Определение пространственного распределения отдачи сцинтиллятора

Изобретение относится к области радиационных детекторов и более конкретно - к радиационному детектору, который содержит сцинтиллятор. В предложенном способе получения информации о пространственном распределении отдачи сцинтиллятора при первичном излучении не требуется облучение сцинтиллятора первичным излучением. Способ содержит этап облучения сцинтиллятора вторичным излучением для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора при указанном вторичном излучении. Изображение пространственного распределения вторичной отдачи соответствует изображению пространственного распределения первичной отдачи при первичном излучении. В осуществлении изобретения, то есть в устройстве формирования рентгеновского изображения, где первичное излучение представляет собой рентгеновское излучение, изобретением предоставляется точная калибровка детектора рентгеновского излучения без облучения детектора рентгеновского излучения рентгеновским излучением. Точнее, облучение ультрафиолетовым излучением в качестве вторичного излучения обеспечивает требуемое изображение пространственного распределения вторичной отдачи, которое может быть использовано для калибровки. 5 н. и 10 з.п. ф-лы, 10 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области радиационных детекторов и более конкретно - к радиационному детектору, который содержит сцинтиллятор.

Уровень техники

В патентном документе ЕР 0642264 А1 раскрыто устройство для обнаружения изображений, имеющее полупроводниковую матрицу для обнаружения изображений, предназначенную для обнаружения рентгеновских изображений, в которых значительно снижены возмущения, обусловленные паразитными изображениями. В соответствии с этим источником такие возмущения вызывает задержанная передача зарядов вследствие захватов зарядов в полупроводниковом материале приемников излучения. В соответствии с этим источником устройство для обнаружения содержит матрицу обнаружения изображений, которая содержит чувствительные к излучению элементы для преобразования падающего излучения в заряды и линии считывания для передачи зарядов в считывающую схему, которая выполнена с возможностью преобразования передаваемых зарядов в первичный сигнал электронного изображения. Устройство для обнаружения также содержит корректирующую схему для формирования сигнала коррекции изображения, предназначенного для преобразования первичного сигнала электронного изображения в скорректированный сигнал изображения путем удаления артефактов, обусловленных задержанной передачей зарядов, из первичного сигнала электронного изображения. Сигнал коррекции изображения может быть скомпонован в виде суперпозиции экспоненциально спадающих сигналов изображений, которые были обнаружены до обнаружения изображения, обнаруживаемого в данный момент. Затем скорректированный сигнал изображения компонуется из сигнала коррекции изображения и сигнала изображения, содержащего артефакты.

Сущность изобретения

Задача настоящего изобретения заключается в получении информации о пространственном распределении отдачи сцинтиллятора при первичном излучении. Преимущество изобретения заключается в том, что информацию о пространственном распределении отдачи сцинтиллятора при первичном излучении получают без необходимости подведения первичного излучения к сцинтиллятору.

Кроме того, преимущество заключается в создании способа или радиационного детекторного устройства для получения информации о пространственном распределении отдачи сцинтиллятора без необходимости подведения первичного излучения к сцинтиллятору.

Для лучшего решения этой задачи в первом аспекте изобретения предложен способ получения информации о пространственном распределении отдачи сцинтиллятора при первичном излучении. Способ в соответствии с первым аспектом изобретения содержит этапы, на которых облучают сцинтиллятор вторичным излучением для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора при вторичном излучении, при этом изображение пространственного распределения вторичной отдачи соответствует изображению пространственного распределения первичной отдачи сцинтиллятора при первичном излучении. В этом описании и в формуле изобретения термин «изображение пространственного распределения вторичной отдачи сцинтиллятора при вторичном излучении» сокращен до «изображения пространственного распределения вторичной отдачи». Точно так же термин «изображение пространственного распределения первичной отдачи сцинтиллятора при первичном излучении» сокращен до «изображения пространственного распределения первичной отдачи».

В соответствии со вторым аспектом изобретения предложено радиационное детекторное устройство, которое содержит сцинтиллятор для приема первичного излучения и образования в ответ на него преобразованного первичного излучения. Радиационное детекторное устройство также содержит источник вторичного излучения для подведения к сцинтиллятору вторичного излучения для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора при вторичном излучении, при этом изображение пространственного распределения вторичной отдачи соответствует изображению пространственного распределения первичной отдачи сцинтиллятора при первичном излучении.

В соответствии с осуществлением изобретения предложен способ, который дополнительно содержит этап считывания изображения пространственного распределения вторичной отдачи со сцинтиллятора.

В соответствии с еще одним осуществлением изобретения предусмотрен соответствующий радиационный детектор, содержащий считывающий блок для считывания изображения пространственного распределения вторичной отдачи со сцинтиллятора.

В соответствии с еще одним осуществлением изобретения предложен способ, который дополнительно содержит этап считывания изображения пространственного распределения вторичной отдачи со сцинтиллятора тем же самым фотодетектором, который предусмотрен для считывания преобразованного первичного излучения, генерируемого сцинтиллятором в ответ на падающее первичное излучение. Преимущество этого осуществления заключается в том, что не требуется дополнительный фотодетектор для считывания изображения пространственного распределения вторичной отдачи. Дополнительное преимущество этого осуществления заключается в том, что от сцинтиллятора световой путь света изображения пространственного распределения вторичной отдачи является таким же, как световой путь преобразованного первичного излучения.

В соответствии с еще одним осуществлением изобретения предложено соответствующее радиационное детекторное устройство, которое дополнительно содержит фотодетектор для считывания преобразованного первичного излучения, генерируемого сцинтиллятором в ответ на падающее первичное излучение, при этом фотодетектор предусмотрен также для считывания изображения пространственного распределения вторичной отдачи со сцинтиллятора.

В соответствии с еще одним осуществлением изобретения предложен способ, который содержит этап облучения сцинтиллятора вторичным излучением в эталонном состоянии сцинтиллятора для формирования эталонного изображения распределения вторичной отдачи. При этом эталонное состояние сцинтиллятора может быть состоянием равномерного распределения отдачи. Кроме того, опорное состояние сцинтиллятора может быть состоянием распределения отдачи, которое удовлетворяет определенному условию, например, при котором контраст отдачи находится ниже заданного уровня. Соответственно, сцинтиллятор облучают вторичным излучением в фактическом состоянии сцинтиллятора для формирования фактического изображения распределения вторичной отдачи. Соответственно, истинное фактическое изображение пространственного распределения вторичной отдачи формируют на основании эталонного изображения пространственного распределения вторичной отдачи и фактического изображения пространственного распределения вторичной отдачи. Это осуществление обладает преимуществом в том, что влияние неравномерного вторичного облучения будет исключено двухэтапной калибровкой при использовании эталонного изображения пространственного распределения вторичной отдачи и фактического изображения пространственного распределения вторичной отдачи.

