Способ получения безметальных тетраазахлоринов

Описывается новый способ получения безметальных тетраазахлоринов общей формулы

или или

R2=R3=R4=R5=H, Br, Cl;

R3=R4=R5=H, R2=NO2, PhSO2, PhS;

R2=R4=R5=H, R3=NO2, PhSO2, t-Bu;

R2=R5=H, R3=R4=PhS,

путем осуществления смешанной конденсации тетраметилсукцинонитрила (ТМСН) с соответствующими 1,2-динитрилами ненасыщенных алифатических или ароматических кислот в присутствии хлорида индия, при мольном соотношении ТМСН, динитрила и хлорида индия 1÷5:1:1 и каталитических количеств молибдата аммония в хинолине при 230-238°C с последующим деметаллированием промежуточно образующихся индиевых комплексов соляной кислотой. Способ позволяет значительно увеличить выход целевых продуктов (до 40%). 12 пр., 1 табл.

 

Настоящее изобретение относится к химии и химической технологии, а более конкретно к синтезу представителей нового класса функциональных красителей - тетраазааналогов хлорина, а именно алкил- и арилзамещенных и триареноконденсированных безметальных тетраазахлоринов.

Тетраазахлорины (TAX) более устойчивы к окислению по сравнению с хлоринами, они обладают длинноволновым поглощением в ближней ИК области и перспективны как новый класс функциональных красителей, которые представляют в настоящее время широкий практический интерес, например, для создания солнечных элементов.

Исследования фотодинамической активности синтезированных безметальных TAX показали, что эти соединения представляют собой новый класс эффективных фотосенсибилизаторов ближней ИК области спектра для фотодинамической терапии (ФДТ), которые могут быть использованы для лечения методом ФДТ глубоких опухолевых тканей [Патент РФ 2278119, C07D 487/22, 2006].

Благодаря особенностям молекулярного строения, в частности наличию двух четвертичных атомов углерода с метальными группами вне плоскости молекулы, β,β,β',β'-тетраметилтетраазахлорины обладают хорошей растворимостью в органических растворителях и в полимерных матрицах.

Безметальные TAX могут быть получены смешанной конденсацией тетраметилсукцинонитрила (ТМСН) с динитрилами в кипящем диметиламиноэтаноле в присутствии диметиламиноэтилата лития [Патент РФ №2188200, C07D 487/22, 2002, прототип]. Основным недостатком этого способа является низкий выход целевых продуктов (от 1,5 до 4%).

Задачей настоящего изобретения является разработка метода синтеза безметальных TAX с улучшенным выходом.

Поставленная задача решается тем, что безметальные тетраазахлорины общей формулы, например:

;

R2=R3=R4=R5=H, Br, Cl;

R3=R4=R5=H, R2=NO2, PhSO2, PhS;

R2=R4=R5=H, R3=NO2, PhSO2, t-Bu;

R2=R5=H, R3=R4=PhS;

получают смешанной конденсацией тетраметилсукцинонитрила (ТМСН) с 1,2-динитрилами ненасыщенных алифатических или ароматических кислот

, где R-R1, как указано выше,

в присутствии хлорида индия в мольном соотношении 1÷5:1:1 и каталитических количеств молибдата аммония в хинолине при 230-238°C с последующим деметаллированием промежуточно образующихся индиевых комплексов соляной кислотой.

Особенностью способа является промежуточное получение в смешанной конденсации индиевых комплексов с последующим их деметаллированием, что дает также возможность синтеза недоступных при использовании литиевого метода по прототипу замещенных TAX, содержащих заместители в β-положениях пиррольных колец и в различных положениях конденсированных бензольных колец макроцикла.

