Способ отработки раздвижного сопла ракетного двигателя с несколькими выдвигаемыми насадками



Способ отработки раздвижного сопла ракетного двигателя с несколькими выдвигаемыми насадками

 


Владельцы патента RU 2478816:

Открытое акционерное общество Научно-производственное объединение "Искра" (RU)

Изобретение относится к ракетной технике и может быть использовано при создании ракетных двигателей, раздвижные сопла которых имеют несколько выдвигаемых насадков. При отработке раздвижного сопла ракетного двигателя выполняют первый насадок со степенью расширения, соответствующей отношению диаметра выходного сечения насадка к диаметру критического сечения раздвижного сопла не более пяти. Устанавливают первый насадок на раструбе сопла в выдвинутом положении и проводят испытания в штатном режиме работы двигателя. При получении положительных результатов испытаний остальные насадки выполняют с коэффициентом запаса прочности не менее коэффициента запаса прочности первого насадка и результаты испытаний первого насадка переносят на последующие насадки. Изобретение позволяет проводить отработку раздвижных сопел с несколькими насадками без имитации высотных условий. 1 ил.

 

Изобретение относится к ракетной технике и может быть использовано при создании ракетных двигателей, раздвижные сопла которых имеют несколько выдвигаемых насадков.

Качественная отработка сопел большой степени расширения, к которым относятся и раздвижные сопла, предусматривает проведение огневых стендовых испытаний в штатных условиях работы двигателей. Штатные (высотные) условия обеспечиваются, например, в баростенде Центра им. Арнольда (США). В России таких стендов нет.

Общеизвестен способ отработки стационарных сопел большой степени расширения в наземных условиях, при котором сопло «обрезают» до диаметра, при котором обеспечивается безотрывный режим истечения. После испытаний проводят дефектацию оболочки (стенки) сопла, а затем пересчет результатов испытаний на оставшуюся (отрезанную) часть сопла, предполагая унос материала стенки сопла линейным. Очевидно, что недостатком такого способа отработки является низкая достоверность испытаний и, соответственно, отработки. Технология отработки раздвижных сопел с выдвигаемыми насадками является такой же, как и стационарных, только в этом случае выдвигаемые насадки сопел устанавливаются в рабочее (выдвинутое) положение.

Известен способ отработки сопел большой степени расширения с применением газодинамических труб, в которых за счет откачки воздуха потоком истекающих продуктов сгорания двигателя создаются условия для безотрывного истечения по всему тракту сопла (см., например, кн.: «Конструкция и отработка РДТТ». Виницкий A.M. и др. М., «Машиностроение», 1980 г., стр.107). Применение газодинамических труб позволяет испытывать сопла с существенно большой степенью расширения, однако их возможности по созданию требуемого разрежения воздуха ограничены.

Технической задачей настоящего изобретения является повышение достоверности результатов отработки раздвижных сопел с несколькими выдвигаемыми насадками без имитации высотных условий при испытаниях, что существенно снижает стоимость отработки ракетных двигателей.

Технический результат достигается тем, что в способе отработки раздвижного сопла с несколькими выдвигаемыми насадками, при котором первый насадок выполняют со степенью расширения, соответствующей отношению диаметра выходного сечения насадка d к диаметру критического сечения раздвижного сопла dкр не более пяти, устанавливают его на раструбе сопла в рабочем (выдвинутом положении) и проводят испытания в штатном режиме работы двигателя. Испытания проводят до получения положительного результата (целостности конструкции насадка), после чего остальные насадки выполняют с соблюдением условия

,

где η - коэффициент запаса прочности;

σB - предел прочности материала силовой конструкции;

σконстр - расчетные напряжения в силовой конструкции, рассчитанные для определенных режимов работы двигателя (температуры, давления, времени работы, химического уноса материала);

(1,2,…i)нас - порядковый номер насадка,

и результаты испытаний первого насадка переносят на последующие насадки.

Условие d/dкр≤5 выбрано, исходя из того обстоятельства, что практически во всех твердотопливных ракетных двигателях верхних ступеней ракет безотрывный режим истечения продуктов сгорания топлива обеспечивается при этих степенях расширения сопел.

Напряжения определяются для всех насадков раздвижного сопла по единой методике, то есть имеют одинаковую степень достоверности. Наибольшая точность переноса результатов испытаний достигается в случае выполнения всех насадков из одного и того же материала, например класса «углерод-углерод».

На чертеже изображен внешний вид раздвижного сопла с выдвигаемыми насадками. Раздвижное сопло имеет установленный в рабочее положение насадок 1 и выдвигаемые насадки 2, 3. Насадок 1 крепится к соплу ракетного двигателя, выдвигаемые насадки 2, 3 устанавливаются на насадке 1.

В составе двигателя испытывается только насадок 1, имеющий степень расширения d/dкр≤5 для обеспечения безотрывного режима истечения продуктов сгорания топлива. Выдвигаемые насадки 2, 3 не испытываются. При положительных результатах испытаний насадка 1 остальные (неиспытанные) насадки выполняются с обеспечением коэффициентов запаса прочности не менее чем у насадка 1.

