Способ измерения коэффициента температуропроводности теплоизоляционных материалов методом регулярного режима третьего рода

Изобретение относится к области тепловых испытаний теплоизоляционных материалов. Способ заключается в том, что в изготовленном плоском образце исследуемого материала размещают в сечениях с координатами x=x1 и x=x2 два датчика температуры, выполненные в виде термопар или термометров сопротивления. Образец, покрытый сверху теплоизоляцией, помещают на поверхность элемента Пельтье, являющегося источником гармонических колебаний температуры. Путем изменения периода τ0 гармонических колебаний элемента Пельтье подбирают такой режим работы измерительного устройства, при котором величина отличается не более чем на малую величину ε=0,002…0,009 от заданного значения ψз из диапазона (0,14…0,18), что позволяет вычислить искомое значение коэффициента температуропроводности с наименьшей погрешностью. Технический результат изобретения - повышение точности измерения коэффициента температуропроводности теплоизоляционных материалов. 2 ил.

 

Изобретение относится к области тепловых испытаний теплоизоляционных материалов, а именно к области исследования теплофизических характеристик этих материалов.

Известен способ определения комплекса теплофизических свойств твердых материалов [патент РФ №2374631, кл. G01N 25/18, 2008], включающий тепловое импульсное воздействие на плоскую поверхность исследуемого образца и измерение избыточной температуры на плоской поверхности образца в одной точке в заданном интервале времени. Тепловое импульсное воздействие осуществляют лучистым тепловым потоком известной плотности и длительности, а измерение избыточной температуры с момента подачи теплового импульса проводят в центральной части нагреваемой поверхности образца, при этом регистрируют значение максимальной избыточной температуры и время ее достижения.

К недостаткам этого способа относятся невысокая точность измерения коэффициента температуропроводности и необходимость наличия специальной аппаратуры (инфракрасного излучателя и инфракрасного измерителя температуры).

Известен способ измерения температуропроводности и теплоемкости горных пород методом плоских температурных волн [Зиновьев В.Е., Бочаров В.И., Мулюков P.P. и др. Прибор для автоматизированных измерений теплофизических характеристик горных пород в условиях, близких к естественным // Измерительная техника. - 1985. №1. - С.62-63], заключающийся в том, что тонкий малоинерционный нагреватель, задающий периодический нагрев, располагается между исследуемым образцом и эталонным образцом того же размера. Колебания температуры на противоположных от нагревателя поверхностях исследуемого образца и эталона регистрируются с помощью термопар.

Недостатками этого способа являются большая длительность и трудоемкость эксперимента, а также необходимость использования эталонного образца.

Наиболее близким техническим решением является способ измерения коэффициента температуропроводности методом регулярного режима третьего рода [Теоретические и практические основы теплофизических измерений: под ред. С.В.Пономарева / С.В.Пономарев, С.В.Мищенко, А.Г.Дивин, В.А.Вертоградский, А.А.Чуриков. - М.: ФИЗМАТЛИТ, 2008. - 408 с.], заключающийся в том, что в исследуемом плоском образце размещают в сечениях с координатами x=x1 и x=x2 два датчика температуры, выполненные в виде термопар или термометров сопротивления. Образец, покрытый сверху теплоизоляцией, помещают на поверхность элемента Пельтье, являющегося источником гармонических колебаний температуры. В процессе эксперимента на рабочую поверхность исследуемого образца подают периодическое температурное воздействие и на протяжении всей активной стадии эксперимента регистрируют температуры Т(x1,τ) и Т(x2,τ) в точках с координатами x=x1 и x=x2. О наступлении установившегося во времени регулярного режима третьего рода судят по достижению постоянных значений амплитуд гармонических колебаний. Измеряют расстояние (x2-x1) и, после обработки экспериментальных данных, определяют амплитуды ϑm(x1) и ϑm(x2) гармонических колебаний в точках с координатами x=x1 и x=x2 и величину времени запаздывания гармонических колебаний в точке x=x2 по сравнению с точкой x=x1, а искомый коэффициент температуропроводности а вычисляют по формуле где τ0 - период гармонических колебаний.

Недостатком данного способа является невысокая точность измерения коэффициента температуропроводности исследуемого материала.