Так, при взаимодействии смеси ТМСН, фталонитрила и InCl3 в мольном соотношении 3:1:1 при 230°C в хинолине в присутствии молибдата аммония образуется индиевый комплекс β,β,β',β'-тетраметилтрибензотетраазахлорина (ТБТАХ) в смеси с фталоцианином индия. Попытки разделить эту смесь хроматографически не увенчались успехом из-за низкой фотостабильности индиевого комплекса ТБТАХ. Однако индиевый комплекс ТБТАХ легко деметаллируется при обработке концентрированной соляной кислотой уже при комнатной температуре. Безметальный ТБТАХ (выход до 40,5%) легко отделяется от фталоцианина индия экстракцией технического продукта хлорбензолом с последующим хроматографированием на силикагеле хлороформом. Изменение мольного соотношения ТМСН к фталонитрилу за пределами указанного соотношения приводит к уменьшению выхода ТБТАХ.

При взаимодействии ТМСН с 4-трет-бутилфталонитрилом в аналогичных условиях получен β,β,β',β'-тетраметилтри(4-трет-бутилбензо)тетраазахлорин (17,7%), не образующийся при использовании литиевого метода. В качестве ненасыщенных фталогенов могут быть использованы различные замещенные фталонитрилы, 1,2-дицианонафталин, а также моно- и дизамещенные малеонитрилы.

Синтезированные соединения в электронных спектрах поглощения имеют интенсивные полосы в красной и ближней ИК области спектра. Введение в молекулу незамещенного TAX трех конденсированных бензольных колец или фенильных заместителей приводит к значительному батохромному сдвигу длинноволновой полосы Q, что связано с расширением π-электронной системы макроцикла. Так, в спектре поглощения ТБТАХ в хлороформе в длинноволновой области наблюдается интенсивная полоса Q, расщепленная на две компоненты, расположенные при 747 и 605 нм (у TAX при 678 и 520 нм). Сильный батохромный сдвиг наблюдается для β,β,β',β'-тетраметилтри(3-фенилсульфанилбензо)тетраазахлорина (781 и 629 нм). Таким образом, предлагаемый способ делает доступными соединения с интенсивным электронным поглощением в ближней ИК области, что представляет практический интерес для их использования в различных областях техники.

Настоящее изобретение иллюстрируется следующими примерами.

Пример 1.

Тетраметилсукцинонитрил. Кипятят 10 г азоизобутиронитрила в 250 мл толуола в течение 10 ч. Реакционную массу охлаждают, разбавляют 300 мл гексана и оставляют на ночь в холодильнике. Выпавший осадок отфильтровывают, промывают гексаном, сушат на воздухе. Получают 7,5 г (87%) ТМСН с т.пл. 156°C (гексан).

2,2,3,3-Тетраметил-7,8,12,13,17,18-гексафенилтетраазахлорин. Смесь 1,5 г (11,0 ммоль) ТМСН, 0,82 г (3,7 ммоль) хлористого индия и 0,003 г молибдата аммония (МОА) в 5 мл хинолина нагревают при перемешивании до 230°C. Затем добавляют 0,85 г (3,7 ммоль) дифенилмалеодинитрила в течение 10 мин и продолжают перемешивание при этой же температуре еще 10 мин. Затем реакционную массу охлаждают до комнатной температуры, разбавляют 50 мл 50% водного ацетона, выпавший осадок отфильтровывают, промывают горячей водой и сушат на воздухе. Далее сухой осадок суспендируют в 5 мл соляной кислоты, перемешивают 5 мин при комнатной температуре, затем фильтруют, промывают водой до нейтрального pH промывных вод и сушат на воздухе. Сухой осадок растворяют в хлороформе и хроматографируют на силикагеле, используя в качестве элюента смесь гексан - хлористый метилен (1:1). Собирают розовую фракцию и получают 0,39 г (38,2%) 2,2,3,3-тетраметил-7,8,12,13,17,18-гексафенилтетраазахлорина.

Электронный спектр поглощения, λмакс, нм (lg ε), хлороформ: 727 (4,93), 689 пл. (4,22), 656 пл. (4,13), 557 (4,43), 488 (4,12), 370 (4,66), 334 (4,67).

