Бетатрон с извлекаемым блоком ускорителя

Бетатрон (1), прежде всего, в рентгеновской досмотровой установке, с блоком ускорителя, имеющим вращательно-симметричное внутреннее ярмо из двух расположенных на расстоянии частей (2а, 2b), по меньшей мере одну катушку (6а, 6b) основного поля и тороидальную камеру (5) бетатрона, расположенную между частями (2а, 2b) внутреннего ярма, с охватывающим блок ускорителя, соединяющим обе части (2а, 2b) внутреннего ярма внешним ярмом по меньшей мере с одним боковым отверстием и свинцовым экраном, заключающим в себе блок ускорителя и внешнее ярмо, при этом внешнее ярмо состоит по меньшей мере из двух частей, образующие внешнее ярмо части выполнены с возможностью перемещения относительно друг друга из открытого в закрытое положение и обратно, и блок ускорителя является извлекаемым сбоку из отверстия находящегося в открытом положении внешнего ярма. Бетатрон снабжен средствами для фиксации частей внешнего ярма в закрытом положении, причем указанные средства для фиксации частей внешнего ярма доступны через свинцовый экран. Технический результат - снижение трудозатрат при замене блока ускорителей через тяжелый свинцовый экран. 2 н. и 8 з.п. ф-лы, 3 ил.

 

Настоящее изобретение относится к бетатрону с извлекаемым блоком ускорителя, прежде всего, для формирования рентгеновских лучей в рентгеновской досмотровой установке.

При проверке крупногабаритных предметов, таких как контейнеры и транспортные средства, на наличие недопустимого содержимого, такого как оружие, взрывчатые вещества или контрабандные товары, известным образом используют рентгеновские досмотровые установки. При этом формируют рентгеновские лучи и направляют их на предмет. Ослабленные предметом рентгеновские лучи измеряют посредством детектора и анализируют в анализаторе. Таким образом, можно сделать заключение о свойствах предмета. Такая рентгеновская досмотровая установка известна, например, из публикации европейского патента ЕР 0412190 В1.

Для формирования рентгеновских лучей с необходимой для проверки энергией более 1 МэВ используют бетатроны. При этом речь идет о циклических ускорителях, в которых электроны удерживаются на круговой орбите посредством электромагнитного поля. Изменение электромагнитного поля создает электрическое поле, которое ускоряет электроны на их орбите. Из так называемого условия Видероэ определяется стабильный заданный радиус орбиты в зависимости от прохождения электромагнитного поля и его изменения во времени. Ускоренные электроны направляются на мишень, где они при попадании создают тормозное излучение, спектр которого также зависит от энергии электронов.

Известный из публикации патентной заявки DE 2357126 А1 бетатрон состоит из двухкомпонентного внутреннего ярма, в котором торцевые стороны обеих частей ярма расположены на расстоянии напротив друг друга. Посредством двух катушек основного поля во внутреннем ярме создают электромагнитное поле. Внешнее ярмо соединяет оба удаленных друг от друга конца частей внутреннего ярма и замыкает электромагнитный контур.

Между торцевыми сторонами обеих частей внутреннего ярма расположена вакуумная камера бетатрона, в которой по кругу движутся подлежащие ускорению электроны. Торцевые стороны частей внутреннего ярма выполнены таким образом, что созданное катушкой основного поля электромагнитное поле вынуждает электроны двигаться по круговой орбите и, помимо этого, фокусирует их в плоскости, в которой находится эта круговая орбита. Для управления электромагнитным потоком известно расположение ферромагнитной вставки между торцевыми сторонами частей внутреннего ярма внутри камеры бетатрона.

По причине формируемого рентгеновского облучения бетатроны оснащают свинцовым экраном, который позволяет лучам выходить только в заданном месте. В известных до сих пор бетатронах для технического обслуживания блока ускорителя необходимо снимать и удалять одну часть свинцового экрана. Затем извлекают внутреннюю часть, состоящую из блока ускорителя и внешнего ярма. Это имеет недостаток, заключающийся в том, что необходимо перемещать соответственно большие массы, а для этого необходимы соответствующие приспособления.

Поэтому задача данного изобретения заключается в разработке бетатрона, который позволит упростить техническое обслуживание и ремонт ускорителя.