В соответствии с еще одним осуществлением изобретения предложено соответствующее радиационное детекторное устройство, содержащее блок управления для управления источником вторичного излучения, чтобы облучать сцинтиллятор вторичным излучением в эталонном состоянии сцинтиллятора для формирования эталонного изображения распределения вторичной отдачи; устройство хранения данных для запоминания эталонного изображения пространственного распределения вторичной отдачи; и управления источником вторичного излучения, чтобы облучать сцинтиллятор вторичным излучением в фактическом состоянии сцинтиллятора для формирования фактического изображения распределения вторичной отдачи. Радиационное детекторное устройство из этого осуществления также содержит блок обработки для формирования истинного фактического изображения пространственного распределения вторичной отдачи на основании эталонного изображения пространственного распределения вторичной отдачи и фактического изображения пространственного распределения вторичной отдачи.

В соответствии с еще одним осуществлением изобретения предложен способ, в соответствии с которым первичным излучением облучают первый поверхностный участок сцинтиллятора и вторичным излучением облучают второй поверхностный участок сцинтиллятора, при этом второй поверхностный участок сцинтиллятора является иным, чем первый поверхностный участок сцинтиллятора. Это осуществление обладает преимуществом в том, что световой путь для первичного излучения может быть полностью отделен от светового пути для вторичного излучения. Это делает возможным использование материалов, которые являются непрозрачными для первичного излучения, на световом пути для вторичного излучения. В соответствии с еще одним осуществлением изобретения первый поверхностный участок сцинтиллятора может быть на противоположной стороне относительно второго поверхностного участка сцинтиллятора. Это обеспечивает возможность равномерного освещения сцинтиллятора применительно к освещению первичным излучением.

Радиационное детекторное устройство в соответствующем осуществлении содержит первый путь излучения для первичного излучения и второй путь излучения для вторичного излучения, при этом первый путь излучения и второй путь излучения соответственно заканчиваются на различных поверхностных участках сцинтиллятора.

В соответствии с еще одним осуществлением изобретения предложен способ, в котором первичным излучением и вторичным излучением облучают общий поверхностный участок сцинтиллятора. Этим получают преимущество в том, что сцинтиллятор может быть расположен на подложке, которая не пригодна для сквозного облучения первичным излучением и вторичным излучением.

Радиационное детекторное устройство в соответствующем осуществлении содержит первый путь излучения для первичного излучения и второй путь излучения для вторичного излучения, при этом первый путь излучения и второй путь излучения, оба, заканчиваются на одном и том же поверхностном участке сцинтиллятора.

В соответствии с еще одним осуществлением изобретения первичное излучение представляет собой рентгеновское излучение и вторичное излучение представляет собой не рентгеновское излучение, например ультрафиолетовое излучение. Это осуществление обладает преимуществом в том, что информация о пространственном распределении отдачи сцинтиллятора при рентгеновском излучении может быть получена без использования рентгеновского излучения, то есть без облучения персонала и/или пациентов рентгеновским излучением.

В соответствии с еще одним осуществлением изобретения предложен способ формирования изображения, содержащий этапы, на которых: 1) создают радиационное детекторное устройство, имеющее фотодетектор и сцинтиллятор, при этом сцинтиллятор генерирует преобразованное первичное излучение в ответ на первичное излучение, падающее на сцинтиллятор, и фотодетектор обнаруживает преобразованное первичное излучение; 2) выполняют способ в соответствии с изобретением или способ в соответствии с одним или несколькими осуществлениями изобретения с помощью сцинтиллятора радиационного детекторного устройства, чтобы тем самым формировать изображение пространственного распределения вторичной отдачи сцинтиллятора; 3) регистрируют изображение первичного излучения радиационным детекторным устройством при приеме первичного излучения сцинтиллятором; 4) формируют скорректированное изображение первичного излучения в ответ на зарегистрированное изображение первичного излучения и изображение пространственного распределения вторичной отдачи. «Формирование скорректированного изображения первичного излучения в ответ на зарегистрированное изображение первичного излучения и изображение пространственного распределения вторичной отдачи» может содержать или может состоять из «калибровки зарегистрированного изображения первичного излучения с помощью изображения пространственного распределения вторичной отдачи». При использовании в способе формирования изображения способа получения информации о пространственном распределении отдачи сцинтиллятора при первичном излучении в соответствии с изобретением или способа, содержащего признаки одного или нескольких осуществлений изобретения, информация о пространственном распределении отдачи сцинтиллятора при первичном излучении может быть успешно получена без необходимости облучения сцинтиллятора первичным излучением. Тем самым калибровка сцинтиллятора может быть выполнена безопасным способом, то есть без облучения персонала и/или пациентов первичным излучением.

Устройство, соответствующее вышеуказанному способу формирования изображения, представляет собой устройство обнаружения изображения, содержащее радиационное детекторное устройство в соответствии с изобретением или радиационное детекторное устройство в соответствии с осуществлением изобретения.

В соответствии с еще одним осуществлением изобретения предложен компьютерный программный продукт, позволяющий процессору выполнять способ получения пространственного распределения отдачи сцинтиллятора при первичном излучении в соответствии с изобретением или в соответствии с осуществлением изобретения. В соответствии с еще одним осуществлением изобретения предложен компьютерный программный продукт, позволяющий процессору выполнять способ формирования изображения согласно соответствующему осуществлению изобретения. Преимущество этих осуществлений заключается в том, что блок управления, предназначенный для управления облучением сцинтиллятора первичным излучением или вторичным излучением, не должен заменяться, а может быть перепрограммирован соответствующим программным продуктом. Компьютерный программный продукт согласно соответствующему осуществлению изобретения может быть получен в любом подходящем виде, например в виде новой компьютерной программы или в виде обновления существующей компьютерной программы, через соответствующую среду, например, на съемном носителе, через Интернет и т.д.

Итак, в соответствии с одним аспектом изобретения созданы способ и установка для получения информации о пространственном распределении отдачи сцинтиллятора при первичном излучении, в которых не требуется облучение сцинтиллятора первичным облучением. Способ содержит этап облучения сцинтиллятора вторичным излучением для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора при вторичном излучении. Изображение пространственного распределения вторичной отдачи соответствует изображению пространственного распределения первичной отдачи при первичном излучении. В осуществлении изобретения, то есть в устройстве для формирования рентгеновского изображения, где первичное излучение представляет собой рентгеновское излучение, изобретение обеспечивает точную калибровку рентгеновского детектора без облучения рентгеновского детектора рентгеновским излучением. Вместо этого облучение ультрафиолетовым излучением в качестве вторичного излучения обеспечивает требуемое изображение пространственного распределения вторичной отдачи, которое можно использовать для калибровки.