Техническая задача изобретения - повышение точности измерения коэффициента температуропроводности теплоизоляционных материалов за счет выбора оптимальных режимных параметров теплофизического эксперимента.

Техническая задача достигается тем, что в способе измерения коэффициента температуропроводности теплоизоляционных материалов методом регулярного режима третьего рода, заключающемся в том, что в изготовленном плоском образце исследуемого материала размещают в сечениях с координатами x=x1 и x=x2 два датчика температуры, выполненные в виде термопар или термометров сопротивления, образец, покрытый сверху теплоизоляцией, помещают на поверхность элемента Пельтье, являющегося источником гармонических колебаний температуры, на протяжении активной стадии эксперимента регистрируют температуры в двух точках исследуемого образца, измеряют расстояние (x2-x1), период гармонических колебаний τ0 и время запаздывания τз(x2,x1) гармонических колебаний на глубине x=x2 по сравнению с гармоническими колебаниями на поверхности x=x1 образца, коэффициент температуропроводности вычисляют по формуле в отличие от прототипа, путем изменения периода τ0 гармонических колебаний элемента Пельтье подбирают такой режим работы измерительного устройства, при котором величина отличается не более чем на малую величину ε=0,002…0,005 от заданного значения ψз из диапазона (0,14…0,18).

На фиг.1 представлена физическая модель устройства для осуществления метода регулярного режима третьего рода.

Исследуемый образец 7 выполнен в виде плоской пластины толщиной Н, помещенной на верхнюю поверхность источника 2 внешнего гармоничного температурного воздействия, выполненного на основе элемента Пельтье. Внутри образца в сечениях с координатами x=x1 и x=x2 размещены два датчика температуры 3 и 4, выполненные в виде термопар или термометров сопротивления. Для уменьшения утечек теплоты в окружающую среду верхняя поверхность образца 1 покрыта теплоизоляцией 5.

Регулярный режим третьего рода устанавливается в исследуемом образце по истечении некоторого промежутка времени после того момента, когда на поверхность этого образца начал действовать источник гармонических колебаний температуры.

Поместим начало координат по оси x в точку x=x1, в которой установлен датчик температуры 3. Тогда точка x=x2 в новой системе координат будет соответствовать значению x=(x2-x1) (см. фиг.1).

Рассмотрим процессы теплопереноса в плоском образце, на поверхности x=0 которого (где установлен датчик температуры 3) задан гармонический закон изменения температуры во времени ϑ(0,τ)=ϑmax·cos(ω·τ).

Температурное поле во внутренних точках образца описывается выражением:

где ϑ(x,τ)=T(x,τ)-T0 - температура исследуемого образца в точке с координатой x в момент времени τ, отсчитываемая от установившегося среднего значения температуры T0 на поверхности исследуемого образца; T(x,τ) - температура исследуемого образца на глубине x в момент времени τ; ϑmax - амплитуда гармонических колебаний температуры на поверхности x=0 относительно установившегося среднего значения температуры T0 на поверхности исследуемого образца; а - коэффициент температуропроводности; τ0 - период гармонических колебаний температур; - частота гармонических колебаний.

Задача оптимизации режимных параметров метода и конструкционного размера устройства может быть сформулирована следующим образом: для значения коэффициента температуропроводности а, например для середины диапазона исследуемого свойства amin<а<amax, найти такие значения периода τ0 гармонических колебаний и геометрического размера x, чтобы погрешность определения коэффициента температуропроводности была минимальной.

Рассмотрим случай, когда коэффициент температуропроводности определяется из соотношения

где τз(x) - запаздывание во времени гармонических колебаний с периодом τ0 на глубине x по сравнению с гармоническими колебаниями на поверхности x=0 образца.

Проведем оценку погрешностей измерения температуропроводности по величине сдвига фаз гармонических колебаний между двумя поверхностями x=0 и x=x образца. Основываясь на формуле (2), получим расчетное соотношение для вычисления среднеквадратичной оценки относительной погрешности δа измерения коэффициента температуропроводности.

Используя стандартную процедуру вычисления погрешностей косвенных измерений, запишем

где Δx, - абсолютная и относительная погрешности измерения расстояния между двумя поверхностями с координатами x=0 и x=x; Δτз, - абсолютная и относительная погрешности определения времени запаздывания τз; Δτ0, - абсолютная и относительная погрешности измерения периода τ0 колебаний.