Согласно изобретению эта задача решена посредством признаков пункта 1 формулы изобретения. Предпочтительные формы осуществления приводятся в зависимых пунктах формулы 2-11. Пункт 12 формулы изобретения относится к рентгеновской досмотровой установке с применением предлагаемого бетатрона.

Ядро бетатрона образует блок ускорителя с вращательно-симметричным внутренним ярмом из двух расположенных на расстоянии частей, по меньшей мере с одной катушкой основного поля и с тороидальной камерой бетатрона, расположенной между частями внутреннего ярма. Кроме того, бетатрон имеет охватывающее блок ускорителя, соединяющее обе части внутреннего ярма внешнее ярмо по меньшей мере с одним боковым отверстием и свинцовым экраном, заключающим в себе блок ускорителя и внешнее ярмо. При этом внешнее ярмо состоит по меньшей мере из двух частей. Образующие внешнее ярмо части выполнены с возможностью перемещения относительно друг друга из открытого в закрытое положение и обратно, и блок ускорителя является извлекаемым сбоку из отверстия находящегося в открытом положении внешнего ярма.

Относительное перемещение между частями внешнего ярма является поступательным, вращательным или комбинацией из этих двух вариантов. При поступательном движении части внешнего ярма смещаются относительно друг друга, например вдоль направляющей. При вращательном движении части внешнего ярма поворачиваются относительно друг друга, например, с применением шарнира.

Если внешнее ярмо находится в закрытом положении, то оно фиксирует внутреннее ярмо в подходящем для эксплуатации бетатрона положении и замыкает электромагнитный контур, соединяя обе части внутреннего ярма. В открытом положении внешнего ярма блок ускорителя не фиксируется внешним ярмом и может быть извлечен через его боковое отверстие.

Предпочтительно противоположные торцевые стороны частей внутреннего ярма выполнены и расположены зеркально-симметрично по отношению друг к другу. При этом плоскость симметрии преимущественно ориентирована так, что вращательно-симметричная ось внутреннего ярма расположена перпендикулярно к ней. Это приводит к предпочтительному распределению поля в воздушном зазоре между торцевыми сторонами, за счет которого электроны в камере бетатрона удерживаются на круговой орбите.

Кроме того, предпочтительно, по меньшей мере одна катушка основного поля расположена на внутреннем ярме, прежде всего, на сужении или заплечике внутреннего ярма. Это приводит к тому, что по существу весь сформированный катушкой основного поля электромагнитный поток направляется через внутреннее ярмо. Преимущественным способом бетатрон имеет две катушки основного поля, при этом на каждой из частей внутреннего ярма расположена одна катушка основного поля. Это приводит к преимущественному распределению электромагнитного потока по частям внутреннего ярма.

В одной форме осуществления изобретения бетатрон имеет направляющую и/или упор для блока ускорителя. Направляющая позволяет точно задать местоположение блока ускорителя внутри внешнего ярма. При этом упор определяет конечное положение блока ускорителя. С другой стороны, направляющая упрощает извлечение или установку блока ускорителя, например, за счет того, что блок ускорителя катится или скользит по направляющей.

Предпочтительно предлагаемый бетатрон имеет средства для фиксации частей внешнего ярма в закрытом положении. Эти средства, которые, например, могут быть винтами или гайками, предотвращают открытие внешнего ярма, прежде всего, во время работы бетатрона. Предпочтительно средства для фиксации частей внешнего ярма являются доступными через свинцовый экран. Благодаря этому можно ослабить и снова восстановить фиксацию, не снимая свинцовый экран.

В одной форме осуществления изобретения бетатрон имеет по меньшей мере один эластичный элемент для перемещения внешнего ярма из закрытого положения в открытое. Эластичным элементом предпочтительно является пружина, прежде всего, нажимная пружина. Благодаря эластичному элементу гарантируется, что внешнее ярмо занимает открытое положение, как только будут ослаблены средства для фиксации внешнего ярма. Таким образом, внешнее ярмо автоматически удерживается в открытом положении при извлечении или установке блока ускорителя, при этом дополнительное вмешательство обслуживающего персонала не требуется. При использовании эластичного элемента открытое положение внешнего ярма можно также назвать ослабленным положением, а закрытое положение - зажатым положением.

