Способ извлечения и разделения платины и родия в сульфатных растворах

Изобретение относится к способу извлечения и разделения платины и родия в сульфатных растворах. Способ включает перевод платиновых металлов в активносорбируемую сульфатно-хлоридную форму и сорбцию на сильноосновном анионите. При этом переводу платиновых металлов в активносорбируемую форму подвергают предварительно свежеприготовленные и выдержанные в течение трех месяцев сульфатные растворы платины и родия путем добавления к ним хлороводородной кислоты. Сорбцию осуществляют в динамических условиях из полученных растворов на анионите Purolite A-500, содержащем в качестве функциональной группы четвертичное аммонийное основание, с последующей десорбцией в два этапа. На первом этапе пропускают через анионит раствор 2М NaNO3 для извлечения платины, а на втором этапе - раствор 2 М HCl для извлечения родия. Способ не требует дополнительной регенерации сорбента и является экологически безопасным. Техническим результатом изобретения является упрощение и удешевление как способа перевода сульфатных форм платиновых металлов в хлоридные, так и процесса извлечения и разделения платины и родия в свежеприготовленных и в выдержанных растворах. 1 з.п. ф-лы, 1 ил., 1 табл., 3 пр.

 

Изобретение относится к области аналитической химии платиновых металлов, в частности к методам разделения и концентрирования, и может быть использовано при разделении платины и родия в сульфатных свежеприготовленных и выдержанных растворах сорбционным методом с использованием сильноосновного анионита.

Известен способ извлечения благородных металлов из растворов сорбцией [патент РФ №2201983, C22B 11/00, C22B 3/24, опубл. 10.04.2003], включающий сорбционное извлечение благородных металлов органическим сорбентом - 2-(1,3,5-дитиазин-5-ил)уксусной кислоты в широком интервале температур (90-100°C) и кислотности среды (pH 1-14) в течение 40-60 мин, включающий стадии отфильтровывания, высушивания и озоления сорбента-концентрата. При этом зола представляет собой извлекаемый металл или сумму извлекаемых металлов (в случае серебра - оксид серебра).

К недостаткам этого способа относится использование только свежеприготовленных растворов, а также невозможность повторного использования ионитов ввиду их сжигания. Следовательно, другим существенным недостатком известного способа является экологическая опасность.

Существует также способ извлечения благородных металлов из кислых сульфатных растворов [патент РФ №2067125, C22B 3/24, C22B 11/00, опубл. 27.09.1996], включающий пропускание исходного раствора через слой углеродного адсорбента, предварительно подвергнутого деминерализации методом кислотной обработки и термообработке в инертной атмосфере, обработку угля азотной кислотой, последующую его промывку, сушку и термообработку для повторного использования при извлечении металлов платиновой группы.

Недостатками этого способа являются низкая механическая прочность углеродных сорбентов и невозможность их многократного (более 10 раз) использования.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ извлечения платиновых металлов из бедных сульфатных растворов [патент РФ №2323986, C22B 11/00, C22B 3/24, опубл. 10.05.2008], включающий одновременный перевод платиновых металлов в активносорбируемую форму хлорированием и их извлечение. В качестве сорбентов используют ионообменные смолы на основе сополимера стирола и дивинилбензола: сильноосновной анионит гелиевой структуры Россион-5, содержащий бензилтриметиламмониевые группы, или слабоосновную смолу макропористой структуры Россион-10, содержащую первичные, вторичные и третичные аминогруппы.

Недостатками данного способа являются использование высоких температур (90°C), длительность и трудоемкость процесса (постоянное перемешивание в течение четырех часов, пропускание токсичной хлорвоздушной смеси в течение 30 минут).

Техническим результатом изобретения является упрощение и удешевление как способа перевода сульфатных форм платиновых металлов в хлоридные, так и процесса их извлечения и разделения в свежеприготовленных и в выдержанных растворах.

