Способ управления процессом получения хлористого калия



 


Владельцы патента RU 2479487:

Закрытое акционерное общество ВНИИ Галургии (ЗАО ВНИИ Галургии) (RU)

Изобретение может быть использовано в неорганической химии. Способ управления процессом получения хлористого калия путем изменения входного потока воды включает регулировку расхода воды в поступающий на кристаллизацию раствор в зависимости от расхода и температуры раствора, концентрации в нем хлористого калия, хлористого магния и хлористого натрия, расчет расхода воды в поступающий на кристаллизацию раствор с подачей вычисленных значений в систему управления расходом воды, расчет концентрации насыщения раствора по хлористому натрию. Дополнительно измеряют расход охлажденного маточного раствора после выделения из него кристаллического хлористого калия в поступающий на кристаллизацию горячий раствор, его температуру и содержание в нем хлористого магния. По полученным параметрам рассчитывают расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора. Изобретение позволяет корректировать процесс кристаллизации хлористого калия путем ввода дополнительного количества воды в условиях возврата на установки вакуум-кристаллизации суспензии мелкокристаллического хлорида калия в охлажденном маточном щелоке. 1 з.п. ф-лы, 2 табл., 2 пр.

 

Изобретение относится к технике управления процессом получения хлористого калия при формировании раствора вводом воды в осветленный насыщенный раствор, поступающий со стадии растворения сильвинитовых руд и осветления жидкой фазы, на установках вакуум-кристаллизации.

Известен способ управления процессом получения хлористого калия, стабилизирующий содержание хлористого калия в продукте путем изменения расхода слабого раствора солей в глинистый шлам и горячий насыщенный щелок - см. а.с. СССР №463633, кл. C01D 3/04, опубл. в 1973 г. Данный способ управления неприемлем в условиях работы установок вакуум-кристаллизации (ВКУ) с возвратом суспензии мелкодисперсного кристаллизата хлористого калия в охлажденном на ВКУ маточном щелоке в голову процесса кристаллизации, так как при охлаждении жидкой фазы суспензии кристаллизуется смесь хлористого калия и хлористого натрия за счет испарения воды.

Известен способ управления процессом получения хлористого калия путем изменения расходов входных потоков - см. а.с. №948884, кл. C01D 3/04, G05D 27/00, опубл. 07.08.82. Бюл. №20.

Способ предусматривает стабилизацию содержания хлористого калия путем регулирования расхода воды в поступающий на кристаллизацию раствор в зависимости от температуры этого раствора и концентрации в нем хлористого калия. Известный способ также не предусматривает управления расходом воды, которую необходимо дополнительно подавать в условиях возврата в голову процесса суспензии мелкодисперсного хлористого калия, образующегося на стадии выделения целевого продукта после ВКУ.

Известен способ управления процессом получения хлористого калия путем изменения входного потока воды, включающий регулировку расхода воды в поступающий на кристаллизацию раствор в зависимости от расхода и температуры раствора, концентрации в нем хлористого калия, хлористого магния и хлористого натрия, расчет расхода воды в поступающий на кристаллизацию раствор с подачей вычисленных значений в систему управления расходом воды по приведенным в способе зависимостям и расчет концентрации насыщения раствора по хлористому натрию - прототип см. патент РФ 2406695 от 04.12.2008 г., кл. C01D 3/04, G05D 27/00, опубл. 20.12.2010. Бюл. №35.

Предложенный способ также не предусматривает корректировку управления расходом воды в условиях возврата на ВКУ суспензии мелкодисперсного хлористого калия, образующегося при гидроклассификации готовой суспензии хлористого калия из корпусов ВКУ с выделением целевого продукта. Возврат жидкой фазы суспензии на ВКУ путем ее смешения с поступающим на кристаллизацию горячим осветленным раствором приведет к ее нагреву, а при охлаждении на ВКУ из этой жидкой фазы происходит кристаллизация хлористого натрия за счет испарения воды под вакуумом в процессе охлаждения, что может привести к получению некондиционного целевого продукта.

Задачей предлагаемого изобретения является корректировка управления процессом кристаллизации хлористого калия вводом дополнительного количества воды в условиях возврата на ВКУ суспензии мелкодисперсного хлористого калия в охлажденном маточном растворе.