Предпочтительно свинцовый экран имеет закрываемое отверстие, прежде всего дверь, для извлечения блока ускорителя. При этом размер и положение отверстия выбраны таким образом, что блок ускорителя может быть извлечен через отверстие из внешнего ярма или установлен во внешнее ярмо. Благодаря отверстию достигают того, что не требуется по меньшей мере частичный демонтаж свинцового экрана для доступа к блоку ускорителя.

Альтернативно, бетатрон имеет по меньшей мере одну круглую пластину между частями внутреннего ярма, при этом круглая пластина расположена таким образом, что ее продольная ось совпадает с вращательно-симметричной осью внутреннего ярма. В силу проницаемости материала круглой пластины электромагнитное поле в области круглых пластин является более сильным, чем в воздушном зазоре без круглой пластины между торцевыми сторонами частей внутреннего ярма. Благодаря этому появляется возможность влияния за счет формы выполнения круглой(-ых) пластины(пластин) на условие Видероэ и тем самым на радиус орбиты ускоренного электрона внутри камеры бетатрона.

Бетатрон согласно изобретению предпочтительно применяется в рентгеновской досмотровой установке для проверки безопасности объектов. Электроны инжектируются в бетатрон и ускоряются до того, как они будут направлены на мишень, состоящую, например, из тантала. Там электроны создают рентгеновские лучи с известным спектром. Рентгеновские лучи направляются на объект, предпочтительно контейнер и/или транспортное средство, и там модифицируются, например, за счет рассеивания или трансмиссионного затухания. Модифицированные рентгеновские лучи измеряют рентгеновским детектором и анализируют посредством анализатора. По результатам делают заключение о свойствах или содержимом объекта.

Настоящее изобретение должно быть пояснено более подробно на основании примера осуществления. Показано на:

Фигура 1 схематическое изображение в разрезе предлагаемого бетатрона с внешним ярмом в закрытом положении,

Фигура 2 схематический вид сбоку изображенного на фиг.1 предлагаемого бетатрона с внешним ярмом в закрытом положении, и

Фигура 3 схематический вид сбоку изображенного на фиг.1 предлагаемого бетатрона с внешним ярмом в открытом положении.

На фигуре 1 показана схематическая конструкция предпочтительного бетатрона 1 в поперечном сечении. Блок ускорителя состоит из вращательно-симметричного внутреннего ярма из расположенных на расстоянии двух частей 2а, 2b, расположенной между частями 2а, 2b внутреннего ярма тороидальной камеры 5 бетатрона и двух катушек 6а и 6b основного поля.

Катушки 6а и 6b основного поля расположены на заплечиках частей 2а или 2b внутреннего ярма. Созданное ими электромагнитное поле проходит через части 2а и 2b внутреннего ярма, при этом электромагнитный контур замыкается двухкомпонентным внешним ярмом 4, которое соединяет части 2а и 2b внутреннего ярма. Форма внутреннего и/или внешнего ярма может быть выбрана специалистом в зависимости от случая применения и отличаться от показанной на фигуре 1 формы. Также могут быть предусмотрены только одна или более двух катушек основного поля.

Кроме того, бетатрон 1 имеет опциональные круглые пластины 3 между частями 2а и 2b внутреннего ярма, при этом продольная ось круглых пластин 3 совпадает с вращательно-симметричной осью внутреннего ярма. За счет формы выполнения круглых пластин 3 можно влиять на электромагнитное поле между торцевыми сторонами частей внутреннего ярма и тем самым на условие Видероэ. Выбор количества и/или формы круглых пластин осуществляется по усмотрению специалиста, реализующего изобретение.

Между торцевыми сторонами частей 2а или 2b внутреннего ярма электромагнитное поле проходит отчасти через круглые пластины 3, а в остальном - через воздушный зазор. В этом воздушном зазоре расположена камера 5 бетатрона. При этом речь идет о вакуумной камере, в которой ускоряются электроны. Торцевые стороны частей 2а и 2b внутреннего ярма имеют форму, которая выбрана так, что электромагнитное поле между ними фокусирует электроны на круговой орбите. Выполнение торцевых поверхностей известно специалисту и поэтому подробнее не объясняется. В конце процесса ускорения электроны попадают на мишень и создают за счет этого рентгеновское излучение, спектр которого зависит также и от итоговой энергии электронов и материала мишени.

