Способ определения положения режущей кромки отвала автогрейдера

Изобретение относится к области землеройно-транспортных и дорожно-строительных машин и предназначено для систем контроля и управления положением отвала автогрейдера. Способ определения положения режущей кромки отвала автогрейдера включает определение положения режущей кромки отвала автогрейдера в системе координат, связанной с местностью. При этом определяют углы поворота - тангажа, крена и рыскания тяговой рамы относительно основной рамы автогрейдера. С помощью счетно-решающего устройства и формул преобразования координат определяют координаты точек на режущей кромке отвала автогрейдера в системе координат, связанной с автогрейдером. Одновременно с помощью системы спутниковой навигации и антенн, жестко установленных на основной раме автогрейдера, определяют положение автогрейдера и связанной с ним системы координат в системе координат, связанной с местностью. Затем с помощью счетно-решающего устройства определяют координаты точек на режущей кромке отвала автогрейдера в системе координат, связанной с местностью. Предложенное изобретение обеспечивает определение текущих отклонений режущей кромки отвала от заданных высотных отметок обрабатываемой поверхности и возможность оперативного устранения этих отклонений в ручном или автоматическом режиме. 3 ил.

 

Изобретение относится к области землеройно-транспортных и дорожно-строительных машин и предназначено для систем контроля и управления положением отвала автогрейдера.

Известен способ определения положения режущей кромки отвала автогрейдера, согласно которому положение режущей кромки отвала однозначно определяется по известным текущим значениям длин гидроцилиндров устройств подвеса и выноса (УПВ) отвала автогрейдера L1, L2, L3 [В.А.Палеев, С.Ю.Тимаков, А.В.Палеев / Кинематические характеристики устройств подвеса и выноса отвала автогрейдера // Строительные и дорожные машины, 2009, №5, с.47-51].

Недостатком данного способа является невозможность определения положения режущей кромки отвала автогрейдера в системе координат, связанной с окружающей местностью. В связи с этим нельзя определить координаты высотных отметок и углы наклона поверхностей, обрабатываемых автогрейдером.

Известен также способ определения положения режущей кромки отвала автогрейдера относительно горизонта, включающий датчик углового положения, установленный на основной раме автогрейдера и шарнирно-сочлененную рычажную систему, связанную с датчиком угла наклона (поворота) тяговой рамы с отвалом автогрейдера [В.С.Щербаков, В.Ф.Раац, В.Е.Калугин, А.А.Макавеев / Система автоматической стабилизации поперечного наклона рабочего органа автогрейдера // А.c. 1481344 (СССР). Опубл. 23.05.89. БИ №19].

Недостатком данного способа является невозможность определения высотных отметок режущей кромки отвала автогрейдера и, соответственно, высотных отметок обрабатываемой поверхности.

Из известных технических решений наиболее близким по совокупности существенных признаков к заявляемому объекту является способ определения режущей кромки отвала автогрейдера, при котором на отвал устанавливаются вертикальные штанги с антеннами спутниковых систем навигации GPS/Глонасс. [С.В.Знобищев, И.А.Мастиков / Системы нивелирования для автогрейдеров // Строительные и дорожные машины, 2008, №5, с.13-18].

Недостатком такого способа является сокращение числа операций, выполняемых автогрейдером, из-за того, что отвал загроможден несвойственными ему предметами - кронштейнами, штангами, проводами антенн, которые ограничивают перемещения отвала и могут быть повреждены или разрушены при работе автогрейдера, т.к. отвал может поворачиваться в плане на угол до 360°, смещаться по направляющим влево и вправо, изменять положение относительно горизонта от 0° до 90° (при использовании систем выноса тяговой рамы с отвалом автогрейдера). Очевидно, что установка на отвал автогрейдера антенн систем спутниковой навигации GPS/Глонасс резко ограничивает или снижает функциональные возможности автогрейдера.

Задачей изобретения является разработка способа, освобождающего отвал автогрейдера от антенн спутниковых и иных навигационных систем и обеспечивающего при этом в любой произвольный момент времени точное определение положения режущей кромки отвала автогрейдера и, соответственно, текущее значение высотных отметок и углов наклона поверхности, обрабатываемой автогрейдером в системе координат, связанной с окружающей местностью. Данная информация необходима для подачи системой управления отвалом (в случае необходимости) управляющих воздействий, обеспечивающих обработку поверхности в соответствии с проектом.