Поставленная задача достигается тем, что в отличие от известного способа, включающего регулировку расхода воды в поступающий на кристаллизацию раствор в зависимости от расхода и температуры раствора, концентрации в нем хлористого калия, хлористого магния и хлористого натрия, расчет расхода воды в поступающий на кристаллизацию раствор с подачей вычисленных значений в систему управления расходом воды и расчет концентрации насыщения раствора по хлористому натрию, по предлагаемому способу дополнительно измеряют расход охлажденного маточного раствора после выделения из него кристаллического хлористого калия в поступающий на кристаллизацию горячий раствор, его температуру и содержание в нем хлористого магния, по полученным параметрам рассчитывают расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора по следующей зависимости:

,

где - расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора, т;

GM - расход маточного раствора, т;

t2 - температура охлажденного маточного раствора, °С;

t1 - температура маточного раствора, нагретого за счет смешения с горячим раствором, поступающим на кристаллизацию, °С;

φ - эмпирический коэффициент, определяющий количество воды, испаряемой при охлаждении маточного раствора, и составляющий 0,0018 т Н2О на 1°С из 1 т маточного раствора, 1/°С.

Расход хлористого натрия GNaCl, т, который будет кристаллизоваться при отсутствии подачи воды с расходом , определяется зависимостью:

где CNaCl - концентрация насыщения маточного раствора по NaCl, т/1000 т Н2О, при насыщении раствора по хлористому калию, определяется зависимостью:

,

где - содержание в маточном растворе хлористого магния, т/1000 т H2O.

Другим отличием способа является то, что при необходимости ввода в кристаллизат хлористого натрия расход воды уменьшают от вычисленного значения, а расход хлористого натрия в целевой продукт увеличится пропорционально его уменьшению от вычисленного значения расхода.

Сущность способа управления процессом получения хлористого калия как технического решения заключается в следующем.

В отличие от известного способа управления процессом получения хлористого калия путем изменения входного потока воды, включающего регулировку расхода воды в поступающий на кристаллизацию раствор в зависимости от расхода и температуры раствора, концентрации в нем хлористого калия, хлористого магния и хлористого натрия, расчет расхода воды в поступающий на кристаллизацию раствор с подачей вычисленных значений в систему управления расходом воды по приведенным в способе зависимостям и расчет концентрации насыщения раствора по хлористому натрию, по предлагаемому способу дополнительно измеряют расход охлажденного маточного раствора после выделения из него кристаллического хлористого калия в поступающий на кристаллизацию горячий раствор, его температуру и содержание в нем хлористого магния, по полученным параметрам рассчитывают расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора по следующей зависимости:

,

где - расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора, т;

GM - расход маточного раствора, т;

t2 - температура охлажденного маточного раствора, °С;

t1 - температура маточного раствора, нагретого за счет смешения с горячим раствором, поступающим на кристаллизацию, °С;

φ - эмпирический коэффициент, определяющий количество воды, испаряемой при охлаждении маточного раствора, и составляющий 0,0018 т Н2О на 1°С из 1 т маточного раствора, 1/°С.

Расход хлористого натрия GNaCl, т, который будет кристаллизоваться при отсутствии подачи воды с расходом , определяется зависимостью:

где CNaCl - концентрация насыщения маточного раствора по NaCl, т/1000 т H2O, при насыщении раствора по хлористому калию, определяется зависимостью:

,

где - содержание в маточном растворе хлористого магния, т/1000 т Н2О.

При необходимости ввода в кристаллизат хлористого натрия расход воды уменьшают от вычисленного значения, а расход хлористого натрия в целевой продукт увеличится пропорционально его уменьшению от вычисленного значения расхода.