Для ускорения электроны с начальной энергией заключаются в камеру 5 бетатрона. Во время фазы ускорения электромагнитное поле в бетатроне 1 постоянно увеличивается посредством катушек 6а и 6b основного поля. За счет этого создается электрическое поле, которое оказывает ускоряющее усилие на электроны. Одновременно, электроны в силу силы Лоренца принуждаются к движению по заданной круговой орбите внутри камеры 5 бетатрона.

Ускорение электронов происходит с периодическим повторением, за счет чего получают пульсирующие рентгеновские лучи. В каждом периоде на первом шаге электроны инжектируют в камеру 5 бетатрона. На втором шаге электроны ускоряются посредством увеличивающегося тока в катушке 6а и 6b основного поля и тем самым увеличивающегося электромагнитного поля в воздушном зазоре между частями 2а и 2b внутреннего ярма в направлении периферии их круговой орбиты. На третьем шаге ускоренные электроны попадают на мишень для формирования рентгеновских лучей. Затем происходит опциональная пауза, прежде чем электроны будут снова инжектироваться в камеру 5 бетатрона.

На фигуре 2 показан вид бетатрона с фигуры 1 сбоку. Внешнее ярмо 4 имеет боковое отверстие 11, которое в видимых направлениях имеет по меньшей мере размер блока ускорителя. В закрытом состоянии внешнего ярма 4, которое показано на фигурах 1 и 2, блок ускорителя зажимается во внешнем ярме 4 и удерживается в своем положении.

Внешнее ярмо 4 состоит из двух частей 4а и 4b, которые могут поступательно перемещаться относительно друг друга. Наружное ярмо 4а направляется посредством резьбовых шпилек 8, которые проходят через выемки в части 4а внешнего ярма и соединены с частью 4b внешнего ярма. Гайки 9 на резьбовых шпильках 8 служат для фиксации части 4а внешнего ярма в представленном на фигурах 1 и 2 закрытом положении внешнего ярма 4.

На показанном на фигуре 3 виде сбоку бетатрона 1 гайки 9 отпущены и внешнее ярмо 4 находится в открытом положении. Нажимные пружины 10 раздвигают части 4а и 4b внешнего ярма, образуя между ними зазор. Для наглядности этот зазор на фигуре 3 показан большего размера, чем необходимо на практике для выполнения предлагаемой функции. В этом разжатом состоянии внешнего ярма 4 блок ускорителя бетатрона 1 можно просто вынуть через боковое отверстие 11 во внешнем ярме 4 из него или вставить в него. Направляющие 7, с одной стороны, поддерживают вес блока ускорителя при извлечении или установке, а с другой стороны, обеспечивают точное позиционирование блока ускорителя внутри внешнего ярма 4.

То есть для технического обслуживания блока ускорителя сначала за счет ослабления гаек 9 внешнее ярмо 4 ослабляется и блок ускорителя извлекается через боковое отверстие 11 из внутреннего ярма 4. После технического обслуживания или ремонта блока ускорителя он снова устанавливается во внутреннее ярмо и последнее снова зажимается путем затягивания гаек 9. При этом гайки 9 доступны для инструмента через не показанный на фигурах обволакивающий бетатрон 1 свинцовый экран. Кроме того, свинцовый экран имеет дверь, которая закрывает боковое отверстие 11 внешнего ярма 4 и имеет такие размеры, что через нее блок ускорителя может быть вынут из внешнего ярма 4 или установлен во внешнее ярмо 4.

1. Бетатрон (1), прежде всего, в рентгеновской досмотровой установке, с блоком ускорителя, имеющим:
вращательно-симметричное внутреннее ярмо из двух расположенных на расстоянии частей (2а, 2b),
по меньшей мере, одну катушку (6а, 6b) основного поля, и тороидальную камеру (5) бетатрона, расположенную между частями (2а, 2b) внутреннего ярма,
с охватывающим блок ускорителя, соединяющим обе части (2а, 2b) внутреннего ярма внешним ярмом по меньшей мере с одним боковым отверстием и свинцовым экраном, заключающим в себе блок ускорителя и внешнее ярмо, при этом внешнее ярмо состоит по меньшей мере из двух частей, образующие внешнее ярмо части выполнены с возможностью перемещения относительно друг друга из открытого в закрытое положение и обратно, и блок ускорителя является извлекаемым сбоку из отверстия находящегося в открытом положении внешнего ярма,
причем бетатрон снабжен средствами для фиксации частей внешнего ярма в закрытом положении и указанные средства для фиксации частей внешнего ярма доступны через свинцовый экран.