Обозначим - отношение времени запаздывания τз гармонических колебаний в точке с координатой x к периоду τ0 гармонических колебаний. Если принять, что Δτз=Δτ0=Δτ, то можно представить в виде

где , - относительные погрешности измерения периода гармонических колебаний τ0 и времени запаздывания τз.

Учитывая, что , получаем соотношение

позволяющее вычислить абсолютную погрешность Δτз(x) определения времени запаздывания на глубине x образца по известному значению абсолютной погрешности Δϑ измерения температуры ϑ(x,τ).

Продифференцировав (1), получаем

Из (5) и (6) следует, что

где принято во внимание, что ω=2·π/τ0.

С учетом того, что наиболее благоприятные условия для измерения значения τз достигаются при , из (5а) следует, что

где - относительная погрешность измерения амплитуды ϑmax гармонических колебаний температуры на поверхности х=0.

При х=0 из уравнения (7) получим

При x≠0 на основании (7) с учетом выражения (4) получаем

В формуле (9) принято во внимание, что , где φ - сдвиг по фазе между гармоническими колебаниями на поверхности x=0 и в точке с координатой x, причем . С учетом изложенного получаем, что .

Подставив (8) и (9) в (3), получаем

или

Соотношение (10) показывает, что среднеквадратичная оценка погрешности δа измерения коэффициента температуропроводности а представляет собой функцию δа=f(δx, δϑmax, ψ), значения аргументов которой δx, δϑmax, ψ определяются конструкцией измерительного устройства, условиями проведения эксперимента и свойствами исследуемого материала.

По полученным формулам были рассчитаны среднеквадратичные относительные погрешности для различных значений x, ψ и выбраны оптимальные параметры, обеспечивающие наименьшую погрешность измерения коэффициента температуропроводности исследуемого материала.

На фиг.2 показан график зависимости δа=f(ψ) для различных x (при х=2…5 мм, τ0=100…1000 с).

При выполнении расчетов были использованы следующие значения:

а=1,2·10-7 м2/с, x=2…5 мм, Δx=0,05 мм, Δϑ=0,1°C, ϑmax=10°C, τ0=100…1000 c.

Из фиг.2 видно, что для разных значений x минимумы погрешностей δа приходятся на одно и то же значение параметра ψ.

Найдем значение величины ψ, при котором достигается минимальная погрешность δа измерения коэффициента температуропроводности. Для этого воспользуемся необходимым условием экстремума функции (10) в виде уравнения

.

Принимая во внимание, что δx и δϑmax не зависят от переменной ψ, получаем, что производная пропорциональна следующему выражению

Из уравнения (11) следует, что минимальное значение относительной погрешности δа измерения коэффициента температуропроводности достигается при (2πψ-1)=0, т.е. при ψ=1/(2π)=0,159155≈0,16. Видно, что полученная оценка величины ψ≈0,16 полностью соответствует результатам численных расчетов, проиллюстрированных на фиг.2.

Из фиг.2 видно следующее:

- минимальные значения погрешностей δа измерения коэффициента температуропроводности а достигаются при постоянном значении ψ≈0,16, но при различных значениях периода τ0 гармонических колебаний температуры;

- допустимые значения погрешностей измерения коэффициента температуропроводности обеспечиваются при выборе заданного значения ψз из диапазона 0,14<ψз<18.

Из изложенного выше следует, что для обеспечения оптимального значения режимного параметра ψз процесса измерения из диапазона (0,14…0,18), в ходе эксперимента необходимо контролировать величину параметра и, за счет изменения периода τ0 гармонических колебаний температуры, поддерживать значение разности (ψ-ψз)≤ε, не превышающее наперед заданную малую величину ε≈(0,002…0,005).