Указанный технический результат достигается тем, что для определения положения режущей кромки отвала автогрейдера в системе координат, связанной с местностью, определяют углы поворота (тангажа, крена и рыскания) тяговой рамы относительно основной рамы автогрейдера, с помощью счетно-решающего устройства и формул преобразования координат определяют координаты точек на режущей кромке отвала автогрейдера в системе координат, связанной с автогрейдером, одновременно с помощью системы спутниковой навигации и антенн, жестко установленных на основной раме автогрейдера, определяют положение автогрейдера и связанной с ним системы координат в системе координат, связанной с местностью, затем с помощью счетно-решающего устройства координаты точек на режущей кромке отвала автогрейдера определяют в системе координат, связанной с местностью.

Условием осуществления указанных действий является оснащение автогрейдера системой спутниковой навигации, счетно-решающим устройством, а также устройством для определения углов поворота тяговой рамы относительно основной рамы автогрейдера.

Сущность изобретения поясняется нижеследующим описанием и прилагаемыми чертежами, где на фиг.1, 2 и 3 приведено одно из возможных устройств, реализующих предлагаемый способ (на фиг.1 изображен трехосный шарнир, соединяющий тяговую раму автогрейдера с основной рамой, на фиг.2 - разрез трехосного шарнира по оси тангажа, на фиг.3 - расчетная схема автогрейдера).

На фиг.1 изображены: 1 - основная рама автогрейдера, которая трехосным шарниром соединена с тяговой рамой 2, 3 - внешняя рамка трехосного шарнира, 4 - внутренняя рамка трехосного шарнира. На осях трехосного шарнира размещены датчики углов поворота осей: 5 - датчик угла рыскания тяговой рамы, 6 - датчик угла тангажа тяговой рамы, 7 - датчик угла крена тяговой рамы. На фиг.2 изображены: 4 - внутренняя рамка трехосного шарнира, 6 - датчик угла тангажа тяговой рамы, 7 - датчик угла крена тяговой рамы, 8 - корпус упорных подшипников, 9 - упорный подшипник, воспринимающий осевую нагрузку от тяговой рамы, 10 - втулка, помещенная во внутреннюю рамку 4, 11 - ось тангажа тяговой рамы. На фиг.3 изображены: XYZ - система координат Земли, связанная с окружающей местностью, Oξηζ - система координат, связанная с автогрейдером, O2ξ2η2ζ2 локальная система координат тяговой рамы автогрейдера, L1, L2, L3 - гидроцилиндры подвеса тяговой рамы, 12 - датчик угла поворота отвала в плане, 13 - датчик изменения угла резания отвала, 14 - датчик выдвижения отвала по направляющим влево или вправо, 15, 16, 17 - антенны систем спутниковой навигации, например GPS или Глонасс, установленные на ось, 18 - счетно-решающее устройство, 19 - блок индикации и управления.

Антенны спутниковой системы навигации, жестко установленные на основной раме автогрейдера, должны быть максимально удалены друг от друга для снижения погрешности выполняемых вычислений. Для определения положения автогрейдера достаточно знать координаты начала связанной с автогрейдером системы координат и углы поворота ее - рыскания, тангажа и крена.

Координаты любой точки (r) на режущей кромке отвала автогрейдера в системе координат, связанной с местностью, определяются уравнением

где Xr, Yr, Zr - координаты точки на режущей кромке отвала автогрейдера в системе координат XYZ, связанной с местностью, Х0, Y0, Z0 - координаты начала связанной с автогрейдером системы Oξηζ, в системе координат XYZ, ξr, ηr, ζr - координаты точки на режущей кромке отвала в системе координат автогрейдера Oξηζ, Матр - матрица преобразования координат, учитывающая углы поворота автогрейдера (рыскания, тангажа и крена) в связанной с местностью системе координат XYZ.