Пример 2.

β,β,β',β'-Тетраметилтрибензотетраазахлорин. Смесь 1,5 г (11,1 ммоль) ТМСН, 0,82 г (3,7 ммоль) хлористого индия и 0,003 г МОА в 5 мл хинолина нагревают при перемешивании до 230°C. Затем порциями прибавляют 0,47 г (3,7 ммоль) фталонитрила в течение 10 мин и продолжают перемешивание при этой же температуре еще 5 мин. Далее реакционную массу охлаждают до комнатной температуры и обрабатывают, как в примере 1. Сухой осадок тщательно растирают, после чего экстрагируют в аппарате Сокслета хлорбензолом. Далее экстракт упаривают в вакууме до объема 20 мл и хроматографируют на силикагеле хлороформом. Собирают синюю фракцию и получают 0,26 г (40,5%) β,β,β',β'-тетраметилтрибензотетраазахлорина.

Электронный спектр поглощения, λмакс, нм (lg ε), хлорбензол: 747 (5,10), 711 (4,51), 677 (4,15), 605 (4,60), 338 (4,83).

Примеры 3-9

Синтез осуществлялся аналогично примеру 1, но изменяли параметры процесса. Реакционные условия и выход продукта приведены в Таблице.

Таблица
Пример Мольное соотношение ТМСН : фталонитрил : InCl3 Температура, °C Время, мин Выход, %
3 1:1:1 230 10 13,6
4 2:1:1 230 10 25,0
5 5:1:1 230 10 28,2
6 3:1:1 238 40 5,2
7 3:1:1 230 5 16,6
8 3:1:1 230 10 38,3
9 3:1:1 230 15 40,5
10 3:1:1 230 30 35,4

Пример 10.

β,β,β',β'-Тетраметилтри(4-трет-бутилбензо)тетраазахлорин. Смесь 1,1 г (8 ммоль) ТМСН, 0,6 г (2,7 ммоль) хлористого индия и 0,003 г МОА в 5 мл хинолина нагревают при перемешивании до 230°C. Затем порциями прибавляют 0,5 г (2,7 ммоль) 4-трет-бутилфталонитрила в течение 10 мин и продолжают перемешивание при этой же температуре еще 10 мин. Далее реакционную массу охлаждают до комнатной температуры и обрабатывают, как в примере 1. Сухой осадок растворяют в хлороформе и хроматографируют на силикагеле, используя в качестве элюента смесь гексан - хлористый метилен (7:3). Собирают первую синюю фракцию и получают 0,11 г (17,7%) β,β,β',β'-тетраметилтри(4-трет-бутилбензо)тетраазахлорина. Масс-спектр, m/z: 691,95 [М+1]+. Найдено, %: С 75,96; 75,95; Н 7,70; 7,70; N 15,56; 15,67. C44H50N8. Вычислено, %: 76,49; Н 7,29; N 16,22.

Электронный спектр поглощения, λмакс, нм (lg ε), гексан: 750 (5,28), 712 (4,45), 679 (4,16), 658 (3,81), 602 (4,68), 339 (4,90).

Пример 11.

β,β,β',β'-Тетраметилтр(3-фенилсульфанилбензо)тетраазахлорин. Смесь 0,88 г (6,4 ммоль) ТМСН, 0,47 г (2,1 ммоль) хлористого индия и 0,003 г МОА в 5 мл хинолина нагревают при перемешивании до 230°C. Затем порциями добавляют 0,5 г (2,1 ммоль) 3-фенилсульфанилфталонитрила в течение 10 мин и продолжают перемешивание при этой же температуре еще 15 мин. Далее реакционную массу охлаждают до комнатной температуры и обрабатывают, как в примере 1. Сухой осадок растворяют в хлористом метилене и хроматографируют на силикагеле, используя в качестве элюента смесь гексан - хлористый метилен (1:1). Собирают первую зеленую фракцию и получают 0,07 г (12,0%) β,β,β',β'-тетраметилтри(3-фенилсульфанилбензо)тетраазахлорина. Масс-спектр, m/z: 847,73 [М]+.

