Устройство для определения содержания нерастворенной воды в технических жидкостях

Изобретение относится к контрольно-измерительной технике. Технический результат - упрощение конструкции и повышение точности измерений. Сущность изобретения: в емкость 1 через регулятор потока 10 и входной штуцер 2 подают порцию контролируемой жидкости, которую нагревают до парообразования нерастворенной воды. В момент разрыва оболочки с паром возникают акустические волны, преобразуемые с помощью акустического приемника 5 в электрические сигналы, которые через усилитель 7 и счетчик 8 поступают на индикатор 11. Таймер 9 управляет счетчиком 8 и регулятором потока 10. Емкость 1 закрыта крышкой 4, внутри которой расположена конусная вставка 6. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к контрольно-измерительной технике и может быть использовано для испытаний изоляционных и смазочных жидкостей, низкооктановых горючих материалов с низкой вязкостью, например трансформаторного масла, смазочных масел паровых турбин и компрессоров, дизельного топлива.

Известно устройство (Иванов B.C. Руководящие указания по эксплуатации трансформаторного масла. М., Энергия, 1966, с.86), содержащее нагреватель и емкость для проб технической жидкости, в котором акустические сигналы при выпаривании нерастворенной воды воспринимаются на слух, поэтому результат испытаний носит субъективный характер, а определить количество нерастворенной воды в пробе невозможно.

Известно устройство для контроля нерастворенной воды в потоке технической жидкости (патент РФ №2256901 по кл.G01N 25/56, опубл. в 2004 г.).

Устройство содержит измерительную камеру, состоящую из излучателя светового потока и фотоприемника, расположенных в горизонтальной плоскости.

При этом поток жидкости движется перпендикулярно к этой плоскости. Измерение интенсивности светового потока от пересекающих его механических частиц и капель воды, перемещающихся с постоянной скоростью, позволяет определять размеры этих частиц. Жидкость перед поступлением в измерительную камеру нагревается до температуры, при которой за счет парообразования размеры капель воды увеличиваются, что повышает разрешающую способность измерителя и обеспечивает контроль капель воды небольшого размера. Рабочий канал измерительной камеры имеет небольшое сечение, что уменьшает вероятность прохождения одновременно нескольких частиц, но ограничивает допустимый расход жидкости и снижает производительность при испытаниях. Испытания на данном устройстве имеют ограничение по светопропусканию жидкости: для контроля темных жидкостей требуется источник света большой мощности, а при контроле прозрачных жидкостей капли воды в потоке жидкости не обнаруживаются.

Чтобы тепло от нагретой жидкости не передавалось измерительной камере, используется дополнительное охлаждение, а поток жидкости от фотоэлектронных элементов должен быть изолирован. Это усложняет конструкцию устройства.

Известно устройство (RU 2125259 G01N 25/50, опубл. в 1999 г. - принято за прототип), обеспечивающее контроль нерастворенной воды в пробе или потоке технической жидкости.

Устройство содержит емкость, нагреватель, регулятор потока, входной и выходной штуцеры, электронный блок. В вариантах исполнения устройства используются теплообменник и вторая диафрагма, а электронный ключ реализует разные способы обработки и индикации электрического сигнала.

Исходной величиной для измерения является перемещение диафрагмы под действием акустических волн, образованных при переходе в пар капель воды. Диафрагма является элементом конструкции (дном) емкости и должна иметь достаточную механическую прочность, а это ухудшает ее упругие свойства. Акустические волны, возникшие при вскипании капель воды небольшого размера, не создают перемещение диафрагмы, достаточное для получения электрического сигнала. При испытаниях такие капли не обнаруживаются. Это снижает точность измерений. Используемый метод последовательного преобразования давления акустических волн в механическое перемещение диафрагмы и далее в электрический сигнал усложняет конструкцию и дополнительно снижает точность измерений.