Полное уравнение для расчета координат точек на режущей кромке отвала автогрейдера в системе координат XYZ, связанной с местностью, имеет вид

где ξo2, ηo2, ζo2 - координаты начала O2 связанной с тяговой рамой локальной системы координат O2ξ2η2ζ2 в системе координат автогрейдера Oξηζ, ξ2r, η2r, ζ2r - координаты точки на режущей кромке отвала в локальной системе координат тяговой рамы O2ξ2η2ζ2, Матр2 - матрица преобразования координат, учитывающая углы поворота тяговой рамы (рыскания, тангажа и крена) в системе координат автогрейдера Oξηζ.

Заявленный способ заключается в следующем - координаты точек на режущей кромке отвала (например, точки r) рассчитывают счетно-решающим устройством. в локальной системе координат тяговой рамы O2ξ2η2ζ2 с использованием данных датчиков 12, 13 и 14 и информации о постоянных размерах тяговой рамы и отвала. В итоге получаем координаты точки r (ξ2r, η2r, ζ2r) в локальной системе координат тяговой рамы O2ξ2η2ζ2. На следующем этапе с помощью датчиков 5, 6 и 7 определяют углы рыскания, тангажа и крена тяговой рамы φ2, ψ2, θ2 в системе координат автогрейдера Oξηζ, эти данные вводят в счетно-решающее устройство 18, которое формирует матрицу преобразования координат Матр2. На этом этапе становится возможным расчет координат точек на режущей кромке отвала в системе координат автогрейдера.

где ξr, ηr, ζr - координаты точки r на режущей кромке отвала в системе координат автогрейдера.

С помощью спутниковой системы навигации GPS или Глонасс определяют пространственные координаты антенн 15, 16 и 17, жестко связанных с основной рамой автогрейдера в неподвижной системе координат XYZ, связанной с Землей. Эти данные поступают в счетно-решающее устройство 18, которое рассчитывает углы рыскания, тангажа и крена φ, ψ, θ и координаты начала связанной с автогрейдером системы координат 0ξηζ в неподвижной системе координат XYZ, связанной с Землей.

С помощью уравнения (2) счетно-решающее устройство определяет координаты точек на режущей кромке отвала и сравнивает их с требуемыми значениями высотных отметок обрабатываемой поверхности.

Результаты расчета и сравнения поступают в блок информации и управления 8. В случае отклонения режущей кромки отвала от проектного положения на гидроцилиндры подвеса тяговой рамы L1, L2, L3 подается управляющее воздействие: в ручном режиме - оператором автогрейдера, в автоматическом - блоком информации и управления.

Использование новых операций и устройств - антенн спутниковой навигации, жестко установленных на основной раме автогрейдера, счетно-решающего устройства, блока информации и управления, крепления тяговой рамы к основной раме с помощью трехосного шарнира, оси которого пересекаются в одной точке, а на осях установлены датчики угла поворота, позволило освободить отвал автогрейдера от штанг и проводов антенн спутниковых систем навигации и одновременно точно определять величину отклонения режущей кромки отвала автогрейдера от проектных отметок и использовать данную информацию для управления отвалом автогрейдера в ручном или автоматическом режимах.

Способ определения положения режущей кромки отвала автогрейдера, использующий системы спутниковой навигации, антенны систем спутниковой навигации, установленные на автогрейдере, отличающийся тем, что для определения положения режущей кромки отвала автогрейдера в системе координат, связанной с местностью, определяют углы поворота - тангажа, крена и рыскания, тяговой рамы относительно основной рамы автогрейдера, с помощью счетно-решающего устройства и формул преобразования координат определяют координаты точек на режущей кромке отвала автогрейдера в системе координат, связанной с автогрейдером, одновременно с помощью системы спутниковой навигации и антенн, жестко установленных на основной раме автогрейдера, определяют положение автогрейдера и связанной с ним системы координат в системе координат, связанной с местностью, затем с помощью счетно-решающего устройства координаты точек на режущей кромке отвала автогрейдера определяют в системе координат, связанной с местностью.



 

Похожие патенты:

Изобретение относится к области машиностроения, в частности к системам контроля и управления положением рабочего органа землеройно-транспортных и дорожно-строительных машин.

Изобретение относится к землеройно-транспортной и дорожно-строительной технике, в частности к способу контроля положения отвала автогрейдера. .

Изобретение относится к машиностроению. .

Изобретение относится к горной промышленности и может быть использовано для управления движением ковша экскаватора-драглайна. .