Эти и другие аспекты изобретения станут очевидными и освещенными при обращении к осуществлениям, описанным ниже.

Краткое описание чертежей

В нижеследующем подробном описании делаются ссылки на чертежи, на которых:

фиг.1 - схематический вид осуществления установки для формирования изображения в соответствии с изобретением;

фиг.2 - местный вид в сечении осуществления радиационного детекторного устройства в соответствии с изобретением;

фиг.3 - местный вид в сечении другого осуществления радиационного детекторного устройства в соответствии с изобретением;

фиг.4 - местный вид в сечении еще одного осуществления радиационного детекторного устройства в соответствии с изобретением;

фиг.5 - местный вид в сечении еще одного осуществления радиационного детекторного устройства в соответствии с изобретением;

фиг.6 - местный вид в сечении еще одного осуществления радиационного детекторного устройства в соответствии с изобретением;

фиг.7 - местный вид в сечении еще одного осуществления радиационного детекторного устройства в соответствии с изобретением;

фиг.8 - местный вид в сечении еще одного осуществления радиационного детекторного устройства в соответствии с изобретением;

фиг.9 - перспективный вид с пространственным разделением элементов еще одного осуществления радиационного детекторного устройства в соответствии с изобретением;

фиг.10 - блок-схема последовательности действий способа формирования изображения в соответствии с осуществлением изобретения.

Подробное описание изобретения

Теперь с обращением к чертежам иллюстративные осуществления настоящего изобретения будут описаны более подробно. В продолжение подробного описания осуществлений иллюстративным примером первичного излучения является рентгеновское излучение и примером вторичного излучения является нерентгеновское излучение, в частности, ультрафиолетовое излучение или синий свет.

На фиг.1 показан схематический вид примера осуществления установки 2 для формирования изображения. Установка 2 для формирования изображения содержит источник 4 первичного излучения для облучения исследуемого объекта 8 первичным излучением 6. Объектом 8, показанным на фиг.1 иллюстративно, может быть человек. Однако объект 8 может быть животным или веществом любого вида. В осуществлении, показанном на фиг.1, источник 4 первичного излучения представляет собой источник рентгеновского излучения и первичное излучение представляет собой рентгеновское излучение. Однако первичное излучение может быть любым другим излучением, которое пригодно для исследования объекта 8.

После прохождения через объект 8 первичное излучение 6 обнаруживается радиационным детекторным устройством 10. Детекторное устройство 10 содержит сцинтиллятор 12 и фотодетектор 14. В ответ на падающее первичное излучение 6 сцинтиллятор 12 генерирует преобразованное первичное излучение 18. Фотодетектор 14 предусмотрен для обнаружения преобразованного первичного излучения 18 и создает в ответ на него сигналы изображения, представляющие преобразованное первичное излучение 18.

В примере осуществления, показанном на фиг.1, сцинтиллятор представляет собой сцинтиллятор CsI:Tl-типа (иодид цезия, активированный таллием). Однако сцинтиллятор может быть любым сцинтиллятором, подходящим для выбранного первичного излучения 6. Фотодетектор 14, использованный в установке 2 для формирования изображения, показанной на фиг.1, представляет собой плоский динамический детектор рентгеновского излучения, который содержит множество фотодиодов 16 для обнаружения преобразованного первичного излучения 18, что более подробно показано на фиг.2.

Сцинтиллятор CsI:Tl-типа, который обычно используют в плоскопанельных детекторах рентгеновского излучения, проявляет зависящий от времени эффект отдачи, в дальнейшем называемый «вызванным яркостью послеизображением». Этот эффект отдачи зависит от информационного наполнения проецируемого изображения: вследствие захвата носителей заряда отдача сцинтиллятора 12 и, следовательно, детекторного устройства 10 может зависеть от характера протекания процесса во времени, пространства и интенсивности. При интенсивном облучении изображение отдачи оставляет след на сцинтилляторе 12 и накладывается на изображения, собираемые впоследствии. В случае формирования малоконтрастного изображения это изображение будет просвечивать в течение длительных периодов времени (сутками). В частности, при формировании изображения мягких тканей, аналогично формированию изображения при компьютерной томографии, эти оставляющие след контрасты будут проявляться в восстановленном изображении. Эти эффекты являются нежелательными, поскольку они снижают видность тканей при низком контрасте. Как уже установлено выше, осуществления изобретения касаются исключения этого эффекта.

В зависимости от содержания Tl зависимость отдачи от применяемой дозы от нулевой экспозиции до насыщения может достигать 6%. На практике после цифровой субтракционной ангиографии будут получаться значения около 1%, которые являются слишком высокими для формирования изображения мягких тканей, когда должны обнаруживаться контрасты того же порядка величины.

Чтобы повысить видность при низком контрасте, радиационное детекторное устройство 10, согласно осуществлению, показанное на фиг.1, содержит источник 20 вторичного излучения для подведения к сцинтиллятору вторичного излучения 22, которое применено для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора 12 при вторичном излучении 22, при этом изображение пространственного распределения вторичной отдачи соответствует изображению пространственного распределения первичной отдачи сцинтиллятора 12 при первичном излучении 6, при рентгеновском излучении в настоящем осуществлении. Поскольку источник 22 вторичного излучения расположен на противоположной стороне относительно источника 4 рентгеновского излучения, то есть на обратной стороне радиационного детекторного устройства 10, детекторное устройство 10 этого типа называется плоским динамическим детектором рентгеновского излучения с задней подсветкой. В частности, «задняя подсветка» распространяется на облучение фотодиодов и/или сцинтиллирующего слоя через стеклянную подложку, поддерживающую эти фотодиоды и сцинтиллирующий слой.

Эксперименты показали, что свет с длиной волны в диапазоне от 350 нм до 450 нм или, например, от 365 нм до 400 нм, или, например, от 370 до 390 нм, или, например, 380 нм, пригоден для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора CsI:Tl, которое соответствует изображению пространственного распределения первичной отдачи сцинтиллятора при рентгеновском излучении. В осуществлениях из фиг.1 и фиг.2 источник 20 вторичного излучения установлен под подложкой 21. Над подложкой 21 образован фотодетектор 14. Над фотодетектором 14 образован сцинтиллятор 12 детекторного устройства 10. Соответственно, источник 20 вторичного излучения установлен с обращением ко второму поверхностному участку 26 сцинтиллятора 12, который находится на противоположной стороне относительно первого поверхностного участка 24 сцинтиллятора 12, обращенного к источнику 4 первичного излучения. Поэтому в показанном осуществлении путь излучения для первичного излучения проходит между источником 4 первичного излучения и первым поверхностным участком 24, и путь излучения для вторичного излучения 22 проходит между источником 20 вторичного излучения и вторым поверхностным участком 26.