Предварительный подогрев жидкости в теплообменнике создает значительный градиент температуры по объему емкости из-за чего достоверные результаты могут быть получены для пробы, занимающей не всю, а только часть емкости, что приводит к нерациональному использованию конструкции.

Большая плотность размещения элементов конструкции затрудняет отвод сконденсированной воды, а возвращение в пробу части сконденсированной воды искажает результаты измерений, причем при техническом обслуживании очистка элементов конструкции, находящихся в контакте с нагретой жидкостью, вызывает определенные трудности.

Технический результат изобретения - упрощение конструкции и повышение точности измерений.

Технический результат при осуществлении изобретения достигается тем, что в устройство для определения содержания нерастворенной воды в технических жидкостях, содержащее емкость с входным и выходным штуцерами, усилитель, счетчик, таймер, индикатор, регулятор потока и теплоизоляцию, согласно изобретению дополнительно введены крышка из материала с низкой теплопроводностью и акустический приемник, смонтированный в крышке, при этом входной штуцер размещен на дне емкости, а выходной штуцер расположен в верхней части емкости на ее боковой стенке, причем емкость выполнена из материала с большим электрическим сопротивлением, при этом выход акустического приемника через усилитель подключен к первому входу счетчика, второй вход которого подключен к первому выходу таймера, а второй выход таймера соединен с управляющей цепью регулятора потока, причем выход счетчика присоединен к индикатору, при этом для нагрева жидкости источник питания подключен к концам емкости.

Дополнительный технический результат достигается также в том случае, когда внутренняя сторона крышки имеет форму усеченного конуса, нижнее основание которого опирается на верхний край емкости, а верхнее основание совпадает по размеру с чувствительным элементом акустического приемника, при этом изнутри к крышке прикреплена вставка в виде усеченного конуса, нижнее основание которого опирается на верхний край емкости, а площадь верхнего основания конусной вставки больше или равна площади чувствительного элемента акустического приемника, при этом высота конусной вставки не превышает половины толщины крышки, а поверхность конусной вставки равномерно перфорирована.

В заявленном устройстве выполняется преобразование акустических волн в электрический сигнал непосредственно, без промежуточных преобразований.

Для нагрева пробы жидкости источник питания подключен к концам емкости, и при протекании тока корпус емкости нагревается, а выделяющееся при этом тепло передается жидкости внутри емкости. Поэтому специальная нагревательная обмотка, охватывающая нижнюю часть емкости, как в прототипе, не нужна. К тому же при нагреве корпуса емкости протекающим током обеспечивается непосредственный контакт нагретой стенки емкости и жидкости и увеличивается площадь теплообмена. За счет этого сокращаются потери и увеличивается ресурс устройства.

Крышка с внутренней перфорированной вставкой уменьшает количество сконденсированной воды, возвращающейся в контролируемую пробу, а низкая теплопроводность материала крышки защищает акустический приемник от теплового перегрева.

Выбранные размеры конусной вставки отвечают наиболее экономичному варианту конструкции, так как при высоте перфорированной вставки, равной половине тощины крышки, обеспечивается оптимальное соотношение количества сконденсированной и удаленной из камеры воды. При меньшей высоте перфорированной вставки за счет большего наклона боковой стенки сила, удерживающая каплю на поверхности, меньше веса капли и капли могут возвращаться в пробу. Это увеличивает погрешность измерений.

При большей высоте конусной вставки конденсация влаги происходит не только на поверхности конусной вставки, но и на чувствительном элементе акустического приемника, и для защиты его от влаги требуется дополнительная влагоизоляция.

Это усложняет устройство, уменьшает входной сигнал и снижает чувствительность устройства, что в конечном счете снижает точность измерений.

Изобретение поясняется чертежом, где представлена структурная схема устройства для определения содержания нерастворенной воды в технических жидкостях.