Электронный спектр поглощения, λмакс, нм (lg ε), хлорбензол: 785 (5,06), 744 пл. (4,31), 709 пл. (4,17), 656 пл. (4,26), 632 (4,56), 607 пл. (4,34), 438 пл. (3,87), 333 (4,70).

Пример 12.

β,β,β',β'-Тетраметилтри(1,2-нафто)тетраазахлорин. Смесь 1,5 г (11,1 ммоль) ТМСН, 0,82 г (3,7 ммоль) хлористого индия и 0,003 г МОА в 5 мл хинолина нагревают при перемешивании до 230°C. Затем порциями прибавляют 0,67 г (3,7 ммоль) 1,2-дицианонафталина в течение 10 мин и продолжают перемешивание при этой же температуре еще 5 мин. Далее реакционную массу охлаждают до комнатной температуры и обрабатывают, как в примере 1. Сухой осадок тщательно растирают, после чего экстрагируют в аппарате Сокслета хлорбензолом. Далее экстракт упаривают в вакууме до объема 10 мл и хроматографируют на силикагеле хлороформом. Собирают синюю фракцию и получают 0.230 г (28.1%) β,β,β',β'-тетраметилтри(1,2-нафто)тетраазахлорина.

Электронный спектр поглощения, λмакс, нм (lg ε), хлорбензол: 767 (5,16), 731 (4,40), 694 (4,19), 604 (4,70), 363 (4,74).

Таким образом, предлагаемый способ позволяет получать с выходом до 40% безметальные тетраазахлорины, являющиеся перспективными фотосенсибилизаторами для ФДТ, а также ключевыми соединениями для синтеза различных металлических комплексов.

Способ получения безметальных тетраазахлоринов общей формулы

или
R2=R3=R4=R5=H, Br, Cl;
R3=R4=R5=H, R2=NO2, PhSO2, PhS;
R2=R4=R5=H, R3=NO2, PhSO2, t-Bu;
R2=R5=H, R3=R4=PhS;
заключающийся в том, что проводят смешанную конденсациию тетраметилсукцинонитрила с соответствующими 1,2-динитрилами ненасыщенных алифатических или ароматических кислот в присутствии хлорида индия при мольном соотношении тетраметилсукцинонитрила, 1,2-динитрила и хлорида индия 1÷5:1:1 и каталитических количеств молибдата аммония в хинолине при 230-238°C с последующим деметаллированием промежуточно образующихся индиевых комплексов соляной кислотой.



 

Похожие патенты:

Изобретение относится к химической промышленности, а именно к новому производному фталонитрила, являющемуся исходным соединением для получения фталоцианиновых красителей.

Изобретение относится к химической промышленности, а именно к новым химическим соединениям, тетра-4-(1-бензотриазолил)тетра-5-(2-нафтокси)фталоцианину меди и тетра-4-(1-бензотриазолил)тетра-5-(1-нафтокси)-фталоцианину меди, являющимся растворимыми в органических растворителях красителями, пригодными для крашения углеводородов, синтетических волокон, жиров, восков, спиртов, полимеров, пластических масс, резины.

Изобретение относится к новому химическому соединению, тетра-4-(1-бензотриазолил)тетра-5-(фенокси)фталоцианин меди, формулы I являющемуся растворимым в органических растворителях красителем, который можно использовать для крашения восков, синтетических волокон, полимеров, углеводородов, жиров, спиртов, пластических масс, резины.
Изобретение относится к получению безметального фталоцианина, имеющего важное и широкое практическое применение. .
Изобретение относится к химической промышленности, а именно к способам получения тетрапиррольных макрогетероциклических соединений. .
Изобретение относится к химической промышленности, а именно к способу получения тетрапиррольных макрогетероциклических соединений. .
Изобретение относится к химической промышленности, а именно к способам получения тетрапиррольных макрогетероциклических соединений. .