Следует отметить, что в изображении пространственного распределения вторичной отдачи может обнаруживаться обращенный контраст по сравнению с изображением пространственного распределения первичной отдачи. Например, это происходит в случае сцинтиллятора CsI:Tl и ультрафиолетового излучения в определенном диапазоне, от 365 нм до 400 нм. Однако даже такое обращенное изображение пространственного распределения вторичной отдачи можно использовать для точной калибровки радиационного детекторного устройства 10.

На фиг.3 показаны элементы из фиг.2 в другом рабочем состоянии. В то время как на фиг.2 показаны сцинтиллятор 12, фотодетектор 14 и подложка 21 во время регистрации изображения первичного излучения, то есть во время облучения сцинтиллятора 12 первичным излучением 6, на фиг.3 показаны сцинтиллятор 12, фотодетектор 14 и подложка 21 во время формирования контрастного изображения вторичной отдачи.

На фиг.3 показан пример пути излучения для вторичного излучения 22 в детекторном устройстве 10 из фиг.2. Вторичное излучение 22 проходит через прозрачные части подложки 21, проходит мимо фотодиодов 16 и достигает сцинтиллятора 12. Прохождение вторичного излучения 22 через фотодетектор 14 может включать в себя прохождение вторичного излучения мимо фотодиодов 16 через пространство 28 между фотодиодами 16, при этом пространство 28 является прозрачным для вторичного излучения 22. В показанном осуществлении обратная сторона фотодиодов 16 не является прозрачной для вторичного излучения 22, то есть для света. В качестве варианта фотодиоды 16 могут быть прозрачными для вторичного излучения 22.

Вторичное излучение 22, достигающее сцинтиллятора 12, возбуждает сцинтиллятор 12. Образующаяся флуоресценция 29 сцинтиллятора 12 является репликой наведенной ловушками характеристики сцинтиллятора на предшествующие облучения сцинтиллятора 12 рентгеновским излучением. Флуоресценция 29 образует изображение пространственного распределения вторичной отдачи сцинтиллятора 12. Флуоресценция 29 считывается со сцинтиллятора 12 фотодетектором 14. В установке 2 для формирования изображения считываемая флуоресценция 29 может использоваться в качестве калибровочного изображения. Для обеспечения точной калибровки детекторного устройства из этого осуществления плоское изображение, обусловленное вызванным яркостью послеизображением, образуемое ультрафиолетовым излучением, должно быть репликой изображения, образуемого рентгеновским излучением.

В соответствии с осуществлением изобретения флуоресценция 29, генерируемая возбужденным сцинтиллятором 12, используется для заполнения ловушек фотодетектора 14. В соответствии с другим осуществлением фотодиоды могут также обладать непосредственной чувствительностью к ультрафиолетовому свету и поэтому могут быть также объектом для заполнения ловушек. Например, флуоресценцию 29 возбужденного сцинтиллятора можно использовать для заполнения ловушек фотодиодов 16 в установке 2 для формирования изображения согласно осуществлению, показанному на фиг.1, при этом ослабляется эффект отдачи и, в частности, уменьшаются наведенные ловушками вариации отдачи между фотодиодами. Заполнение ловушек фотодиодов 16 может выполняться, например, перед формированием и считыванием изображения пространственного распределения вторичной отдачи.

На фиг.1 показан пример осуществления блока 30 управления установки для формирования изображения согласно осуществлению изобретения. Установка 2 для формирования изображения из фиг.1 управляется блоком 30 управления. С блока 30 управления управляющие сигналы 32 подаются на источник 20 вторичного излучения для осуществления источником 20 вторичного излучения испускания вторичного излучения 22.

С блока 30 управления также подаются управляющие сигналы 34 на источник 4 первичного излучения для осуществления источником 4 первичного излучения испускания первичного излучения 6.

С блока 30 управления также подаются управляющие сигналы 36 на фотодетектор 14 для, например, выбора одного или нескольких фотодетекторных элементов из фотодетектора 14 для считывания.

Кроме того, блок 30 управления принимает сигналы 38 изображения с фотодетектора 14. Сигналы изображения могут быть любыми сигналами, которые относятся к изображению, регистрируемому фотодетектором 14, например, сигналами изображения, представляющими регистрируемое изображение объекта 8 при первичном излучении, сигналами изображения, представляющими изображение пространственного распределения вторичной отдачи, сигналами изображения, представляющими изображение пространственного распределения первичной отдачи, и т.д.

Кроме того, блок 30 управления может быть выполнен с возможностью управления другими частями установки 2 для формирования изображения. Например, в компьютерном томографическом сканере установки с С-дугой, предназначенной для формирования изображений сердечно-сосудистой системы, источник 4 первичного излучения и радиационное детекторное устройство 10 установлены на диаметрально противоположных сторонах С-образной дуги. Например, при таком осуществлении установки 2 для формирования изображения блок 30 управления может быть выполнен с возможностью управления приводными двигателями С-дуги (непоказанными).

Блок 30 управления может содержать одно или несколько отдельных управляющих устройств 40, при этом каждая из упомянутых индивидуальных функций блока 30 управления может выполняться одним из управляющих устройств 40. В других осуществлениях изобретения блок управления может выполнять только часть из упомянутых выше индивидуальных функций. В дальнейших осуществлениях изобретения блок управления может выполнять дополнительные функции в добавление к части или ко всем упомянутым выше индивидуальным функциям. Некоторые или все эти индивидуальные функции блока 30 управления могут выполняться в ответ на заданную программу. Кроме того, некоторые или все эти индивидуальные функции блока 30 управления могут выполняться в ответ на сигналы датчиков или другие внешние сигналы. Некоторые или все эти индивидуальные функции блока 30 управления могут выполняться на микропроцессоре путем реализации соответствующей компьютерной программы. Блок 30 управления или одно или несколько управляющих устройств 40 блока 30 управления могут быть частью системы управления более высокого ранга.

В соответствии с осуществлением изобретения информацию о пространственном распределении отдачи сцинтиллятора 12 при первичном излучении образуют при облучении сцинтиллятора 12 вторичным излучением 22 для формирования изображения пространственного распределения вторичной отдачи сцинтиллятора при вторичном излучении, при этом изображение пространственного распределения вторичной отдачи соответствует изображению, относящемуся к изображению пространственного распределения первичной отдачи сцинтиллятора 12 при первичном излучении 6. Этот способ, который ниже называется «одноэтапным способом», позволяет получать информацию о пространственном распределении отдачи сцинтиллятора 12 при первичном излучении без подведения первичного излучения к сцинтиллятору 12. Изображение пространственного распределения вторичной отдачи, регистрируемое с помощью одноэтапного способа, содержит неравномерность, обусловленную распределением вторичного излучения, которая, однако, может быть приемлемой при многих применениях.