Способ измерения коэффициента температуропроводности теплоизоляционных материалов методом регулярного режима третьего рода, заключающийся в том, что в изготовленном плоском образце исследуемого материала размещают в сечениях с координатами x=x1 и x=x2 два датчика температуры, выполненные в виде термопар или термометров сопротивления, образец, покрытый сверху теплоизоляцией, помещают на поверхность элемента Пельтье, являющегося источником гармонических колебаний температуры, на протяжении активной стадии эксперимента регистрируют температуры в двух точках исследуемого образца, измеряют расстояние (x2-x1), период гармонических колебаний τ0 и время запаздывания τз(x2, x1) гармонических колебаний на глубине x=x2 по сравнению с гармоническими колебаниями на поверхности x=x1 образца, коэффициент температуропроводности вычисляют по формуле отличающийся тем, что путем изменения периода τ0 гармонических колебаний элемента Пельтье подбирают такой режим работы измерительного устройства, при котором величина отличается не более чем на малую величину ε=0,002…0,005 от заданного значения ψз из диапазона (0,14…0,18).



 

Похожие патенты:

Изобретение относится к строительной технике и может быть преимущественно использовано для измерения теплофизических характеристик различных строительных конструкций, например, стен, потолков, полов, переборок, подволоков и др.

Изобретение относится к строительной технике и может быть преимущественно использовано для измерения теплофизических характеристик различных строительных конструкций, например стен, потолков, полов, переборок, подволоков и др.

Изобретение относится к области исследования и анализа теплофизических свойств материалов и может быть использовано при определении коэффициента теплопроводности сверхтонких жидких теплоизоляционных покрытий - u.

Изобретение относится к области термометрии и может быть использовано при определении сопротивления теплопередаче строительной конструкции. .

Изобретение относится к области приборостроения и может быть использовано при определении коэффициента излучения поверхности материалов. .

Изобретение относится к области измерения теплофизических свойств ограждающих конструкций строительных сооружений и может быть использовано для определения их количественных характеристик в условиях нестационарного теплообмена с окружающей средой.

Изобретение относится к области теплофизических измерений и может быть использовано при неразрушающем контроле параметра тепловой активности горных пород. .

Изобретение относится к способам измерения теплофизических свойств веществ. .

Изобретение относится к нестационарным способам определения теплофизических свойств твердых тел. .

Изобретение относится к области измерительной техники и найдет применение практически во всех процессах строительства, производства, эксплуатации и ремонта различных технических объектов, где необходимы диагностика, контроль качества, обеспечение работоспособности и безопасности эксплуатации непосредственно объектов и их отдельных узлов, блоков и деталей.

Изобретение относится к области теплофизических измерений и может быть использовано для определения теплопроводности материалов

Изобретение относится к области тепловых испытаний и может быть использовано для испытаний теплозащиты летательных аппаратов (ЛА) для определения ее теплофизических свойств и работоспособности

Изобретение относится к стационарным способам определения теплопроводности плоских однослойных конструкций и может быть использовано в строительстве и теплоэнергетике

Изобретение относится к области исследования теплофизических свойств материалов и может быть использовано при определении коэффициента эффективности сверхтонких жидких теплоизоляционных покрытий - u

Изобретение относится к области приборостроения и может быть использовано в промысловой геофизике для оценки глубинных тепловых полей, процессов мембранного разделения в химической промышленности и других отраслях

Изобретение относится к области изучения физических свойств пористых неоднородных материалов и может быть использовано для определения характеристик порового пространства и теплопроводности образцов горных пород и минералов

Изобретение относится к области физико-химического анализа и может быть использовано при тепловых испытаниях. Исследуемое тело приводят в тепловой контакт с эталонным телом по плоскости, в которой находится локальный круглый нагреватель. Через равные промежутки времени измеряют разность значений температуры между нагревателем и точкой плоскости контакта исследуемого и эталонного тел. Испытания заканчивают при превышении контролируемым динамическим параметром заданного значения. Строят зависимость текущего значения тепловой активности от температуры исследуемого тела. Структурные переходы в полимерных материалах определяют по наличию пиков на зависимости текущего значения тепловой активности от температуры исследуемого тела. 1 табл., 9 ил.