Устройство содержит емкость 1, выполненную из материала с большим электрическим сопротивлением, в дне которой размещен входной штуцер 2. В верхней части емкости 1 в ее боковой стенке установлен выходной штуцер 3. Емкость 1 сверху закрыта крышкой 4 из теплоизоляционного материала, в центральной части которой размещен акустический приемник 5. Внутренняя часть крышки 4 имеет форму усеченного конуса.

На верхнем краю емкости 1 установлена перфорированная вставка 6 также в виде усеченного конуса. Источник питания для нагрева емкости 1 подключен к ее концам.

Выход акустического приемника 5 присоединен к усилителю 7, своим выходом подключенному к первому входу счетчика 8, ко второму входу которого подключен первый выход таймера 9. Второй выход таймера 9 соединен с регулятором потока 10. Выход счетчика 8 подключен к индикатору 11. Снаружи емкость 1 закрыта теплоизоляцией 12.

Устройство работает следующим образом.

Поток технической жидкости поступает через входной штуцер 2 в емкость 1. После заполнения емкости 1 жидкостью входной штуцер 2 перекрывается регулятором потока 10. После заполнения емкости 1 жидкость нагревается от источника питания, подключенного к концам емкости 1. По мере нагрева и увеличения внутренней энергии каждой капли воды начинается процесс парообразования и по мере повышения температуры образуется пар в оболочке сферической формы, увеличивающейся в размере. В момент, когда давление пара внутри оболочки превысит силу поверхностного натяжения оболочки, происходит разрыв оболочки, что порождает в жидкости затухающие акустические волны, начальная амплитуда которых зависит от размера сферы лопнувшего пузыря, следовательно, и от объема капли воды, из которой образовался пузырь.

Акустические волны в жидкости быстро затухают, а вероятность наложения нескольких акустических волн от разрыва разных пузырей небольшая. Поэтому можно считать, что каждой капли соответствует одна акустическая волна. Акустические волны принимаются акустическим приемником 5, выходные сигналы с которого усиливаются усилителем 7.

Внутренняя поверхность крышки 4 сделана конусной, поэтому крышка 4 выполняет роль рупора, концентрирующего звуковой поток на чувствительный элемент акустического приемника 5.

Водяные пары за счет разности температур конденсируются на внутренней стороне крышки 4. Сконденсированные водяные капли не могут возвратиться в пробу жидкости, так как этому мешает перфорированная конусная вставка 6, проницаемая для пара и не пропускающая воду. Через отверстия водяной пар поступает к крышке, а сконденсированные капли воды оседают на крышке 4, стекают вниз и собираются в месте соединения основания конусной вставки 6 и крышки 4. Удалить воду можно, сняв крышку 4 с емкости 1.

С выхода усилителя 7 электрический сигнал поступает на первый вход счетчика 8, который преобразует амплитуду электрических сигналов в последовательность импульсов, на второй вход счетчика 8 поступает сигнал с таймера 9, который определяет время измерения счетных импульсов. С выхода счетчика 8 счетные импульсы поступают на индикатор 11.

Измеренное количество нерастворенной воды определяется в объеме, содержащемся в емкости 1, и, чтобы перевести результаты контроля на другие объемы, например на объем рабочей емкости в эксплуатации, нужно результат измерения в емкости 1 умножить на отношение объемов рабочей емкости и емкости 1 устройства.

Использование емкости в качестве нагревателя пробы жидкости, а также непосредственное воздействие потока акустических волн на акустический приемник значительно упрощает конструкцию устройства и повышает точность измерений.

Экспериментальные исследования показали, что точность измерений содержания нерастворенной воды в заявленном устройстве повышается на 10-15%.