В соответствии с другим осуществлением изобретения информацию о пространственном распределении отдачи сцинтиллятора 12 при первичном излучении получают в соответствии со следующими этапами, которые к тому же показаны на фиг.10, при этом конкретные примеры, использованные в осуществлении из фиг.1 для первичного излучения (рентгеновское излучение в осуществлении из фиг.1) и вторичного излучения (ультрафиолетовое излучение в осуществлении из фиг.1), даны на фиг.10.

1. Калибровка детекторного устройства 10 при первичном излучении произвольным образом в момент t=t0, например, путем регистрации калибровочного изображения первичного излучения. Это калибровочное изображение представляет собой установившееся калибровочное изображение, которое можно использовать для нескольких регистрируемых изображений первичного излучения. Вследствие равномерного облучения сцинтиллятора первичным излучением в сцинтилляторе не создается контраст отдачи (этап А на фиг.10).

2. Облучение сцинтиллятора 12 вторичным излучением в эталонном состоянии сцинтиллятора для формирования эталонного изображения пространственного распределения вторичной отдачи в момент t=t0+dt0 (этап В на фиг.10). Эталонное изображение пространственного распределения вторичной отдачи предназначается для долговременного использования, то есть для калибровки нескольких изображений первичного излучения. Это формирование эталонного изображения пространственного распределения вторичной отдачи может быть выполнено сразу же после момента t0, то есть значение dt0 может быть небольшим. Эталонное состояние сцинтиллятора можно характеризовать равномерным распределением отдачи. Например, опорное состояние сцинтиллятора может быть состоянием неиспробованного детекторного устройства 10, в частности, состоянием неиспробованного сцинтиллятора 12. В качестве дальнейшего примера эталонное состояние сцинтиллятора можно характеризовать распределением отдачи сцинтиллятора 12, которое удовлетворяет определенному условию. Такое условие может характеризоваться тем, что контраст отдачи сцинтиллятора 12 в эталонном состоянии сцинтиллятора находится ниже заданного уровня.

При формировании эталонного изображения распределения вторичной отдачи сцинтиллятор 12 может подвергаться воздействию различных облучений первичным излучением, которые изменяют изображение распределения отдачи сцинтиллятора 12. Это показано точками при С на фиг.10.

3. Облучение сцинтиллятора 12 вторичным излучением 22 в текущем, фактическом состоянии сцинтиллятора для формирования фактического изображения пространственного распределения вторичной отдачи в момент t=t1 (этап D на фиг.10). Этот этап можно выполнять до выполнения формирования изображения мягких тканей в установке 2 формирования изображения в момент t=t1+dt1.

4. Формирование истинного фактического изображения пространственного распределения вторичной отдачи на основании эталонного изображения пространственного распределения вторичной отдачи и фактического изображения пространственного распределения вторичной отдачи (этап D на фиг.10). Этот этап можно выполнять путем деления эталонного изображения пространственного распределения вторичной отдачи и фактического изображения пространственного распределения вторичной отдачи.

Соответственно, это осуществление содержит два этапа облучения вторичным излучением: первый этап облучения вторичным излучением в эталонном состоянии сцинтиллятора до момента появления вызванного яркостью послеизображения и второй этап облучения вторичным излучением в фактическом состоянии сцинтиллятора до регистрации фактического изображения первичного излучения и после момента появления вызванного яркостью послеизображения. Этот двухэтапный способ обладает преимуществом в том, что только истинное фактическое изображение пространственного распределения вторичной отдачи содержит эффекты вызванного яркостью послеизображения. В частности, на истинное фактическое изображение пространственного распределения вторичной отдачи не влияет, например, неравномерное облучение сцинтиллятора 12 вторичным излучением 22. Истинное фактическое изображение пространственного распределения вторичной отдачи можно использовать для калибровки детекторного устройства 10, в частности, для калибровки сцинтиллятора 12.

В соответствии с осуществлением изобретения способ формирования изображения сцинтиллятора 12 содержит следующие этапы:

1. Формирование изображения пространственного распределения вторичной отдачи сцинтиллятора 12 в момент t=t1 (этапы с А по D на фиг.10). Это можно сделать, например, выполняя описанный выше одноэтапный способ или двухэтапный способ. Термин «изображение пространственного распределения вторичной отдачи» в этом смысле включает в себя «истинное фактическое изображение пространственного распределения вторичной отдачи», упомянутое выше.

2. Регистрация изображения первичного излучения радиационным детекторным устройством 10 при приеме первичного излучения 6 в момент t=t1+dt1 (этап Е на фиг.10). Регистрацией изображения первичного излучения может быть, например, выполнение формирования изображения мягких тканей устройством 2 для формирования изображения.

3. Формирование скорректированного изображения первичного излучения в ответ на зарегистрированное изображение первичного излучения и изображение пространственного распределения вторичной отдачи (этап F на фиг.10) в момент t=t1+dt1+dt2. Этап формирования скорректированного изображения первичного излучения можно выполнять любым подходящим способом. Например, этот этап может включать в себя обращение изображения пространственного распределения вторичной отдачи в случае, когда изображение пространственного распределения вторичной отдачи имеет обращенный контраст по сравнению с соответствующим изображением пространственного распределения первичной отдачи. Кроме того, этот этап можно выполнять способом коррекции, включающим в себя сложение зарегистрированного изображения первичного изображения и изображения пространственного распределения вторичной отдачи. Кроме того, этот этап можно выполнять способом коррекции, включающим в себя деление зарегистрированного изображения первичного излучения и изображения пространственного распределения вторичной отдачи. Желательной целью коррекции, в соответствии с которой формируют скорректированное изображение первичного излучения, является исключение паразитных изображений, которые обусловлены вызванным яркостью послеизображением сцинтиллятора, из скорректированного изображения первичного излучения.

Временные интервалы dt0, dt1 и dt2 зависят от требуемого согласования во времени скорости обработки вовлеченных компонентов.

Каждый из упомянутых выше этапов может быть выполнен соответствующим управляющим устройством 40 блока 30 управления. В соответствующих осуществлениях блок 30 управления может дополнительно содержать устройство 41 хранения данных для запоминания по меньшей мере эталонного изображения пространственного распределения вторичной отдачи и/или калибровочного изображения первичного излучения. Запоминание изображения включает в себя запоминание сигналов, представляющих изображение.