Как показывает практика, на действующих галургических обогатительных фабриках в жидкой фазе, образующейся после выделения из нее кристаллизата - хлористого калия, полученной на установках вакуум-кристаллизации (ВКУ) (см., например, Горный журнал №8, 2007 www.rudmet.ru 1SS №0017-2278, с.25-30) остается до 10% от общего расхода твердой фазы - мелкодисперсного целевого продукта. Возврат такой жидкой фазы на стадию растворения сильвинитовой руды приводит к уменьшению емкости растворяющего раствора по KCl и, как следствие, к увеличению объема циркулирующего раствора в цикле: растворение-кристаллизация, а также к повышению энергозатрат на нагрев растворов, их охлаждение и транспортировку. В связи с этим в последнее время на калийных предприятиях вводят в эксплуатацию установки для дополнительного извлечения мелкодисперсного хлористого калия из охлажденного на ВКУ маточного раствора после выделения из него целевого продукта. Для этой цели используют операцию гидроклассификации, например, с применением пластинчатых сгустителей. Слив сгустителей направляют на нагрев, а затем на растворение сильвинитовой руды, а сгущенную суспензию с отношением жидкого к твердому (Ж:Т), равным ~1,0-2,5 - на ВКУ для формирования раствора вводом воды в осветленный насыщенный раствор, поступающий на стадии растворения сильвинитовых руд и осветления жидкой фазы. Однако при этом необходима корректировка управления расходом воды в условиях возврата на ВКУ суспензии мелкодисперсного хлористого калия, так как при охлаждении на ВКУ из этой жидкой фазы, нагретой за счет смешения ее с горячим осветленным раствором без подачи дополнительного количества воды, происходит кристаллизация хлористого натрия за счет испарения воды под вакуумом в процессе охлаждения, что приводит к увеличению содержания в целевом продукте NaCl, снижая его качество. Авторами установлена зависимость между расходом воды, которую необходимо подать для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора - от перепада температур на входе в первом и в последнем корпусах ВКУ (t1, t2), расхода маточного раствора - , содержащего сгущенную твердую фазу обычно с Ж:Т=1,0-2,5, а также определен по фактическим данным для разных типов ВКУ усредненный эмпирический коэффициент φ, определяющий количество воды, испаряемой при охлаждении маточного раствора, и составляющий 0,0018 т Н2О на 1°С из 1 т маточного раствора. Величина этого коэффициента зависит от температуры и состава жидких фаз, а также потерь тепла в окружающую среду. Однако для практики коэффициент φ можно считать постоянной величиной.

Ж:Т сгущенной суспензии может выходить за указанные пределы и зависеть от эффективности гидроклассификации мелкодисперсного хлористого калия в охлажденном после ВКУ маточном растворе.

Благодаря возврату сгущенной суспензии мелкодисперсного хлористого калия в первый корпус ВКУ объединенный раствор содержит зародыши кристаллизации, а нагрузка на корпусы ВКУ по твердой фазе становится оптимальной, что ведет к увеличению выхода целевых фракций кристаллизата, содержащих минимальное количество пылевых фракций KCl - не менее 100 микрон. Расход хлористого натрия CNaCl, т, который кристаллизуется при отсутствии подачи воды для предотвращения его кристаллизации при охлаждении маточного раствора GM, определяется зависимостью

,

где CNaCl - концентрация насыщения маточного раствора по NaCl, т/1000 т H2O, при насыщении раствора по хлористому калию определяется зависимостью:

,

где - содержание в маточном растворе хлористого магния, т/1000 т Н2О.

По предлагаемому способу при необходимости ввода в кристаллизат хлористого натрия, например, для понижения в нем содержания KCl расход воды уменьшают от вычисленного значения, при этом расход хлористого натрия в целевой продукт увеличится пропорционально его уменьшению от вычисленного значения расхода. Такая операция бывает полезной, если по контракту требуется отгружать продукт, например, с содержанием не менее 95% KCl, а по факту образуется продукт 95,5% или выше, а дополнительное содержание основного вещества в нем не оплачивается.

В таблице 1 приведены данные по дополнительному расходу воды, которую необходимо подать для корректировки ее расхода на ВКУ в условиях возврата на ВКУ суспензии мелкодисперсного хлористого калия в охлажденном маточном растворе для предотвращения кристаллизации NaCl.

