий нитрида титана на поверхностях из титана и его сплавов. Способ электролитического формирования слоя нитрида титана на поверхности титана и его сплава включает анодную поляризацию изделия при постоянном токе в электролите на основе полярных органических растворителей в присутствии воды и 0,1-0,3 мас.% соли аммония в качестве электролитической добавки, при этом электролиз проводят при комнатной температуре электролита. Технический результат: получение тонких, плотных и равномерных слоев нитрида титана различной толщины на деталях различной конфигурации. 8 пр.
Изобретение относится к области гальванотехники и может быть использовано для изготовления материалов, содержащих пленочные структуры с новыми электрическими, магнитными и оптическими характеристиками, в частности, для получения имплантатов, обладающих электретными свойствами. Способ формирования покрытия пентаоксида тантала на подложке включает формирование покрытия из прекурсора - фторидного соединения тантала, при этом покрытие формируют методом плазменно-электролитической обработки подложки импульсным током во фтортанталатном электролите на проводящей металлической подложке из титана или его сплава в диапазоне напряжений от 50 до 300 В в потенциостатическом режиме. Технический результат: упрощение способа нанесения покрытия пентаоксида тантала, при этом осуществление процесса не требует сложного специального оборудования и дорогостоящих реагентов. 1 з.п. ф-лы, 7 пр.

Изобретение относится к области гальванотехники и может быть использовано в приборостроении и медицине. Способ упрочнения изделий из титана и его сплавов с максимальным линейным размером от 0,8 до 1,4 мм включает упрочнение изделий в процессе формирования оксидного покрытия методом микродугового оксидирования продолжительностью от 20 до 30 минут в анодном режиме при постоянной плотности тока (1-2)×103 А/м2 в щелочном электролите на основе гидроксида натрия или алюмината натрия. Технический результат: повышение микротвердости и прочности изделий малого размера из титана и его сплавов к изгибным и тангенциальным нагрузкам. 2 табл., 3 пр.
Наверх