2. Бетатрон (1) по п.1, отличающийся тем, что противоположные торцевые стороны частей (2а, 2b) внутреннего ярма выполнены и расположены зеркально-симметрично по отношению друг к другу.

3. Бетатрон (1) по п.1 или 2, отличающийся тем, что по меньшей мере одна катушка (6а, 6b) основного поля расположена на внутреннем ярме, прежде всего, на сужении или заплечике внутреннего ярма.

4. Бетатрон (1) по п.3, отличающийся двумя катушками (6а, 6b) основного поля, при этом на каждой из частей (2а, 2b) внутреннего ярма расположена одна катушка (6а, 6b) основного поля.

5. Бетатрон (1) по п.1, отличающийся направляющей и/или упором для блока ускорителя.

6. Бетатрон (1) по п.1, отличающийся по меньшей мере одним эластичным элементом для перемещения внешнего ярма из закрытого положения в открытое.

7. Бетатрон (1) по п.6, отличающийся тем, что эластичный элемент является пружиной, прежде всего, нажимной пружиной.

8. Бетатрон (1) по п.1, отличающийся тем, что средствами для фиксации частей внешнего ярма являются винты или гайки.

9. Бетатрон (1) по п.1, отличающийся закрываемым отверстием, прежде всего, дверью, в свинцовом экране для извлечения блока ускорителя.

10. Рентгеновская досмотровая установка для проверки безопасности предметов, имеющая бетатрон (1) по одному из пп.1-9 и мишень для формирования рентгеновских лучей, а также рентгеновский детектор и анализатор.



 

Похожие патенты:

Изобретение относится к области ускорительной техники и предназначено для генерации позитронных пучков с большой энергией для последующего использования высокоэнергетичных позитронов для целей дефектоскопии, томографии, радиационных испытаний стойкости материалов, лучевой терапии и др.

Изобретение относится к рентгеновской досмотровой технике. .

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. .

Изобретение относится к области ускорительной техники и может использоваться для ускорения плазмы до гиперскоростей. .

Изобретение относится к ускорительной технике. .

Изобретение относится к проблеме управляемого термоядерного синтеза и может найти применение в качестве сильноточного индукционного ускорителя предпочтительно положительно заряженных частиц и ионов, а также для создания пучка нейтронов.

Изобретение относится к ускорительной технике и может быть использовано при создании индукционных циклических ускорителей ионов с регулируемой кинетической энергией в медицине и научных исследованиях.

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий

Изобретение относится к ускорительной технике и может быть использовано в средствах неразрушающего контроля материалов и изделий

Изобретение относится к ускорительной технике и может быть использовано при создании индукционных циклических ускорителей промышленного назначения, например, для модификации и производства новых материалов, стерилизации медицинских инструментов и пищевых продуктов, дезинфекции медицинских и других отходов, очистки дымовых газов промышленных предприятий от вредных SOx и NOx окислов. Предложенный способ заключается в том, что для получения заданной конечной энергии (≤10 МэВ) используется прямоугольная волна ускоряющего индукционного напряжения и треугольная волна ведущего магнитного поля, для сохранения радиуса равновесной орбиты постоянным в процессе ускорения выполняют специальные соотношения между амплитудно-временными характеристиками магнитной индукции на орбите и индуцированным ускоряющим напряжением. Для реализации жесткой фокусировки формируют магнитное поле на орбите с большим знакопеременным градиентом. Техническим результатом является увеличение средней мощности пучка ускоренных заряженных частиц, а также уменьшение габаритов и веса ускорителя циклического индукционного ускорителя электронов, упрощение системы питания индукционной ускоряющей системы, снижение стоимости ускорителя. 5 ил.