Таблица 1
№ п.п Расход суспензии, т Ж:Т суспензии Расход маточного раствора, т Температура, °С Расход воды на корректировку, т
на выходе в ВКУ в последнем корпусе ВКУ
1 100 0,7 41,2 95 30 4,8
2 200 1,0 100,0 93 35 10,4
3 200 2,0 133,3 90 35 13,2
4 200 2,5 142,8 92 38 13,9
5 100 3,0 75,0 89 40 6,6

Из приведенных данных видно, что приведенное в предлагаемом изобретении техническое решение позволяет за счет корректировки регулирования расхода воды предотвратить кристаллизацию хлористого натрия на ВКУ в условиях возврата сгущенной суспензии мелкодисперсного хлористого калия в охлажденном маточном растворе практически для любых режимов кристаллизации целевого продукта.

В таблице 2 приведены расходы хлористого натрия, который будет кристаллизоваться при отсутствии подачи воды для корректировки ее расхода для условий, приведенных в таблице 1.

№ п.п Расход маточного раствора, т Температура, °C Вычисленное значение CNaCl, т/1000 т H2O Расход воды на корректировку, т
на вход в ВКУ в последнем корпусе ВКУ
1 41,2 95 30 296,0 1,42
2 100,0 93 35 293,0 3,06
3 133,3 90 35 293,0 3,87
4 142,8 92 38 291,4 4,04
5 75,0 89 40 290,4 1,92

Вычисленное значение CNaCl определено в соответствии с прототипом для , равным 0. Из приведенных данных видно, что расход хлористого натрия, кристаллизующегося в условиях отсутствия корректировки расхода воды, является переменной величиной, зависящей от выбранных параметров, и автоматически их определяя и зная расход кристаллизата целевого продукта за счет управления расходом воды от вычисленного значения путем его снижения, можно регулировать содержание NaCl в хлористом калии, понижая его качество.

Таким образом решается задача предлагаемого изобретения корректировки управления процессом кристаллизации хлористого калия вводом дополнительного количества воды в условиях возврата на ВКУ суспензии мелкодисперсного хлористого калия в охлажденном маточном растворе.

Способ осуществляли следующим образом.

Горячий насыщенный раствор, поступающий со стадии растворения сильвинитовой руды и осветления жидкой фазы, направляли в запиточный стакан вакуум-кристаллизационной установки, замеряли температуру и расход раствора, массовую долю в нем калия, хлористого натрия, содержание MgCl2, расход раствора циклонной пыли и его состав с подачей полученных значений в систему управления основным расходом воды.

Дополнительно измеряли:

- расход охлажденного маточного раствора после выделения из него кристаллического хлористого калия в поступающий на кристаллизацию на ВКУ горячий раствор с помощью индукционного расходомера типа СОРА ХЕ, откалиброванного на т/ч с учетом содержания в нем твердой фазы;

- температуру раствора на входе в ВКУ, полученную после смешения всех фаз, а также температуру жидкой фазы на выходе из последнего корпуса ВКУ - с помощью термообразователя с унифицированным выходным сигналом, например ТСМУ-055. Сигналы с первичных преобразователей поступали на контроллер, где по полученным параметрам вычисляли концентрацию насыщения раствора по хлористому натрию и рассчитывали расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора путем корректировки общего расхода воды, подаваемой на ВКУ, в системе управления расходом воды.

При необходимости ввода в кристаллизат хлористого натрия расход воды уменьшали от вычисленного значения; при этом расход хлористого натрия увеличивался пропорционально его уменьшению от вычисленного значения расхода.

Параметры осуществления способа.

Пример 1

Показания приборов:

- расход маточного раствора, GM,
(расход суспензии 200 т с Ж:Т=1) 100 т
- температура раствора на входе в ВКУ, t1 93°С
- температура раствора в последнем корпусе ВКУ, t2 35°С

Рассчитывали расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора - , т, по зависимости:

,

где φ - эмпирический коэффициент, определяющий количество воды, испаряемой при охлаждении маточного раствора, и составляющий 0,0018 т Н2О на 1°С из 1 т маточного раствора, 1/°С;

Вычисленные контроллером значения подали в систему управления расходом воды для корректировки общего его расхода. Увеличения содержания хлористого натрия в целевом продукте за счет подачи на ВКУ охлажденного маточного раствора не обнаружено.