Таким образом, предлагаемый способ оценки работоспособности раздвижного сопла ракетного двигателя с несколькими выдвигаемыми насадками позволяет отказаться от проведения сложных и дорогостоящих огневых стендовых испытаний двигателя с имитацией высотных условий (в газодинамической трубе) и существенно снизить стоимость создания ракетного двигателя.

Способ отработки раздвижного сопла ракетного двигателя с несколькими выдвигаемыми насадками, при котором первый насадок выполняют со степенью расширения, соответствующей отношению диаметра выходного сечения насадка к диаметру критического сечения раздвижного сопла не более пяти, устанавливают его на раструбе сопла в рабочем (выдвинутом положении) и проводят испытания в штатном режиме работы двигателя, испытания проводят до получения положительного результата (целостности конструкции насадка), после чего остальные насадки выполняют с соблюдением условия:

где η - коэффициент запаса прочности;
σB - предел прочности материала силовой конструкции;
σконстр - расчетные напряжения в силовой конструкции, рассчитанные для определенных режимов работы двигателя (температуры, давления, времени работы, химического уноса материала);
(1,2,…i)нас - порядковый номер выдвигаемого насадка,
и результаты испытаний первого насадка переносят на последующие насадки.



 

Похожие патенты:

Изобретение относится к области ракетной и измерительной техники и может быть использовано для гашения ракетных двигателей твердого топлива при отработке и наземных испытаниях.
Изобретение относится к области ракетного двигателестроения. .

Изобретение относится к области ракетной техники, а именно к способам оценки безопасности пуска авиационных ракет с ракетным двигателем твердого топлива из-под фюзеляжа самолета-носителя.

Изобретение относится к области испытательной техники, а более конкретно к области исследования границ устойчивости к поперечным высокочастотным колебаниям давления в модельных камерах сгорания жидкостных ракетных двигателей (ЖРД) применительно к смесительным головкам с натурными двухкомпонентными форсунками, и может быть использовано при разработке и создании ЖРД.

Изобретение относится к ракетной технике и может быть использовано для экспериментальной отработки при создании и модернизации маршевых однокамерных и многокамерных установок, в частности для имитации высотных условий при огневых испытаниях жидкостных ракетных двигателей с соплами больших степеней расширения.

Изобретение относится к ракетной технике и может быть использовано в ракетных двигателях с раздвижными соплами для определения времени выдвижения насадка в рабочее положение.

Изобретение относится к машиностроению и может быть использовано при стендовых испытаниях жидкостных ракетных двигателей (ЖРД) и других энергоустановок с криогенными компонентами топлива.

Изобретение относится к стендам огневых испытаний жидкостных ракетных двигателей, в частности к стендам, на которых производят огневые испытания жидкостных ракетных двигателей меньшей мощности, чем стенд большой мощности относительно расчетной для газодинамической трубы.

Изобретение относится к ракетной технике, а именно к испытаниям ракетных двигателей твердого топлива. .

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя твердого топлива (РДТТ). .

Изобретение относится к ракетной технике и может быть использовано при создании ракетного двигателя твердого топлива (РДТТ)

Изобретение относится к ракетной технике и может быть использовано при наземной огневой отработке раздвижного сопла высотного ракетного двигателя

Изобретение относится к области машиностроения и может быть использовано для определения погрешностей изготовления корпуса ракетного двигателя по геометрическим параметрам

Изобретение относится к области ракетной техники, а именно к высотным испытаниям крупногабаритного РДТТ

Изобретение относится к ракетно-космической технике. Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющихся частей ступени ракет-носителей, основанном на введении в экспериментальную установку теплоносителя, обеспечении условий взаимодействия в зоне контакта теплоносителя с поверхностью жидкого газифицируемого компонента ракетного топлива, проведении измерений температуры, давления в различных точках экспериментальной установки, при этом перед подачей теплоносителя осуществляют понижение давления в экспериментальной установке до 0,01 МПа через электропневмоклапан. Рассмотрено устройство для моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющейся части ступени ракеты-носителя, включающее в свой состав экспериментальную установку в виде модельного бака, содержащего поддон для жидкого компонента ракетного топлива, датчики температуры, давления, входной и выходной патрубки, при этом экспериментальная установка имеет в своем составе вакуумную камеру для создания пониженного абсолютного давления до 0,01 МПа с управляемым электропневмоклапаном и газоанализатор для определения процентного содержания газифицированных компонентов ракетного топлива. 2 н. и 3 з.п. ф-лы, 1 ил.