Изобретение относится к новым химическим соединениям класса порфинов, в частности к 5,15-бис (4'-аллилоксифенил)-3,7,13,17-тетраметил-2,-8,12,18-тетрабутилпорфину формулы(I) и к 5,15-бис (3'-аллилоксифенил)-3,7,13,-17-тетраметил-2,8,12,18-тетрабутилпорфину формулы (II): которые могут быть использованы в качестве красящего вещества при создании оптических фильтров.

Изобретение относится к новым химическим соединениям, относящимся к замещенным порфинам, в частности к 5-(4'-аллилоксифенил)-15-фенил-3,7,13,17-тетраметил-2,8,12,18-тетрабутилпорфину формулы 1: который может быть использован в качестве красящего вещества при создании оптических фильтров.

Изобретение относится к линейно аннелированным хинолиновыми циклами порфиразиновым комплексам меди, конкретно к тетра-(6-трет-бутил-2,3-хинолино)порфиразину меди формулы I в качестве красящего вещества оптических фильтров.

Изобретение относится к карборансодержащим порфиринам (порфириновым соединениям) формулы: R1, R2, R3 и R4, независимо, обозначают -NO2, -NH 2, галоген или заместитель, представленный следующей формулой ;при условии, что, по меньшей мере, один из R1 R2, R3 и R4 обозначает заместитель, изображенный формулой (2), и при условии, что, по меньшей мере, один из R1, R2, R 3 и R4 обозначает заместитель, представленный как NO2, NH2 или галоген.

Изобретение относится к четвертичным аммониевым солям мезо-тетра[1- (4'-бромбутил)-3-пиридил]бактериохлорина общей формулы где , . .

Изобретение относится к химии и химической технологии, а именно к новым гетерогенным сенсибилизаторам, представляющим собой модифированные силикагели, и их использованию для фотообеззараживанию воды от вирусного загрязнения.

Изобретение относится к новому веществу, а именно 6-(4-метил-1-1-пиперазинил)метильному производному индоло[1',7':1,2,3]пирроло[3',4':6,7]азепино[4,5-b]индол-1,3(2H,10H)-диона, способу его получения и использования на основе выявленной активности как ингибитора Pim-1-киназы в качестве лекарственного средства, применяемого для лечения патологических состояний, в механизме возникновения которых участвует Pim-1-киназы, или на основе их цитотоксического действия в качестве противоопухолевого препарата.

Изобретение относится к способу получения фосфонометилзамещенных фталоцианинов, который заключается во взаимодействии хлорметилзамещенных фталоцианонов с фосфорилирующим агентом - треххлористым фосфором с последующим гидролизом продукта реакции в воде, водно-щелочном или солянокислотном растворе.

Изобретение относится к области медицины и химико-фармацевтической промышленности, в частности к химической технологии, и касается способа получения натриевой соли окта-4,5-карбоксифталоцианина кобальта (субстанции препарата терафтал).

Изобретение относится к химической промышленности, а именно к новым замещенным металлофталоцианинам, которые могут найти применение в качестве прямых и кислотных красителей для крашения хлопчатобумажных и белковых волокон.

Изобретение относится к органической химии, а именно: к способу получения 2,4,6,8,10,12-гексабензил-2,4,6,8,10,12-гексаазатетрацикло-[5,5,0,0 3,11,05,9]додекана (ГБ), который является промежуточным продуктом в синтезе гексанитрогексаазаизовюрцитана - перспективного мощного взрывчатого вещества.

Изобретение относится к фармакологии, в частности к способу получения нового гибридного фотосенсибилизатора, который может быть использован при лечении злокачественных опухолей.
Изобретение относится к области органической химии, в частности к химии природных соединений, а именно к получению метилфеофорбида (а), который предназначен для синтеза на его основе порфиринов и хлоринов для целей фотодинамической терапии
Наверх