Изобретение относится к области электротехники и может быть использовано в низковольтных комплектных устройствах карьерных экскаваторов электрооборудования горнодобывающих машин.

Изобретение относится к электрооборудованию горнодобывающих машин и может быть использовано в низковольтных комплектных устройствах карьерных экскаваторов. .

Изобретение относится к системам управления строительных и дорожных машин. .

Изобретение относится к системам управления строительных и дорожных машин, предназначено для использования в строительных и дорожных машинах (бульдозеры, автогрейдеры, асфальтоукладчики и т.д.).

Изобретение относится к планировочным машинам, используемым при планировке земляной поверхности, например, в мелиорации или при строительстве автомобильных и железных дорог, взлетно-посадочных полос аэродромов и других объектов.

Изобретение относится к автоматизированному контролю и управлению горными машинами в условиях добывающих предприятий. .

Изобретение относится к горным машинам, а именно к карьерным экскаваторам типа «прямая лопата», и может быть использовано в подъемных и тяговых механизмах

Изобретение относится к машиностроению

Предложенная группа изобретений относится к электропитанию строительной и горной техники, в частности к системе электропитания карьерного экскаватора. Техническим результатом является повышение производительности и надежности работы экскаватора за счет ограничения пикового отбора электроэнергии карьерными экскаваторами от источника электроэнергии. Указанный технический результат обеспечивается тем, что максимальная электрическая мощность, отбираемая карьерным экскаватором, содержащим электродвигатели, из источника электрической мощности, уменьшается путем подачи дополнительной электрической мощности из устройства хранения электроэнергии. При этом входная электрическая мощность, отбираемая карьерным экскаватором, является цикличной. Для электрической мощности, отбираемой из источника электрической мощности, задают верхний предел. Когда входная электрическая мощность, отбираемая карьерным экскаватором, превышает верхний предел, устройство хранения электроэнергии, в частности банк ультраконденсаторов, подает электрическую мощность. Причем банк ультраконденсаторов может заряжаться источником электрической мощности во время интервалов между пиками потребления. А электрическая мощность, генерируемая электродвигателями, работающими в генераторном интервале, также может собираться и накапливаться в устройстве хранения электроэнергии. 4 н. и 26 з.п. ф-лы, 18 ил.

Изобретение относится к системе управления землеройной техникой. Техническим результатом является повышение производительности землеройной машины при различных условиях эксплуатации за счет обеспечения возможности ее приспосабливания к изменяющимся условиям. Система управления исполнительным механизмом погружения приспособления для экскавации имеет привод и контроллер, вырабатывающий выходной сигнал для изменения скорости погружения исполнительного механизма. При этом контроллер выполнен с возможностью определять полосу частот вращения привода, в которой величина выходного сигнала исполнительного механизма увеличивается при повышении частоты вращения привода и, наоборот, уменьшается при уменьшении частоты вращения привода. Кроме того, система содержит интерфейс пользователя, позволяющий оператору вручную изменять полосу частот вращения привода. 10 з.п. ф-лы, 28 ил.

Изобретение относится к горной промышленности и может быть использовано при открытой разработке скальных горных пород. Техническим результатом является повышение эффективности работы экскаваторов в т.ч. и за счет снижения аварийности погрузочного оборудования. Способ формирования динамических усилий в механизме экскаватора включает задание рабочей и возможно максимальной скоростей привода, измерение текущего усилия и сравнение его с заданным. При этом в экскаваторном забое по координатам погашенных взрывных скважин и фактическим параметрам буровзрывных работ в процессе экскавации позиционированием ковша устанавливают локализацию двух типов зон, различающихся по вероятности ожидания максимальных динамических нагрузок. В первой - наиболее вероятного ожидания максимальных динамических нагрузок, которая находится вокруг погашенных взрывных скважин с фактическими параметрами буровзрывных работ, не соответствующими проектным значениям, переходят с максимальной скорости привода на рабочую. Во второй зоне вероятного ожидания максимальных динамических нагрузок, которая локализуется положением погашенного межскважинного пространства с фактическими параметрами буровзрывных работ, соответствующими проектным значениям, после подтверждения предельных заданных усилий черпания устанавливают режим работы рабочей скорости привода, который при неподтверждении максимальных нагрузок в последующих циклах экскавации меняют для этой зоны на режим максимальной скорости привода. За пределами зон ожидания максимальных динамических нагрузок используют максимальную скорость привода.