Технический результат достигается тем, что в способе извлечения и разделения платины и родия в сульфатных растворах, включающем перевод платиновых металлов в активносорбируемую форму, сорбцию на сильноосновном анионите новым является то, что предварительно свежеприготовленные и выдержанные в течение трех месяцев сульфатные растворы платины и родия переводят в сульфатно-хлоридные путем добавления к ним хлороводородной кислоты, сорбцию осуществляют в динамических условиях из полученных растворов на анионите Purolite A-500, содержащем в качестве функциональной группы четвертичное аммонийное основание, а их десорбцию осуществляют в два этапа: на первом этапе пропускают через сорбент раствор 2М NaNO3 для извлечения платины и на втором этапе раствор 2 М HCl для извлечения родия. Также новым является то, что анионит после десорбции используют для повторной сорбции платиновых металлов без дополнительной регенерации.

Сущность способа заключается в следующем. На первом этапе происходит активация свежеприготовленных и выдержанных в течение трех месяцев сульфатных растворов без дополнительных затрат путем добавления к ним 0,01-2,0 М хлороводородной кислоты так, чтобы соотношение концентраций HCl и H2SO4 составляло 1:1. При этом в полученных системах кинетически инертные сульфатные комплексы платиновых металлов, такие как [Pt2(H2O)2(SO4)4]2-, [Rh(H2O)2(SO4)]-, [Rh(OH)(H2O)(SO4)2]2- и другие, которые вызывают значительное осложнение при извлечении этих металлов, переходят в более лабильные хлоридные формы, о чем свидетельствуют электронные спектры поглощения платиновых металлов, приведенных на фиг.1. Из них видно, что максимумы поглощения спектров хлоридных и сульфатно-хлоридных растворов идентичны, то есть в таких системах платина и родий находятся в хлоридных комплексах, таких как [PtCl6]2-, [RhCl6]3-, [Pt(OH)Cl5]2-, [Pt(OH)6]2-, [Rh(H2O)2Cl4]- и других. Далее на втором этапе проводится извлечение платиновых металлов из приготовленных растворов на сильноосновном анионите Purolite A-500, содержащем в качестве функциональной группы четвертичное аммонийное основание, обладающем высокой обменной емкостью по платине и родию. Сорбционные характеристики ионита в зависимости от кислотности среды практически не изменяются при уменьшении концентрации кислот. Для полного извлечения благородных металлов из растворов эксперимент проводится в динамических условиях. При выдерживании растворов в течение трех месяцев сорбционные параметры несколько ухудшаются, однако остаются на высоком уровне, что имеет огромное значение для промышленности. Третий этап включает десорбцию благородных металлов с анионита, которую осуществляют растворами 2 М NaNO3, а затем 2 М HCl. Анионит после десорбции используют для повторной сорбции благородных металлов в описываемом способе.

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемый способ от прототипа, не выявлены в других технических решениях при изучении данной и смежных областей химии и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательный уровень».

Изобретение поясняется чертежом. На фиг.1 представлены спектры поглощения хлоридных (1, 3) и сульфатно-хлоридных (2, 4) растворов платины и родия при совместном присутствии, полученные из сульфатных растворов разного времени выдерживания (свежеприготовленные растворы (1, 2) и выдержанные в течение трех месяцев (3, 4)).

Заявляемый способ осуществляется следующим образом.

Переводят платину и родий в активносорбируемую форму путем введения в свежеприготовленный и выдержанный в течение трех месяцев сульфатный раствор хлороводородной кислоты так, чтобы получились растворы следующего состава: концентрации H2SO4 и HCl 0,01-2,0 моль/л (молярное соотношение 1:1), концентрация по платине 2,5·10-4 моль/л (49 мг/л), по родию 2,5·10-4 моль/л (26 мг/л). Затем предварительно набухший анионит Purolite A-500 в хлоридной форме массой 2,3 г помещают в хроматографическую колонку и пропускают через него 50 мл полученного сульфатно-хлоридного раствора со скоростью 1,5 мл/мин. После насыщения сорбента ионами платиновых металлов пропускают 2 М раствор NaNO3. При этом платина переходит в раствор, а родий остается в анионите. Далее сорбент промывают 100 мл воды и пропускают через него 2 М раствор HCl. После раздельной десорбции платину и родий можно использовать для дальнейшей работы либо в виде растворов, либо можно перевести их в металлическую форму путем электролиза. Анионит после десорбции используют для повторной сорбции благородных металлов в описываемом способе. Характеристики предлагаемого способа представлены в табл.1, где C - концентрации платины, родия, серной и хлороводородной кислоты в контактирующих растворах (моль/л), R - процент сорбции или десорбции платиновых металлов (%).