1. Устройство для определения содержания нерастворенной воды в технических жидкостях, содержащее емкость с входным и выходным штуцерами, усилитель, счетчик, таймер, индикатор, регулятор потока и теплоизоляцию, отличающееся тем, что в него дополнительно введены крышка из материала с низкой теплопроводностью и акустический приемник, смонтированный в крышке, при этом входной штуцер размещен на дне емкости, а выходной штуцер расположен в верхней части емкости на ее боковой стенке, причем емкость выполнена из материала с большим электрическим сопротивлением, при этом выход акустического приемника через усилитель подключен к первому входу счетчика, второй вход которого подключен к первому выходу таймера, а второй выход таймера соединен с управляющей цепью регулятора потока, причем выход счетчика присоединен к индикатору, при этом для нагрева жидкости источник питания подключен к концам емкости.

2. Устройство по п.1, отличающееся тем, что внутренняя сторона крышки имеет форму усеченного конуса, нижнее основание которого опирается на верхний край емкости, а верхнее основание совпадает по размеру с чувствительным элементом акустического приемника, при этом изнутри к крышке прикреплена вставка в виде усеченного конуса, нижнее основание которого опирается на верхний край емкости, а площадь верхнего основания конусной вставки больше или равна площади чувствительного элемента акустического приемника, при этом высота конусной вставки не превышает половины толщины крышки, а поверхность конусной вставки равномерно перфорирована.



 

Похожие патенты:

Изобретение относится к средствам измерения обводненности жидких нефтепродуктов и может быть использовано для определения доли воды в нефтепродуктах при их переработке и/или сжигании и/или приготовлении водно-топливных эмульсий (ВТЭ).

Изобретение относится к устройствам для измерения содержания капельной жидкости в потоке природного и попутного газа диапазона применения устройства по давлению в газопроводе.

Изобретение относится к способу определения количества наносимой жидкости при выполнении процессов кожевенного и мехового производства намазными способами Способ характеризуется тем, что количество жидкости, которое может поглотить кожевая ткань, определяют по влагосодержанию в момент усадки образцов при сваривании в процентах.

Изобретение относится к измерительной технике и может быть использовано в системах технологического контроля влажности газов, особенно в производствах, в которых затруднен или невозможен доступ к датчикам влажности, например, в мощных турбогенераторах или ядерно-энергетических установках.

Изобретение относится к области контроля качества подготовки природного и попутного газов к транспорту в нефтегазодобывающей промышленности и может быть использовано на топливно-энергетических, химических и др.

Изобретение относится к области электротехники, в частности к технологическому контролю мощных генераторов, и может быть использовано на электростанциях для защиты от увлажнения изоляции электрических цепей генераторов.

Изобретение относится к измерительной технике. .

Изобретение относится к устройствам для испытания строительных материалов и может быть использовано при определении влагостойкости теплоизоляционных материалов волокнистой структуры, в частности изделий из минеральной ваты.

Изобретение относится к технике измерения влажности газов. .

Изобретение относится к аналитической химии пищевых продуктов и может быть использовано для определения влажности бульонных кубиков, сухих бульонов и суповых основ с применением статического «электронного носа».

Изобретение относится к измерительной технике и может быть использовано для измерения относительной влажности воздуха от 0 до 100% в интервале температур (- 20÷50)°С

Изобретение относится к области измерения влагосодержания воздуха (газов), в частности может быть использовано для поверки гигрометров без демонтажа с места установки. Способ определения влагосодержания заключается в том, что измерительный сосуд известного объема заполняют сухим воздухом и взвешивают. Затем измерительный сосуд заполняют исследуемым воздухом и взвешивают, фиксируют значение температуры и давления исследуемого воздуха и, используя измеренные значения. Далее определяют влагосодержание d исследуемого воздуха по формуле: , г/кг сух., где m1 - масса измерительного сосуда с сухим воздухом, г; m2 - масса измерительного сосуда с исследуемым воздухом, г; V - внутренний объем измерительного сосуда, литр; Рив - атмосферное давление исследуемого воздуха, мм рт.ст.; Тив - температура исследуемого воздуха, °С; gn - удельный вес пара, г/литр (gn=0,803 г/литр); gc - удельный вес сухого воздуха, г/литр (gc=1,2928 г/литр); Р0 - нормальное давление, мм рт.ст.(Р0=760 мм рт.ст.); Т0 - нормальная температура °С(T0=273°С). Техническим результатом является снижение эксплуатационных и временных затрат, повышение точности и надежности измерений. 1 ил.