При определении скорости горения твердого ракетного топлива монтируют и сжигают стержневой образец твердого ракетного топлива с запальным проводником в камере сгорания, имеющей систему регистрации давления, а также вентили подачи и сброса давления. Перед монтажом измеряют длину небронированного образца, бронируют его, после чего выполняют на открытом торце бронированного образца пропил, перпендикулярный этому торцу, глубиной 5…8% от длины образца и измеряют глубину пропила. После монтажа образца вместе с гермовыводом в камере сгорания образец поджигают и поддерживают давление в камере сгорания на уровне заданного давления, сбрасывая избыточное в течение времени сброса давления, определяемого соотношением, защищаемым настоящим изобретением. Затем закрывают этот вентиль и после достижения максимального давления в момент времени, соответствующий окончанию горения образца, снова открывают вентиль сброса. После этого определяют среднее давление и скорость горения твердого ракетного топлива на контрольном участке горения образца по соотношениям, защищаемым настоящим изобретением. Изобретение позволяет повысить точность определения скорости горения твердого ракетного топлива. 3 ил.

Изобретение относится к области машиностроения и может быть использовано для измерения зазора между раструбом и арматурой сопла ракетного двигателя, имеющих конический или криволинейный профиль сопрягаемых через клеевой состав поверхностей. Сущность изобретения заключается в следующем. При измерении зазора арматуру базируют на объемном калибре в виде полого тела вращения. Наружный профиль калибра имитирует максимальный профиль раструба. Не менее чем в двух радиальных сечениях равномерно по окружности со стороны внутренней полости калибра расположены не менее чем по четыре втулки со сквозными отверстиями. Оси втулок перпендикулярны наружному профилю калибра, а один из торцов совпадает с наружным профилем калибра. В отверстия втулок последовательно со стороны внутренней полости калибра заводят измерительный наконечник индикатора часового типа, предварительно настроенного на начальное показание и снабженного ограничителем. Упирают торец ограничителя индикатора в торец втулки калибра при одновременном касании измерительным наконечником индикатора внутренней поверхности арматуры. После чего фиксируют показание индикатора и определяют величину зазора между раструбом и арматурой в данной точке профиля по формуле: δc=h0+a0-li-ai, где h0 - действительный размер настроечной меры, мм; li - действительная длина втулки калибра, мм; a0 - показание индикатора, настроенного на ноль; ai - показание индикатора, зафиксированное в процессе измерения. Использование изобретения позволит с высокой точностью измерить величину зазора между раструбом и арматурой сопла ракетного двигателя. При этом снижается трудоемкость операции измерения. 2 ил.

При определении скорости горения твердого ракетного топлива производят монтаж и сжигание стержневого образца с запальным проводником в камере сгорания, имеющей систему регистрации давления. Перед монтажом небронированный образец опускают в бронестаканчик с неотвержденным бронесоставом и отверждают бронесостав. Затем в плоскости осевого сечения бронированого образца выполняют на его торцах пропилы с вершинами, перпендикулярными оси образца. Устанавливают в пропил со стороны бронированного торца отрезок огнепроводного шнура. Изолируют полость пропила с установленным отрезком огнепроводного шнура. Устанавливают в пропил со стороны открытого торца запальный проводник, соединяют концы проводника с гермовыводом и монтируют образец вместе с гермовыводом в камере сгорания. Подают в камеру сгорания начальное давление от внешнего источника, поджигают образец и поддерживают давление в камере сгорания на уровне заданного давления, сбрасывая избыточное давление до момента появления всплеска давления в камере сгорания. Сбрасывают давление и определяют скорость горения твердого ракетного топлива по защищаем настоящим изобретением соотношениям. Изобретение позволяет упростить подготовку образца твердого ракетного топлива к испытаниям и повысить точность определения его скорости горения. 1 з.п. ф-лы, 4 ил.

Экспериментальный ракетный двигатель твердого топлива содержит корпус из композитного материала с передним и сопловым днищами, соединенными между собой посредством цилиндрического участка, скрепленный с корпусом заряд твердого топлива и утопленное сопло. На переднем днище установлен глухой фланец многократного использования, в центре которого с внешней стороны установлено воспламенительное устройство. Наружный радиус заряда, радиус канала заряда, радиус критического сечения сопла и толщина цилиндрического участка силовой оболочки корпуса определены соотношениями, защищаемыми настоящим изобретением. Изобретение позволяет определять удельный импульс тяги и скорость горения твердого ракетного топлива в условиях напряженно-деформированного состояния. 1 ил.

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей с имитацией высотных условий. Стенд для высотных испытаний ракетных двигателей с тонкостенными соплами содержит барокамеру, выхлопной диффузор, кольцевой эжектор и соединенный с ним источник эжектирующего рабочего тела. Источник эжектирующего рабочего тела выполнен в виде парогенератора, образованного охватывающим диффузор кожухом, полость которого на входе сообщена с подводом охлаждающей жидкости, а на выходе с кольцевым эжектором. Стенд снабжен форсунками, размещенными в кольцевом эжекторе и имеющими программно разрушающиеся корпусы. Изобретение позволяет имитировать высотные условия при испытании ракетного двигателя с тонкостенным соплом на различных режимах его работы, включая период выключения, а также обеспечить сохранность элементов конструкции двигателя. 1 з.п. ф-лы, 3 ил.
Наверх