Пример 2

Показания приборов:

- расход маточного раствора, GM,
(расход суспензии с Ж:Т=2-200 т) 133,3 т
- температура раствора на входе в ВКУ, t1 90°С
- температура раствора в последнем корпусе ВКУ, t2 35°С

Рассчитывали расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора - , т.

Рассчитывали концентрацию насыщения маточного раствора CNaCl, т/10000 т H2O по зависимости:

При этом содержания MgCl2 в растворе не обнаружено, т.е. .

Рассчитывали расход хлористого натрия GNaCl, т, который будет кристаллизоваться при отсутствии подачи воды с расходом :

Для понижения содержания хлористого калия в готовом продукте до требований контракта необходимо ввести в него 2 т хлористого натрия, следовательно, расход воды для корректировки состава

Вычисленные контроллером значения подали в систему управления расходом воды для корректировки общего его расхода. При этом содержание хлористого натрия в готовом продукте повысилось на 2 т, что при расходе целевого продукта 200 т/ч понизило содержание основного вещества в нем ~ на 1%.

1. Способ управления процессом получения хлористого калия путем изменения входного потока воды, включающий регулировку расхода воды в поступающий на кристаллизацию раствор в зависимости от расхода и температуры раствора, концентрации в нем хлористого калия, хлористого магния и хлористого натрия, расчет расхода воды в поступающий на кристаллизацию раствор с подачей вычисленных значений в систему управления расходом воды, расчет концентрации насыщения раствора по хлористому натрию, отличающийся тем, что дополнительно измеряют расход охлажденного маточного раствора после выделения из него кристаллического хлористого калия в поступающий на кристаллизацию горячий раствор, его температуру и содержание в нем хлористого магния, по полученным параметрам рассчитывают расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора по следующей зависимости:

где - расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора, т;
Gм - расход маточного раствора, т;
t2 - температура охлажденного маточного раствора, °С;
t1 - температура маточного раствора, нагретого за счет смешения с горячим раствором, поступающим на кристаллизацию, °С;
φ - эмпирический коэффициент, определяющий количество воды, испаряемой при охлаждении маточного раствора, и составляющий 0,0018 т Н2О на 1°С из 1 т маточного раствора, 1/°С, при этом расход хлористого натрия GNaCl, т, который будет кристаллизоваться при отсутствии подачи воды с расходом определяется зависимостью:

где CNaCl - концентрация насыщения маточного раствора по NaCl, т/1000 т Н2O, при насыщении раствора по хлористому калию, определяется зависимостью:
,
где - содержание в маточном растворе хлористого магния, т/1000 т H2O.

2. Способ по п.1, отличающийся тем, что при необходимости ввода в кристаллизат хлористого натрия расход воды уменьшают от вычисленного значения, а расход хлористого натрия в целевой продукт увеличится пропорционально его уменьшению от вычисленного значения расхода.



 

Похожие патенты:

Изобретение относится к приборостроению, в частности к области контроля параметров условий труда, и может быть использовано для контроля и управления уровнями факторов производственной среды.

Изобретение относится к технологическим процессам осветления и обесцвечивания воды и может быть использовано для регулирования процессов коагуляции и фильтрования на сооружениях, работающих по схеме: смеситель - контактный осветлитель.

Изобретение относится к способам выделения и очистки капролактама из смеси с водой и примесями. .

Изобретение относится к новому способу управления процессом дистилляции капролактама, заключаемуся в управлении процессом трехступенчатой дистилляции капролактама в присутствии щелочи, включающим сборники, испарители, паровые эжекторы, кондесаторы при подаче сырого капролактама, пара и отводе очищенного капролактама, конденсата, дополнительно содержащим насосы подачи сырого капролактама и щелочи с датчиками расхода, клапаном и фильтром; насадочную колонну обезвоженного капролактама для первого испарителя; конденсаторы второго испарителя; испаритель тяжелокипящих примесей, соединенный с третьим испарителем; насос подачи обезвоженного капролактама с датчиком расхода и клапаном на второй испаритель; насос подачи неочищенного капролактама с датчиком расхода и клапаном на третью ступень; насос подачи очищенного капролактама с датчиком расхода, клапаном и фильтрами; насос подачи отходов на следующие стадии; вакуумметры; датчики температуры, давления с клапанами на подаче пара в испарители, установленные на трубопроводах; задают расход сырого капролактама и щелочи на испарители, предельные значения температуры, остаточного давления, давления греющего пара в испарители и пароэжекторы, определяют текущие отклонения указанных параметров и воздействуют соответственно на клапаны подачи пара в испарители, на пароэжекторы и направляют очищенный капролактам далее, а отходы на нейтрализацию.