На фиг. с 4 по 8 показаны некоторые из возможных осуществлений радиационных детекторных устройств. В некоторых из этих осуществлений используется фотолюминесцентная пластина или светодиод в качестве источника вторичного излучения. Фотолюминесцентная пластина может содержать органический люминесцентный слой из органических светодиодов. Однако в других осуществлениях изобретения также возможны иные формы источников вторичного излучения при условии, что они создают вторичное излучение, подходящее для формирования изображения пространственного распределения вторичной отдачи соответствующего сцинтиллятора. Должно быть понятно, что в случае, когда вторичное излучение представляет собой ультрафиолетовое излучение, соответствующая фотолюминесцентная пластина представляет собой пластину ультрафиолетовой люминесценции и соответствующий светодиод представляет собой ультрафиолетовый светодиод, который испускает излучение в ультрафиолетовом диапазоне. В примерах осуществлений из фиг. с 4 по 8 фотодетектор 14 содержит множество фотодиодов 16. Однако должно быть понятно, что фотодетектор может иметь любую форму, подходящую для обнаружения излучения, которое генерируется сцинтиллятором в ответ на облучение вторичным излучением. Каждое из осуществлений радиационного детектора, показанных на фигурах с 4 по 8, может заменять радиационный детектор 10 из фиг.1. В этом смысле признаки и преимущества, которые установлены относительно радиационного детектора 10, не повторяются для осуществлений радиационных детекторов, показанных на фиг. с 4 по 8.

При рассмотрении преимуществ осуществлений, показанных на фиг. с 4 по 8, предполагается, что облучение первичным излучением 6 производится сверху и на соответствующее радиационное детекторное устройство. Однако это предположение делается только для иллюстративных целей, и осуществления не ограничены им.

На фиг.4 показано осуществление радиационного детекторного устройства 110, имеющего фотолюминесцентную пластину 120, образованную поверх подложки 121. Фотодиоды 116 фотодетектора 114 образованы поверх фотолюминесцентной пластины 120. Поверх фотодиодов 116 образован сцинтиллятор 112. Это осуществление обладает преимуществом в том, что подложка 121 не является прозрачной для вторичного излучения.

На фиг.5 показано осуществление радиационного детекторного устройства 210, имеющего фотолюминесцентную пластину 220, образованную на поверхности 244 подложки 221. Поверхность 244 подложки 221 находится на противоположной стороне относительно поверхности 246, на которой образован фотодетектор 214. Сцинтиллятор 212 образован поверх фотодетектора 214. Подложку 221 можно выбрать так, чтобы она была прозрачной для вторичного излучения и непрозрачной для первичного излучения. Вместо такой «фильтрующей подложки» подложка, которая является прозрачной для первичного излучения и вторичного излучения, может быть снабжена подходящим фильтром излучения. В обоих случаях может быть исключено облучение фотолюминесцентной пластины 220 первичным излучением.

На фиг.6 показано осуществление радиационного детекторного устройства 310, имеющего фотодетектор 314, образованный поверх подложки 321. Поверх фотодетектора 314 образован сцинтиллятор 312. Поверх сцинтиллятора 312 образована фотолюминесцентная пластина 320, которая является прозрачной для первичного излучения. Поэтому облучение первичным излучением 6 и вторичным излучением 22 производится на общий поверхностный участок 324 сцинтиллятора 312. Это осуществление обладает преимуществом в том, что путь излучения для излучения, которое формирует изображение пространственного распределения вторичной отдачи, сравним с путем излучения для преобразованного первичного излучения, которое также обнаруживается фотодетектором 314.

На фиг.7 показано осуществление радиационного детекторного устройства 410, имеющего сцинтиллятор 212, фотодетектор 214 и подложку 221 из осуществления на фиг.5. Однако по сравнению с осуществлением из фиг.5 радиационный детектор 410 содержит множество излучающих вторичное излучение диодов 420 вместо фотолюминесцентной пластины 220 устройства 220 из фиг.5. Следует отметить, что в любом из осуществлений, показанных на фиг. с 4 по 6, соответствующая фотолюминесцентная пластина 120, 220, 320 может быть заменена множеством подходящих светодиодов.

На фиг.8 показано осуществление радиационного детекторного устройства 510, которое соответствует радиационному детекторному устройству 410 из фиг.7, при этом в дополнение имеет множество источников 548 третичного излучения, светодиодов в показанном осуществлении, которые могут работать для создания третичного излучения, которое является подходящим для заполнения ловушек, наведенных первичным излучением в фотодетекторе 214. Это осуществление обладает преимуществом в том, что после заполнения ловушек в фотодетекторе 214 с помощью третичного излучения фотодетектор имеет равномерную чувствительность при считывании изображения пространственного распределения вторичной отдачи.

На фиг.9 показан вид с пространственным разделением элементов дальнейшего осуществления радиационного детекторного устройства 610, имеющего фотодетектор 614 с комплементарной структурой металл-оксид-полупроводник (КМОП-структурой), снабженный передней подсветкой.

Радиационное детекторное устройство 610 имеет светодиодную матрицу в качестве источника 620 вторичного излучения. Источник 620 вторичного света расположен вне пучка первичного излучения 6. Преимущество этого осуществления заключается в том, что в этом осуществлении вместо светодиодной матрицы 620 можно использовать источник вторичного излучения другого типа, например излучающую вторичный свет трубку, в частности, ультрафиолетовую светоизлучающую трубку при использовании сцинтиллятора CsI-типа. Облучение первичным излучением 6 производится на поверхность сцинтиллятора 612, которая обращена к подложке 621, то есть на фиг.9 облучение первичным излучением 6 производится снизу.

Для направления вторичного света 22 от светодиодной матрицы 620 к детекторному устройству 610, чтобы выполнять переднюю подсветку детекторного устройства 610, радиационное детекторное устройство 610 содержит световод 650, например световодную пластину, показанную на фиг.9, которая распределяет вторичный свет 22 от источника 620 вторичного света. Например, световодная пластина 650 может быть рассчитана на распределение вторичного света 22 по поверхности, которая соответствует детекторной поверхности фотодетектора 614, или по сцинтиллирующей поверхности сцинтиллятора 612. На поверхности 652 световодной пластины 650, которая находится на противоположной стороне детекторного устройства 610, может быть предусмотрена отражающая пластина 654, которая является прозрачной для первичного излучения и которая отражает вторичное излучение. Кроме того, может быть предусмотрен отражатель 656 для фокусирования вторичного света 22 на световодную пластину 650.

Предусмотрена подложка 621, которая в осуществлении, показанном на фиг.9, образована из стекла. Однако другие материалы подходят при условии, что они являются прозрачными для первичного излучения и вторичного излучения. Подложка 621 поддерживает оптический фильтр 658 и сцинтиллятор 612, например слой CsI сцинтиллятора. Поверх сцинтиллятора 612, на противоположной стороне относительно подложки 621, расположен фотодетектор 614 с КМОП-структурой. Фотодетектор 614 может быть выполнен в виде пластины, имеющей множество фотодетекторов. Пластина может быть изготовлена из кремния или любого другого подходящего материала. Вместо описанного радиационного детектора 614 с КМОП-структурой можно использовать любой другой радиационный детектор. Оптический фильтр представляет собой фильтр нижних частот, который пропускает вторичное излучение и первичное излучение и который отражает испускаемый сцинтиллятором свет. Таким способом повышается чувствительность сцинтиллятора 612 к фотонам, образуемым первичным излучением.