Изобретение относится к области измерения влагосодержания газов. Способ заключается в том, что газ подвергают сжатию в замкнутой измерительной камере, в которой установлено равноплечевое коромысло, снабженное измерительным поплавком и противовесом, до давления, при котором плотность газа становится равной плотности измерительного поплавка, что определяют по всплытию поплавка и горизонтальному положению коромысла, фиксируют значения температуры и давления в замкнутой измерительной камере в момент всплытия поплавка и используя измеренные значения, определяют значение влагосодержания исследуемого газа по следующим соотношениям: где ρпара - плотность водяного пара, ρпара=0,803 г/литр ρсух - плотность сухого воздуха, ρсух=1,293 г/литр где Vпопл - объем поплавка (в литрах), mпопл - вес поплавка с учетом противовеса (в граммах), T0=273°C, tлаб - температура исследуемого воздуха, °C, P0 - нормальное атмосферное давление, P0=760 мм рт.ст., Pлаб - давление в лаборатории, мм рт.ст., ΔPизб - величина избыточного давления ΔPизб=(Pкамера-Pлаб), мм рт.ст. Pкамера - давление в измерительной камере в момент всплытия поплавка, мм рт.ст. Техническим результатом является снижение эксплуатационных затрат и повышение безопасности измерений.

Устройство автоматизированного управления многоопорной дождевальной машиной фронтального действия для точного полива включает установленные на тележках с электроприводом трубопроводы правого и левого крыльев машины, блок синхронизации движения по курсу с направляющим тросом и блок управления скоростью движения машины. Вдоль оросительного канала установлена на стойках контактная сеть, взаимодействующая с токосъемником, который через телескопический механизм закреплен на тележке, движущейся по противоположной стороне оросительного канала. Выход токосъемника соединен с входом щита управления, выход которого соединен с входом счетчика электрической энергии, выходы которого соединены с входами микропроцессорного блока управления и частотного преобразователя. Входы микропроцессорного блока управления соединены с таймером, системой стабилизации курса, системой синхронизации тележек в линию, датчиками пути, задатчиком нормы полива, задатчиком длины участка полива, расходомером и манометром, установленным на трубопроводе, а выходы микропроцессорного блока управления соединены с электрогидрозадвижкой, частотным преобразователем, контактором, приборами синхронизации тележек в линию и приборами стабилизации курса левого и правого крыла, через вакуум-насос с входом насоса, выход которого через электрогидрозадвижку и расходомер соединен с трубопроводом. Микропроцессорный блок управления соединен с входом-выходом интерфейсного устройства. Сигнал с выхода частотного преобразователя подается на электропривод левого и правого крыла машины, а выход контактора соединен через электродвигатель с входом насоса. Сигнал, полученный с измерителей влажности, установленных на орошаемом участке поля, поступает на систему управления поливом через GLONASS-спутник, сигнал с системы управления поливом через GLONASS-спутник передается на вход-выход GLONASS-приемника, выход которого через блок анализа сигналов соединен с микропроцессорным блоком управления, выход которого соединен с GLONASS-приемником. Вход-выход микропроцессорного блока управления электрически соединен с сенсорным экраном, а выход частотного преобразователя соединен с входом контактора. Выход блока анализа сигналов соединен с входами блока управления поливом, выходы которых на крайних ведущих опорных тележках соединены с входом прибора стабилизации курса, а на промежуточных опорных тележках соединены с входом прибора синхронизации тележек в линию, как правого, так и левого крыльев машины. Техническим результатом изобретения является снижение затрат оросительной воды, удобрений, электроэнергии, устранение недополива и переполива. 3 ил.