Изобретение относится к области нефтепереработки. .

Изобретение относится к области производства синтетических каучуков эмульсионной полимеризации, а именно к стадии выделения каучуков из латексов с применением коагулянтов.

Изобретение относится к способам управления процессами химико-технологических предприятий. .

Изобретение относится к области приборостроения и может быть использовано для непрерывного контроля эффективности (коэффициента полезного действия) прямоточного парогенератора влажного пара.
Изобретение относится к технике получения хлористого калия из сильвинитовых руд методом растворения-кристаллизации. .

Изобретение относится к технике получения хлорида калия из сильвинитового сырья. .
Изобретение относится к технике получения гранулированного хлористого калия, полученного, например, растворением сильвинитовых руд, кристаллизацией хлористого калия из насыщенного осветленного раствора, его выделением и сушкой с последующим гранулированием.
Изобретение относится к технике окрашивания белого галургического хлористого калия с получением продукта с окраской, характерной для флотационного хлористого калия.

Изобретение относится к технике управления процессом получения хлористого калия галургическим методом при формировании раствора вводом воды в осветленный насыщенный раствор, поступающий со стадий растворения сильвинитовых руд и осветления жидкой фазы в запиточный стакан установок вакуум-кристаллизации.
Изобретение относится к цветной металлургии и может быть использовано при подготовке хлормагниевого сырья к электролизу. .

Изобретение относится к технике управления процессом получения хлористого калия галургическим методом вводом воды в разбавленный водой осветленный насыщенный раствор, поступающий со стадий растворения сильвинитовых руд и осветления жидкой фазы из запиточного стакана в корпуса установки вакуум-кристаллизации.
Изобретение относится к цветной металлургии, в частности к подготовке хлормагниевой руды к процессу получения магния и хлора электролизом расплавленных солей. .
Изобретение относится к области цветной металлургии, в частности к получению синтетического карналлита. .

Изобретение относится к технике управления процессом получения хлористого калия галургическим методом на стадии охлаждения горячего щелока и кристаллизации из него целевого продукта.

Изобретение относится к способу получения диарилкарбоната и переработке, по меньшей мере, одной части образованного при этом раствора, содержащего хлорид щелочных металлов, в находящемся ниже по технологической цепочке электролизе хлорида щелочных металлов, включающему следующие стадии: a) получение фосгена взаимодействием хлора с монооксидом углерода, b) взаимодействие фосгена, образованного согласно стадии a), c, по меньшей мере, одним монофенолом в присутствии основания, при необходимости, основного катализатора до диарилкарбоната и раствора, содержащего хлорид щелочных металлов, c) отделение содержащей образованный на стадии b) диарилкарбонат органической фазы и, по меньшей мере, одноразовая промывка содержащей диарилкарбонат органической фазы, d) отделение раствора, содержащего хлорид щелочных металлов, оставшегося согласно стадии с), от остатков растворителя и, при необходимости, остатков катализатора путем отпаривания раствора с водяным паром и обработкой адсорбентами, e) электрохимическое окисление, по меньшей мере, одной части раствора, содержащего хлорид щелочных металлов со стадии d) с образованием хлора, щелочи и, при необходимости, водорода, где при отделении d) раствора перед обработкой адсорбентами значение рН раствора устанавливают меньше или равно 8 и f) по меньшей мере, одну часть полученного согласно стадии e) хлора возвращают на получение фосгена согласно стадии a) и/или g) по меньшей мере, одну часть полученного согласно стадии e) раствора щелочи возвращают на получение диарилкарбоната согласно стадии b)
Наверх