Для направления вторичного света к сцинтиллятору 612 может быть предусмотрено устройство 660 направления излучения, например обращенная вниз призменная пластина, показанная на фиг.9. В показанном осуществлении устройство 660 направления производит направление вторичного излучения 22 по существу перпендикулярно поверхности сцинтиллятора. Для дальнейшего повышения однородности вторичного излучения 22 может быть предусмотрена рассеивающая пластина. Например, соответствующим образом выполненная подложка 621 может действовать как рассеивающая пластина.

В осуществлении из фиг.6 источник 620 вторичного излучения и элементы на пути излучения для вторичного излучения между источником вторичного излучения и подложкой, например световод 650 и устройство направления 660, можно заменить фотолюминесцентной пластиной. Кроме того, фотодетектор 314 в осуществлении, показанном на фиг.5, может быть фотодетектором с КМОП-структурой, как и фотодетектор 614, показанный на фиг.9.

Хотя изобретение было подробно пояснено и рассмотрено с помощью чертежей и приведенного выше описания, такие пояснение и рассмотрение должны считаться иллюстративными или примерными, а не ограничивающими; изобретение не ограничено раскрытыми осуществлениями.

Например, изобретение не ограничено детекторным устройством для рентгеновского излучения или калибровкой детекторного устройства для рентгеновского излучения. Точнее, можно использовать изображение пространственного распределения вторичной отдачи, регистрируемое в соответствии с изобретением, в любом применении, в котором требуется информация о распределении отдачи сцинтиллятора при первичном излучении.

Термин «изображение пространственного распределения отдачи» включает в себя «изображение планарного распределения отдачи». На самом деле в осуществлениях, показанных в подробном описании изобретения, представлены изображения планарного распределения отдачи. Однако можно реализовать изобретение в осуществлении, в котором изображение пространственного распределения отдачи имеет другие конфигурации, которые отличаются от изображений планарного распределения отдачи.

Другие варианты рассмотренных осуществлений могут быть осознаны и выполнены специалистами в данной области техники при практическом использовании заявленного изобретения на основании изучения чертежей, раскрытия и прилагаемой формулы изобретения. В формуле изобретения слово «содержащий» не исключает других элементов или этапов, а неопределенный артикль не исключает множества. Единственный процессор или другой блок может выполнять функции нескольких элементов, перечисленных в формуле изобретения. Сам факт, что некоторые средства перечисляются во взаимно различных зависимых пунктах формулы изобретения, не означает, что сочетание этих средств не может использоваться с достижением преимущества. Компьютерная программа может храниться и распространяться на подходящем носителе, поставляемом вместе с другими техническими средствами или как часть этих средств, но также может распространяться иным образом, например через Интернет или другие проводные или беспроводные системы связи. Любые ссылочные знаки в формуле изобретения не должны толковаться как ограничивающие объем.

1. Способ предоставления информации о пространственном распределении отдачи сцинтиллятора (12) при первичном излучении (6), при этом способ содержит этапы, на которых:
облучают указанный сцинтиллятор (12) вторичным излучением (22) для формирования изображения пространственного распределения вторичной отдачи указанного сцинтиллятора (12) при указанном вторичном излучении (22), при этом указанное изображение пространственного распределения вторичной отдачи соответствует изображению указанного пространственного распределения первичной отдачи указанного сцинтиллятора (12) при указанном первичном излучении (6), причем вторичное излучение является синим светом или ультрафиолетовым (UV) излучением.

2. Способ по п.1, дополнительно содержащий этап, на котором:
считывают указанное изображение пространственного распределения вторичной отдачи с указанного сцинтиллятора (12) фотодетектором (14), который предусмотрен для считывания преобразованного первичного излучения (18), генерируемого указанным сцинтиллятором (12) в ответ на падающее первичное излучение (6).

3. Способ по п.1, содержащий этапы, на которых:
облучают указанный сцинтиллятор (12) указанным вторичным излучением (22) в эталонном состоянии сцинтиллятора для формирования эталонного изображения распределения вторичной отдачи;
облучают указанный сцинтиллятор (12) указанным вторичным излучением в фактическом состоянии сцинтиллятора для формирования фактического изображения распределения вторичной отдачи; и формируют истинное фактическое изображение пространственного распределения вторичной отдачи из указанного эталонного изображения пространственного распределения вторичной отдачи и указанного фактического изображения пространственного распределения вторичной отдачи.

4. Способ по п.1, в котором
сцинтиллятор (12) имеет первый поверхностный участок (24) и второй поверхностный участок (26) напротив первого поверхностного участка;
первичным излучением (6) облучают первый поверхностный участок (24) сцинтиллятора; и
вторичным излучением (22) облучают второй поверхностный участок (26) сцинтиллятора.

5. Способ по п.1, в котором
первичным излучением (6) и вторичным излучением (22) облучают общий поверхностный участок (324) сцинтиллятора (12).

6. Способ по п.1, в котором указанное первичное излучение (6) представляет собой рентгеновское излучение, и указанное вторичное излучение (22) имеет длину волны между 350 нм 450 нм.

7. Способ формирования изображения, содержащий этапы, на которых:
обеспечивают радиационное детекторное устройство (10), имеющее фотодетектор (14) и сцинтиллятор (12), при этом указанный сцинтиллятор генерирует преобразованное первичное излучение (18) в ответ на первичное излучение (6), падающее на указанный сцинтиллятор (12), и указанный фотодетектор (14) обнаруживает указанное преобразованное первичное излучение (18);
выполняют с помощью указанного сцинтиллятора (12) указанного детектора способ по п.1, чтобы посредством этого формировать указанное изображение пространственного распределения вторичной отдачи указанного сцинтиллятора (12);
регистрируют изображение первичного излучения указанным радиационным детекторным устройством (10) посредством приема первичного излучения (6);
формируют скорректированное изображение первичного излучения в ответ на указанное изображение пространственного распределения вторичной отдачи,
причем вторичное излучение является синим светом или ультрафиолетовым (UV) излучением.

8. Считываемый компьютером носитель, имеющий набор инструкций, сохраненный на нем, причем инструкции позволяют процессору выполнять способ по п.1.