Изобретение относится к области технической физики и может быть использовано при прогнозировании эксплуатационных характеристик композиционных материалов. Заявлено устройство для определения коэффициента теплопроводности материала методом плоского горизонтального слоя, содержащее элемент, исключающий боковые тепловые потери, измерительный блок с нагревателем, измерительную ячейку, предназначенную для расположения образца исследуемого материала и выполненную в виде двух функционально независимых элементов, одного с функцией нагрева, другого - охлаждения, которые расположены соосно и с заданным зазором, обеспечивающим тепловой контакт, термопару, подключенную к измерительному блоку. Элемент измерительной ячейки с функцией охлаждения выполнен в виде соосно расположенных друг в друге колец внутреннего и внешнего. Кольца внутреннее и внешнее и объем между ними выполнены с возможностью заполнения одной и той же легко испаряющейся жидкостью с углом смачивания на образце исследуемого материала не более 90°. Расположены упомянутые кольца на лицевой стороне образца исследуемого материала, а термопара расположена с противоположной стороны образца исследуемого материала. Технический результат: повышение точности экспресс-измерений для определения коэффициента теплопроводности материала. 8 з.п. ф-лы, 1 ил.

Использование: для неразрушающего контроля теплофизических характеристик строительных материалов и изделий. Сущность: заключается в том, что перпендикулярно поверхности исследуемого изделия воздействуют импульсом высокочастотного электромагнитного поля СВЧ-диапазона по линии заданной длины, осуществляя нагрев исследуемого полуограниченного в тепловом отношении тела по плоскости, перпендикулярной плоскости внешней поверхности исследуемого объекта и уходящей внутрь него, причем для организации такого воздействия электромагнитное излучение рупорной антенны СВЧ-генератора фокусируют с использованием рупорно-линзовой антенны в линию заданной длины, измеряют в заданный момент времени после воздействия импульса СВЧ-излучения избыточную температуру на теплоизолированной от окружающей среды поверхности исследуемого изделия в двух точках, находящихся, соответственно, на расстояниях x1 и x2 от плоскости высокочастотного электромагнитного воздействия, длину волны и мощность электромагнитного СВЧ-излучения задают такими, чтобы глубина проникновения электромагнитного поля была не менее, чем на порядок больше заданных расстояний x1 и x2 до точек контроля температуры, имея информацию о мощности теплового воздействия на исследуемое изделие в плоскости СВЧ-нагрева и измеренных в заданный момент времени значений избыточных температур в точках контроля, искомые теплофизические характеристики определяют на основе полученных математических соотношений. Технический результат: повышение оперативности и точности определения теплофизических характеристик строительных материалов. 2 з.п. ф-лы, 5 ил., 3 табл.
Изобретение относится к измерительной технике, а именно к способам определения физических свойств материалов путем тепловых и электрических измерений, и может быть использовано для оперативного контроля теплотехнических качеств ограждающих конструкций зданий и сооружений в натурных условиях. Способ неразрущающего контроля теплотехнических качеств ограждающих конструкций зданий заключается в том, что измеряют фактические значения теплопроводности внутреннего и наружного поверхностных слоев конструкции. Затем вычисляют значения сопротивлений теплопередаче этих слоев по формулам: Rв=δв/λв и Rн=δн/λн, где Rв и Rн - значения сопротивлений теплопередаче внутреннего и наружного поверхностных слоев конструкции, соответственно; δв и δн - толщина внутреннего и наружного поверхностных слоев, соответственно; λв и λн - теплопроводность внутреннего и наружного поверхностных слоев, соответственно. Далее вычисляют значение сопротивления теплопередаче теплоизоляционного слоя по формуле: Rт=Rк-1/αв-1/αн-Rв-Rн, где Rт - сопротивление теплопередаче теплоизоляционного слоя; Rk - общее сопротивление теплопередаче конструкции; αв, αн - коэффициенты теплоотдачи внутренней и наружной поверхностей конструкции, соответственно. Затем вычисляют фактическое значение теплопроводности материала теплоизоляционного слоя конструкции по формуле: λт,=δт/Rт, где λт - теплопроводность материала; δт - толщина слоя. После чего определяют фактическое значение влажности материала теплоизоляционного слоя по формуле: Wт=(λт-λ0)/Δλw, где Wt - влажность материала; λ0 теплопроводность материала в сухом состоянии; Δλw - приращение теплопроводности материала на 1% влажности. Техническим результатом изобретения является определение теплофизических характеристик теплоизоляционного слоя многослойных строительных конструкций без нарушения их целостности. 1 з.п. ф-лы.

Изобретение относится к области тепловых испытаний теплоизоляционных материалов

Наверх