Изобретение относится к землеройно-транспортным машинам. Система содержит электронный блок управления рабочим оборудованием, трансмиссией, двигателем и механизмами поворота машины, средство измерения параметров ее движения (действительной и теоретической скорости, буксования и т.п.), аппараты управления и дисплей. Измерение параметров движения машины осуществляется с помощью микромеханических гироскопов и акселерометров. В системе осуществляется прогнозирование величины буксования забегающего борта машины с последующей оптимизацией радиуса поворота машины. Реализовано автоматическое регулирование скорости движения машины в зависимости от неровностей трассы движения, выявленных при предыдущем проходе машины, а также управление рабочим органом из условия, что сформированные его режущей кромкой неровности поверхности грунта не приводят к необходимости снижения скорости отката. Оптимизировано управление машиной при работах на уклонах и косогорах, на взрыхленных скальных породах, в стесненных условиях, при наличии в разрабатываемом грунте электрических кабелей и металлических предметов. Реализованы различные виды программного управления движением машины, в том числе по криволинейным трассам и по предыдущему следу машины, а также автоматизированное управление тормозами и подачей топлива в двигатель машины. Изобретение обеспечивает повышение производительности землеройно-транспортной машины и улучшение условий труда оператора. 11 з.п. ф-лы, 1 ил.

Изобретение относится к средствам управления для ручного приведения в действие. Предложено управляющее устройство для гусеничного транспортного средства, содержащее управляющий рычаг (3), выполненный с возможностью приведения в действие оператором вокруг точки (H) опоры и имеющий свободный конец (5). Причем управляющий рычаг (3) выполнен с возможностью смещения вдоль продольного направления транспортного средства между ближним положением (P5) ближе к оператору и дальним положением (P1) дальше от оператора для управления главной муфтой транспортного средства. Кроме того, управляющее устройство (2) дополнительно содержит поддерживающий элемент (4), выполненный с возможностью крепления к телу транспортного средства для поддерживания руки оператора, когда рука воздействует на управляющий рычаг (3). При этом управляющий рычаг (3) имеет промежуточную часть (7), расположенную между свободным концом (5) и точкой (H) опоры, и имеющую такую форму, чтобы частично охватывать поддерживающий элемент (4) в ближнем положении (P5). Предложенное устройство обеспечивает комфорт и безопасность оператору при управлении гусеничным транспортным средством. 2 н. и 12 з.п. ф-лы, 6 ил.