Способ иллюстрируется следующими примерами.

Пример 1. Переводят платину и родий в активносорбируемую форму путем введения в свежеприготовленный сульфатный раствор хлороводородной кислоты так, чтобы получился раствор следующего состава: концентрации H2SO4 и HCl 0,01 моль/л (молярное соотношение 1:1), концентрация по платине 2,5·10-4 моль/л (49 мг/л), по родию 2,5·10-4 моль/л (26 мг/л). Затем предварительно набухший анионит Purolite A-500 в хлоридной форме массой 2,3 г помещают в хроматографическую колонку и пропускают через него 50 мл полученного сульфатно-хлоридного раствора со скоростью 1,5 мл/мин (табл.1). После насыщения сорбента ионами платиновых металлов пропускают 2 М раствор NaNO3 для извлечения платины. Затем сорбент промывают 100 мл воды и пропускают через него 2 М раствор HCl для извлечения родия.

Пример 2. Переводят платину и родий в активносорбируемую форму путем введения в свежеприготовленный сульфатный раствор хлороводородной кислоты так, чтобы получился раствор следующего состава: концентрации H2SO4 и HCl 2,0 моль/л (молярное соотношение 1:1), концентрация по платине 2,5·10-4 моль/л (49 мг/л), по родию 2,5·10-4 моль/л (26 мг/л). Затем предварительно набухший анионит Purolite A-500 в хлоридной форме массой 2,3 г помещают в хроматографическую колонку и пропускают через него 50 мл полученного сульфатно-хлоридного раствора со скоростью 1,5 мл/мин (табл.1). После насыщения сорбента ионами платиновых металлов пропускают 2 М раствор NaNO3 для извлечения платины. Затем сорбент промывают 100 мл воды и пропускают через него 2 М раствор НСl для извлечения родия.

Пример 3. Переводят платину и родий в активносорбируемую форму путем введения в выдержанный в течение трех месяцев сульфатный раствор хлороводородной кислоты так, чтобы получился раствор следующего состава: концентрации H2SO4 и HCl 0,01 моль/л (молярное соотношение 1:1), концентрация по платине 2,5·10-4 моль/л (49 мг/л), по родию 2,5·10-4 моль/л (26 мг/л). Затем предварительно набухший анионит Purolite А-500 в хлоридной форме массой 2,3 г помещают в хроматографическую колонку и пропускают через него 50 мл полученного сульфатно-хлоридного раствора со скоростью 1,5 мл/мин (табл.1). После насыщения сорбента ионами платиновых металлов пропускают 2 М раствор NaNO3 для извлечения платины. Затем сорбент промывают 100 мл воды и пропускают через него 2 М раствор НСl для извлечения родия.

Таблица 1 -
Результаты по сорбции Pt и Rh при совместном присутствии из свежеприготовленных (а) и выдержанных (б) растворов и их десорбции при помощи различных десорбентов (C(Pt)=C(Rh)=2,5·10-4 моль/л)
Металлы CH2SO4, CHCl, моль/л Rсорбции, % Rдесорбции? %
2М NaNO3 2М HCl
Pt (а) 2,0 99,9 99,6 -
(а) 0,01 99,9 99,8 -
(б) 0,01 97,8 99,5 -
Rh (а) 2,0 99,9 - 99,8
(а) 0,01 99,9 - 99,9
(б) 0,01 95,7 - 99,6

Использование заявляемого изобретения открывает возможность раздельного получения родия и платины из сульфатных растворов отработанных катализаторов. Для процессов сорбции и десорбции применяются дешевые, нетоксичные растворы нитрата натрия и хлороводородной кислоты, необходимые в малых количествах, что позволяет разработать экологически безопасные технологии извлечения платиновых металлов и избежать дополнительной операции регенерации анионита. Способ позволяет извлекать платиновые металлы более 99%.