Изобретение относится к области методов проведения оперативного контроля и регулирования влажности в герметичных контейнерах с электронными приборами для обеспечения надежности их функционирования. Способ определения влагоемкости твердых гигроскопичных объектов включает помещение анализируемых объектов в герметичный контейнер и осушку до полного обезвоживания объектов. Также способ включает измерение температуры и влажности внутренней среды в контейнере и окончательное определение математических и графических зависимостей влагосодержания объектов от равновесной влажности внутренней среды. При этом в процессе хранения объектов в герметичном контейнере осушку до полного обезвоживания объектов производят путем последовательного введения в герметичный контейнер навесок адсорбентов и взвешивания их до установки в герметичный контейнер и после изъятия из него до момента установления стабильной массы очередной навески адсорбента. Затем в испаритель, вмонтированный внутри герметичного контейнера, последовательно вводят порции дистиллированной воды и выдерживают герметичный контейнер в стационарных температурных условиях до установления равновесной влажности в герметичном контейнере с вмонтированным в него датчиком температуры и влажности. После чего по измеренным параметрам влажности и массы порций введенной дистиллированной воды строят график зависимости суммарного влагосодержания в анализируемых объектах от равновесной влажности внутренней среды герметичного контейнера и определяют математически по известным зависимостям величину суммарной влагоемкости анализируемых объектов и ее зависимость от равновесной влажности в герметичном контейнере. Техническим результатом является разработка способа определения влагоемкости твердых гигроскопичных объектов, позволяющего определять суммарную влагоемкость группы гигроскопичных объектов (например, электронных приборов, содержащих гигроскопичные материалы). 4 ил., 1 пр.

Изобретение относится к качественному и количественному определению воды во внутренней сфере координационных соединений (КС) и может найти применение в координационной химии и фармации. Представлен способ определения воды в КС в твердом состоянии, при котором молекулы воды во внутренней сфере КС, находящихся в твердом состоянии, идентифицируют по температуре дегидратации образцов в области 150-165°С на термических кривых - дериватограммах, полученных в интервале температур 20-1000 °С при скорости нагревания образцов 10 град/мин, а также - по образованию гидроксокомплекса в результате алкалиметрического титрования водных растворов КС, предварительно дегидратированных при температуре 120°С в течение 8 час, путем выявления на дифференциальной кривой титрования точки эквивалентности, соответствующей значению рН в области 4,87-4,95, далее для дегидратированных высушиванием при температуре 120°С в течение 8 час твердых образцов КС по характерным площадкам на термогравиграмме в графической системе «Количество удаленной воды, ммоль - Температура дегидратации, °С» находят количественное содержание воды во внутренней сфере КС твердого образца. Достигается повышение информативности и надежности, а также - упрощение анализа. 5 табл., 11 ил.

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное содержание влаги по непрерывному изменению информативного показателя в ходе оттаивания. В качестве информативного показателя используют отношение активности акустической эмиссии из контролируемой области массива к активности акустической эмиссии наиболее водонасыщенного участка полностью оттаявшего керна; для обоих показателей учитывают удельный по массе грунт и усредненные, последовательные и соизмеримые по продолжительности интервалы времени для определения распределения суммарного содержания влаги по глубине. Регистрацию акустической эмиссии осуществляют с помощью преобразователей, размещаемых по глубине скважин массива. Количество незамерзшей воды на различных участках массива рассчитывают из произведения указанного информативного показателя и суммарного содержания влаги в кернах, полученных на той же глубине и в той же скважине, что и соответствующее значение данного показателя. Изобретение обеспечивает способ контроля геологической среды. 4 ил.