Изобретение относится к горной промышленности и может быть использовано для управления движением ковша драглайна при копании. Техническим результатом является повышение надежности и долговечности рабочего оборудования и механизмов драглайна, а также повышение его производительности. Предложен способ управления движением ковша экскаватора-драглайна, включающий задание сигналов управления по частоте вращения приводов подъема, тяги и поворота, регулирование частоты вращения этих приводов, формирование по заданным и текущим значениям усилий натяжения в подъемных и тяговых канатах сигналов управления по усилию в этих канатах, затем эти сигналы по усилию сравнивают с соответствующими сигналами по частоте вращения приводов подъема и тяги с последующим выделением из сравниваемых сигналов наибольших сигналов, выделенный сигнал управления приводом подъема подают на вход блока регулирования частоты вращения привода подъема непосредственно, выделенный сигнал управления приводом тяги подают на вход блока регулирования частоты вращения привода тяги через первый основной управляемый ключ, сигнал управления приводом поворота подают на вход блока регулирования частоты вращения привода поворота через второй основной управляемый ключ. Кроме того, измеряют текущие длины подъемных и тяговых канатов, дополнительно задают расстояния до двух границ положения ковша в забое относительно бровки забоя. Задают длины тяговых канатов, соответствующие положению ковша на указанных границах, и длину подъемных канатов, соответствующую положению ковша на границе торможения ковша, задают уровень ограничения сигнала управления приводом тяги при положении ковша на границе ограничения скорости ковша и дополнительное усилие натяжения подъемных канатов при положении ковша на границе торможения ковша. В процессе копания сравнивают текущие длины подъемных и тяговых канатов с их заданными значениями до указанных границ. Предложено также устройство для управления движением ковша экскаватора-драглайна, содержащее блоки регулирования частоты вращения приводов подъема, тяги и поворота, блоки выделения сигналов управления приводами подъема и тяги, входы которых подключены к выходам соответствующих задатчиков частоты вращения этих приводов и регуляторов усилий натяжения подъемных и тяговых канатов, первый вход каждого из последних подключен к выходу соответствующего задатчика усилия натяжения канатов, а второй - к выходу соответствующего преобразователя усилия натяжения канатов, при этом вход блока регулирования частоты вращения привода подъема соединен непосредственно с выходом блока выделения сигнала управления приводом подъема, вход блока регулирования частоты вращения привода тяги соединен с выходом первого основного управляемого ключа, а вход блока регулирования частоты вращения привода поворота соединен через второй управляемый ключ с выходом задатчика частоты вращения этого привода, а также преобразователи длины подъемных и тяговых канатов. Устройство дополнительно снабжено тремя нелинейными элементами, четырьмя дополнительными управляемыми ключами, элементом ограничения сигнала управления приводом тяги и задатчиком дополнительного натяжения подъемных канатов. При этом вход первого нелинейного элемента подключен к выходу преобразователя длины подъемных канатов, а входы второго и третьего нелинейных элементов - к выходу преобразователя длины тяговых канатов, выход первого нелинейного элемента подключен на управляющий вход первого дополнительного ключа, выход второго нелинейного элемента подключен на управляющие входы второго и третьего дополнительных ключей, выход третьего нелинейного элемента соединен с управляющим входом первого и второго основных ключей и четвертого дополнительного ключа. Вход первого основного ключа подключен к выходу блока выделения сигнала управления приводом тяги через первый и второй дополнительные ключи, а также через первый дополнительный ключ, элемент ограничения сигнала управления приводом тяги и третий дополнительный ключ. Четвертый дополнительный ключ включен между выходом задатчика дополнительного натяжения подъемных канатов и третьим входом регулятора натяжения подъемных канатов. 2 н. и 2 з.п. ф-лы, 2 ил.

Настоящее изобретение относится к самоходному наземному роторному экскаватору, предпочтительно в форме дорожной фрезы, шнекороторного снегоочистителя или карьерного комбайна, с фрез-барабаном, способным вращаться вокруг горизонтальной оси вращения, и приводом фрез-барабана, содержащим по меньшей мере один электродвигатель, установленный внутри фрез-барабана, причем статор и ротор электродвигателя установлены во внутреннем объеме воздухо- и/или пыленепроницаемого корпуса электродвигателя. Предлагается снабдить находящийся внутри корпуса фрез-барабана электродвигатель привода фрез-барабана охлаждающим устройством с замкнутым контуром жидкостного охлаждения. Благодаря высокой теплоемкости подходящей охлаждающей жидкости, такой как масло или смесь воды с гликолем, для контура жидкостного охлаждения достаточны малые объемные потоки и, тем самым, возможны малые сечения трубопровода. С другой стороны, благодаря замкнутой структуре контура жидкостного охлаждения можно избежать всякого внесения пыли в привод фрез-барабана, а также образования пыли отходящим воздухом. Техническим результатом является снижение тепловой нагрузки на привод фрез-барабана без повышения пылевой нагрузки. 13 з.п. ф-лы, 5 ил.

Изобретение относится к устройству для выемки грунтового материала под водой. Техническим результатом является повышение эффективности производства донноуглубительных работ. Устройство содержит понтон, оснащенный экскаватором, выполненным с возможностью копания грунта под водой, исполнительные средства, выполненные с возможностью управления перемещением понтона и/или экскаватора, первое контролирующее средство, выполненное с возможностью отслеживания положения экскаватора. При этом плавэкскаватор с обратной лопатой также содержит второе контролирующее средство, выполненное с возможностью отслеживания нагрузки, испытываемой экскаватором, и третье контролирующее средство, выполненное с возможностью отслеживания положения понтона, компьютерное средство, выполненное с возможностью рассчитывания на основании данных, полученных от первого, второго и третьего контролирующих средств, управляющие сигналы для исполнительных средств. 2 н. и 13 з.п. ф-лы, 4 ил.
Наверх