Таким образом, в результате использования заявляемого технического решения упрощается и удешевляется как перевод платиновых металлов в активносорбируемую форму, без дополнительных затрат, так и сам процесс сорбции, нет необходимости проводить ее при температуре 90°C и пропускать через раствор хлоровоздушную смесь. Также появляется возможность проведения извлечения и разделения не только в свежеприготовленных, но и в выдержанных растворах, которые характеризуются наличием кинетически инертных форм аква- и гидроксокомплексов Pt и Rh и являются трудносорбируемыми соединениями.

1. Способ извлечения и разделения платины и родия в сульфатных растворах, включающий перевод платиновых металлов в активносорбируемую сульфатно-хлоридную форму, сорбцию на сильноосновном анионите, отличающийся тем, что переводу платиновых металлов в активносорбируемую форму подвергают предварительно свежеприготовленные и выдержанные в течение трех месяцев сульфатные растворы платины и родия путем добавления к ним хлороводородной кислоты, при этом сорбцию осуществляют в динамических условиях из полученных растворов на анионите Purolite A-500, содержащем в качестве функциональной группы четвертичное аммонийное основание, с последующей десорбцией в два этапа, причем на первом этапе пропускают через анионит раствор 2М NaNO3 для извлечения платины, а на втором этапе - раствор 2 М HCl для извлечения родия.

2. Способ по п.1, отличающийся тем, что анионит после десорбции используют для повторной сорбции платиновых металлов без дополнительной регенерации.



 

Похожие патенты:
Изобретение относится к технологии получения соединений редкоземельных элементов (РЗЭ) при комплексной переработке апатитов, в частности к извлечению РЗЭ из фосфогипса.

Изобретение относится к способу извлечения редкоземельных металлов из фосфогипса и может быть использовано в технологии получения соединений редкоземельных металлов при комплексной переработке апатитов, в частности к получению концентрата редкоземельных металлов (РЗМ) из фосфогипса.
Изобретение относится к способу выделения меди и/или никеля из растворов, содержащих кобальт. .

Изобретение относится к способу получения угольного сорбента, применяемого для извлечения редких металлов, в частности цианида золота, из водных щелочных растворов.

Изобретение относится к гидрометаллургии редких металлов, в частности к способу извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов, и может быть использовано в технологии получения концентратов редкоземельных элементов.
Изобретение относится к области сорбционной технологии извлечения золота из растворов, полученных в результате цианидного выщелачивания золотосодержащих рудных продуктов.
Изобретение относится к способу выделения золота из растворов с использованием смолы. .
Изобретение относится к технологии комплексной переработки фосфогипса, получаемого в сернокислотном производстве минеральных удобрений из апатитового концентрата, и может быть использовано для производства концентрата редкоземельных элементов (РЗЭ), а также гипсовых строительных материалов и цемента.

Изобретение относится к многоколоночной ионообменной хроматографии, и может быть использовано в гидрометаллургии. .

Изобретение относится к гидрометаллургии, в частности к способу извлечения урана из сернокислотных растворов и пульп. .

Изобретение относится к металлургии благородных металлов, в частности к способу извлечения благородных металлов из руд и концентратов по схеме обжиг-выщелачивание.

Изобретение относится к области гидрометаллургии, точнее к способам и устройствам извлечения драгоценных металлов из растворов цементацией. .

Изобретение относится к области гидрометаллургии, в частности к устройствам для обогащения минерального сырья. .
Изобретение относится к способу извлечения металлов из металлсодержащего минерального сырья, в частности из металлосодержащих отходов, руд и/или рудных концентратов.
Изобретение относится к гидрометаллургии благородных металлов, а именно к способу извлечения золота из минерального сырья. .
Изобретение относится к обогащению и может быть использовано для способа извлечения мелкого золота из минерального продукта. .

Изобретение относится к способам извлечения золота из природного сырья. .

Изобретение относится к способу выделения способных к поглощению водорода металлов из растворов, а также к установке для его осуществления. .
Изобретение относится к области металлургии и горного дела, в частности к способу извлечения золота из лежалых хвостов намывных хвостохранилищ. .
Изобретение относится к области флотационного обогащения техногенного сырья
Наверх