Бетатрон (1), прежде всего, в рентгеновской досмотровой установке, с вращательно-симметричным внутренним ярмом из двух расположенных на расстоянии друг от друга частей (2a, 2b), внешним ярмом (4), соединяющим обе части (2a, 2b) внутреннего ярма, по меньшей мере одной катушкой (6a, 6b) основного поля, тороидальной камерой (5) бетатрона, расположенной между частями (2a, 2b) внутреннего ярма, по меньшей мере одной катушкой сжатия и расширения (СР-катушкой) 7a, 7b, при этом соответственно ровно одна СР-катушка (7a, 7b) расположена между торцевой стороной части (2a, 2b) внутреннего ярма и камерой (5) бетатрона, а радиус СР-катушки (7a, 7b) равен, по существу, заданному радиусу орбиты электронов в камере (5) бетатрона. Бетатрон содержит электронную схему (8) управления, выводы катушки (7a, 7b) сжатия и расширения соединены с источником (11) тока или напряжения, а, по меньшей мере, в одной линии между катушкой (7a, 7b) сжатия и расширения и источником (11) тока или напряжения расположен переключатель (9), управляемый электронной схемой (8) управления, причем электронная схема (8) управления выполнена таким образом, чтобы во время выброса электронов вызывать прохождение тока через катушку сжатия и расширения, так что материал ярма находится на нелинейном участке кривой гистерезиса. Технический результат - повышение кпд. 2 н. и 5 з.п. ф-лы, 4 ил.

Изобретение относится к ускорительной технике и может быть использовано для генерации электронных и ионных пучков наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему (1) в виде набора ферромагнитных сердечников, охваченных витками намагничивания с объединенными выводами (2) с каждой стороны сердечников, магнитный коммутатор, магнитный импульсный генератор (3), состоящий из последовательных контуров сжатия, каждый из которых образован конденсатором и дросселем насыщения, и имеющий заземленный и потенциальный выводы, к которым подсоединен дроссель насыщения (8), а к потенциальному выводу подключен один из трех электродов двойной формирующей линии (4). Второй электрод двойной формирующей линии (4) одним концом подключен к заземленному выводу магнитного импульсного генератора, а между другим концом этого электрода и одним из выводов витков намагничивания индукционной системы включен магнитный коммутатор (9). Между третьим электродом (7) двойной формирующей линии (4) и вторым выводом витков намагничивания (2) индукционной системы (1) включена одинарная формирующая линия (10). Между точкой соединения двойной (4) и одинарной (10) формирующих линий и точкой соединения магнитного коммутатора (9) и индукционной системы (1) включен дополнительный дроссель насыщения (11). Технический результат - снижение потерь энергии и повышение надежности за счет уменьшения числа элементов в схеме. 2 ил.

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. Заявленный циклический ускоритель электронов включает в себя отклоняющие дипольные магниты, индукционную ускоряющую систему, системы ввода и вывода пучка, расположенные на прямолинейных участках. Для ускорения электронов в диапазоне энергий ~0,3-10 МэВ ускоритель включает в себя генератор возбуждения витков индукторов ускоряющей системы прямоугольной волной напряжения. Длительность ускоряющих импульсов волны равна не ½ длительности периода обращения электронов на орбите, которая составляет несколько наносекунд, а длительности полного цикла ускорения от энергии инжекции до заданной конечной энергии ~10-4-10-6 с. Для сохранения равновесного радиуса орбиты при ускорении и медленном выводе электронов ускоритель содержит генератор питания отклоняющих дипольных магнитов, обладающий свойством возбуждения трапецеидальной волны магнитной индукции. Ускоритель также содержит жесткофокусирующую систему в отклоняющих дипольных магнитах и прямолинейных участках. Техническим результатом является увеличение средней мощности ускоренного пучка электронов, уменьшение габаритов и веса ускорителя, упрощение ускоряющей системы и увеличение диапазона регулировки энергии ускоренных электронов. 4 ил.