Изобретение относится к способам оценки состояний теплоизоляции стен зданий и сооружений с учетом степени их увлажнения, которая изменяется в процессе эксплуатации зданий и сооружений. Способ заключается в том, что измеряют температуру стены, причем в качестве температуры стены измеряют температуру наружной поверхности стены, температуру внутренней поверхности стены и температуру между слоями материалов, образующих стену, и дополнительно измеряют среднюю температуру наружного воздуха для периода с отрицательной среднемесячной температурой и температуру внутри помещения, после этого строят ломаную линию изменения температуры по толщине стены, после чего сравнивают значение температуры на границах в каждом из слоев стены с температурой в плоскости максимального увлажнения для каждого слоя материала стены путем построения графика изменения температуры по толщине слоя материала и графика температуры в плоскости максимального увлажнения по толщине слоя материала, представляющего горизонтальную линию постоянной температуры по толщине стены, и если линия температуры в плоскости максимального увлажнения пересекается с линией изменения температуры по толщине стены, то устанавливают, что плоскость максимального увлажнения слоя материала стены проходит вдоль стены через точку пересечения указанных выше линий, если в двух соседних слоях отсутствует плоскость максимального увлажнения и при этом в наружном слое материала стены линия максимального увлажнения лежит выше линии изменения температуры в этом слое, во внутреннем слое линия температуры в плоскости максимального увлажнения лежит ниже линии изменения температуры во внутреннем слое, то устанавливают, что плоскость максимального увлажнения стены лежит в плоскости стыка двух слоев данной стены, а если плоскость максимального увлажнения в соответствии с двумя вышеизложенными вариантами не определена, то устанавливают, что она расположена вдоль наружной поверхности наружного слоя стены. Достигается упрощение прогнозирования защиты от переувлажнения. 4 ил.

Использование: для определения влажности атмосферного воздуха. Сущность изобретения заключается в том, что пьезорезонансный датчик содержит камеру с генератором частоты колебаний пьезорезонатора, пьезорезонатор и частотомер, камера оснащена изменителем и измерителем температуры, последовательно соединенными с блоком обработки и хранения информации, блоком отображения результатов измерения относительной влажности воздуха, при этом выход частотомера и выход измерителя температуры соединены с первым и вторым входами блока обработки и хранения информации, а электроды пьезорезонатора модифицированы пленкой поливинилпирролидона. Технический результат: обеспечение возможности определения относительной влажности воздуха в интервале от 0,01 до 100% относит. в широком интервале температур, в том числе и отрицательном. 2 ил., 1 табл.

Изобретение относится к системам контроля эффективности работы систем отопления, вентиляции и кондиционирования жилых, общественных и административных зданий и может быть использовано при проектировании, реконструкции и оптимизации режимов работы указанных систем, а также при разработке и внедрении энергосберегающих мероприятий. В способе оценки комфортности микроклимата в помещениях жилых, общественных и административных зданий, заключающемся в измерении в помещении температуры воздуха, относительной влажности, подвижности воздуха, температуры окружающих поверхностей, предварительно определяют преимущественный тип и характеристики выполняемой работы, а также сопротивление теплопроводности преимущественного типа одежды людей, дополнительно измеряют температуру поверхности одежды человека, концентрацию диоксида углерода в воздухе обследуемого помещения и в наружном воздухе, вычисляют составляющие уравнения теплового баланса человека, определяют коэффициент комфортности теплового состояния человека k1, коэффициент радиационного охлаждения k2, коэффициент асимметрии радиационных потоков k3, коэффициент качества воздушной среды k4. Вычисляют уровень комфортности микроклимата по формуле: W=k1⋅k2⋅k3⋅k4, и оценивают уровень комфортности микроклимата по следующей шкале: <-0,5 - холодно, дискомфорт, -0,3÷-0,5 - прохладно, легкий дискомфорт, 0÷-0,3 - прохладно, но комфортно, 0 - комфорт, 0÷0,3 - тепло, но комфортно, 0,30÷0,5 - тепло, легкий дискомфорт. Технический результат - повышение точности определения уровня комфортности помещений жилых, общественных и административных зданий.
Наверх