Изобретение относится к области ускорительной техники и предназначено для генерации позитронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и др. Способ генерации ускоренных позитронов включает инжекцию позитронов в ускорительную камеру бетатрона от радиоактивного изотопа, накопление в управляющем магнитном поле, в котором показатель спада поля по радиусу лежит в пределах 0<n<1, а величина индукции магнитного поля соответствует энергии инжектируемых позитронов, так что позитроны движутся по круговой орбите, радиус которой равен среднему радиусу ускорительной камеры, ускорение заряженных частиц вихревым электрическим полем циклического индукционного ускорителя со скоростью роста магнитного поля, синхронизованной с индуцированным электрическим полем таким образом, что орбита, по которой движутся позитроны, остается постоянной. Накопление позитронов выполняют в нарастающем магнитном поле с напряженностью в пределах, соответствующих диапазону в энергетическом распределении позитронов радиоактивного изотопа, причем накопление завершают до момента равенства между мощностью магнитно-тормозного излучения позитрона и мощностью, передаваемой позитрону вихревым электрическим полем бетатрона, индуцированным нарастающим магнитным полем. Технический результат - увеличение количества ускоренных позитронов в импульсе излучения бетатрона и его соотношения с фоновым излучением. 13 ил.

Изобретение относится к ускорительной технике и предназначено для генерации электронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и других областях техники. Способ ускорения электронов включает формирование возрастающего во времени магнитного поля, коррекцию магнитного поля дополнительным импульсным магнитным полем, импульсную инжекцию электронов в скорректированное магнитное поле, ускорение пучка частиц на равновесной орбите. Корректирующее дополнительное импульсное магнитное поле включают после начала импульсной инжекции электронов в магнитное поле. Техническим результатом является увеличение количества ускоренных электронов в импульсе излучения бетатрона. 5 ил.

Изобретение относится к ускорительной технике и может быть использовано в области физики частиц высоких энергий, промышленности, медицины и научных исследований. Технический результат - ускорение в постоянном магнитном поле с почти постоянным радиусом орбит во всем диапазоне ускорения, существенное снижение нижнего порога энергии инжекции, увеличение диапазона ускоряемых энергий и отношения Z/A частиц (где Ζ - зарядность, А - атомный номер), отсутствие пред-ускорителей, уменьшение стоимости создания и эксплуатации ускорителя. Ускоритель включает в себя: импульсную индукционную систему с датчиками времени пролета пучка для синхронизации ускоряющих импульсов с импульсами тока пучка; систему формирования замкнутых орбит ускоряемых частиц, которая состоит из отражающих пучок магнитных диполей и корректирующих устройств для компенсации дефокусируещего действия диполей в вертикальной плоскости; системы жесткой фокусировки на прямолинейных участках; системы ввода и вывода пучка; вакуумную систему. Корректирующие устройства расположены на входе и выходе каждой отклоняющей пучок секции и представляют собой короткую линзу. Магнитные диполи системы формирования орбит, отражая частицы пучка, создают замкнутые орбиты. При этом угол падения пучка на диполь равен углу отражения. Поскольку это равенство не зависит от характера распределения поля поперек продольной оси диполя, равенство углов падения и отражения сохраняется и в краевых полях диполей. Это обстоятельство снимает ограничения на нижний порог энергии инжекции. 1 з.п. ф-лы, 4 ил.

Изобретение относится к cпособу ускорения заряженных частиц. В заявленном способе инжектированные в ускоритель частицы ускоряются импульсами индукционного электрического поля, которые синхронизированы с импульсами тока ускоряемого пучка. Синхронизация импульсов осуществляется с помощью датчиков времени пролета пучка. Азимутальная устойчивость ускоряемых частиц обеспечивается формой вершины индукционных импульсов. Замкнутые орбиты частиц при их ускорении формируются посредством многократного отражения частиц от диполей. В результате многократного отражения инжектированные частицы, с предельно низкой энергией, движутся по хордам кольцевой орбиты ускоренных частиц. Величина отклонения траекторий инжектированных и ускоренных частиц зависит от числа отражающих диполей. Вертикальную дефокусировку частиц полями отклоняющих диполей компенсируют на входе и выходе отклоняющих пучок секций. На прямолинейных участках частицы фокусируют квадрупольными линзами и после ускорения выводят их. Техническим результатом является расширение диапазона энергий ускоряемых частиц путем существенного уменьшения нижнего порога энергий, связанного с потерей частиц с малой энергией, а также возможность отказаться от применения пред-ускорителей частиц и упрощение эксплуатации ускорителя. 3 ил.
Наверх