9. Радиационное детекторное устройство (10), содержащее:
сцинтиллятор (12) для приема первичного излучения (6) и образования в ответ на него преобразованного первичного излучения (18);
источник (20) вторичного излучения для подведения к сцинтиллятору (12) вторичного излучения (22) для формирования изображения пространственного распределения вторичной отдачи указанного сцинтиллятора (12) при указанном вторичном излучении (22), при этом указанное изображение пространственного распределения вторичной отдачи соответствует изображению пространственного распределения первичной отдачи указанного сцинтиллятора (12) при указанном первичном излучении (6),
причем вторичное излучение является синим светом или ультрафиолетовым (UV) излучением.

10. Радиационное детекторное устройство по п.9, в котором источник (620) вторичного света расположен вне пучка первичного излучения (6).

11. Радиационное детекторное устройство по п.9, дополнительно содержащее фотодетектор (14) для считывания преобразованного первичного излучения (18), генерируемого сцинтиллятором (12) в ответ на падающее первичное излучение (6), при этом фотодетектор (14) также предусмотрен для считывания изображения пространственного распределения вторичной отдачи со сцинтиллятора (12).

12. Радиационное детекторное устройство по п.9, дополнительно содержащее:
блок (30) управления для управления источником (20) вторичного излучения, чтобы облучать сцинтиллятор (12) вторичным излучением (22) в эталонном состоянии сцинтиллятора для формирования эталонного изображения распределения вторичной отдачи, и для управления источником (20) вторичного излучения, чтобы облучать сцинтиллятор вторичным излучением в фактическом состоянии сцинтиллятора для формирования фактического изображения распределения вторичной отдачи;
устройство (41) хранения данных для запоминания эталонного изображения пространственного распределения вторичной отдачи;
блок (30) обработки для формирования истинного фактического изображения пространственного распределения вторичной отдачи из эталонного изображения пространственного распределения вторичной отдачи и указанного фактического изображения пространственного распределения вторичной отдачи.

13. Радиационное детекторное устройство по п.9, дополнительно содержащее первый путь излучения для первичного излучения (6) и второй путь излучения для вторичного излучения (22), при этом первый путь излучения и второй путь излучения соответственно заканчиваются на разных поверхностных участках (24, 26) сцинтиллятора (12, 112, 212).

14. Радиационное детекторное устройство по п.9, дополнительно содержащее первый путь излучения для первичного излучения (6) и второй путь излучения для вторичного излучения (22), при этом первый путь излучения и второй путь излучения заканчиваются на одном и том же поверхностном участке (324) сцинтиллятора (312, 612).

15. Устройство (2) для обнаружения изображения, содержащее радиационное детекторное устройство (10) по п.9.



 

Похожие патенты:

Изобретение относится к области техники обнаружения электромагнитного излучения, а более конкретно к обнаружению гамма-излучения в ходе сканирования с радионуклидной визуализацией.

Изобретение относится к области измерительной техники, а именно к диагностике излучения различных импульсных источников гамма-излучения. .

Изобретение относится к области медицинской рентгенографии, в частности к детектору для обследования представляющего интерес объекта, к аппарату для обследования, и к способу изготовления такого детектора.

Изобретение относится к области дозиметрии рентгеновского и гамма-излучения с помощью термолюминесцентных детекторов при решении задач персональной дозиметрии, особо при определении дозозатрат персонала рентгеновских кабинетов и обслуживающего персонала мобильных комплексов радиационного контроля, задач радиоэкологического мониторинга в зонах с повышенным радиационным фоном, особо на территориях хвостохранилищ отработанных урановых руд или других радиоактивных материалов и отходов.

Изобретение относится к области создания пластмассовых сцинтилляторов с повышенным средним атомным номером. .

Изобретение относится к области «сцинтилляционная техника», прежде всего к эффективным быстродействующим сцинтилляционным детекторам, предназначенным для регистрации гамма и рентгеновских квантов, в приборах для экспресс-диагностики в медицине, промышленности, космической технике, научных исследованиях.

Изобретение относится к области дозиметрии электронного излучения и может быть пригодно для персональной дозиметрии операторов, обслуживающих комплексы радиационного контроля при мониторинге территорий, акваторий и зон захоронения радиоактивных отходов, а также для лиц, работающих с излучением в медицинских радиологических центрах и в лабораториях ускорительной техники.

Изобретение относится к области регистрации ионизирующих излучений, обнаружения источников излучений различного происхождения, определения направления на них и их идентификации, измерения спектра быстрых нейтронов и обнаружения радиоактивных источников.

Изобретение относится к детектору излучения и использованию светоотражающего материала в детекторе излучения

Изобретение относится к области нейтронных детекторов, а именно сцинтилляционных нейтронных детекторов для дозиметрического контроля поверхностного загрязнения персонала, радиационных портальных мониторов и систем контроля радиационной обстановки

Изобретение относится к сцинтилляционной технике, прежде всего к эффективным, быстродействующим сцинтилляционным детекторам. Описан способ получения прозрачной керамики, заключающийся в том, что предварительно в металлический порошкообразный цинк добавляют металлический порошкообразный магний, далее газофазным методом проводят синтез порошка для получения гранул в форме тетраподов и имеющих трехмерную наноструктуру, содержащую оксид магния в количестве 0,5-2,3 мас.%, затем полученную смесь подвергают горячему прессованию при температуре 1100-1200°C и давлении 100-200 МПа. Технический результат - увеличение светового выхода и уменьшение энергетических потерь. 2 ил., 3 пр.

Использование: для регистрации различных видов ионизирующих излучений, в том числе альфа-частиц, в ядерной физике для контроля доз и спектрометрии указанных излучений, в космической технике, медицине, в устройствах, обеспечивающих контроль, в промышленности. Сущность изобретения заключается в получении сцинтилляционного материала, представляющего собой керамику на основе ZnO с содержанием легирующей примеси в виде Се или LiF. Способ получения прозрачной легированной сцинтилляционной ZnO-керамики включает холодное прессование (брикетирование) исходного порошка при давлении 12-25 МПа, обработку брикета в вакууме при температуре 600-800°С и последующее одноосное горячее прессование при температуре 900-1100°С и давлении 100-200 МПа. Исходный материал имеет в основе ZnO, легированный Се в количестве 0,002-0,08 вес.% или LiF в количестве 0,004-0,1 вес.%. Сцинтиллятор включает рабочее тело, выполненное на основе легированной прозрачной ZnO-керамики в форме пластины, одно из оснований которого служит для приема ионизирующего излучения, а другое - для соединения с фотоприемником, при этом рабочее тело обеспечивает время высвечивания быстрой компоненты не более 100 нс. Технический результат: улучшение характеристик по прозрачности и кинетике люминесценции прозрачной сцинтилляционной керамики на основе ZnO. 3 н. и 2 з.п. ф-лы, 4 ил.
Изобретение может быть использовано при детектировании ионизирующего излучения и для создания источников белого света на основе нитридных гетеропереходов. Предложена гибкая (самонесущая) поликарбонатная пленка, наполненная неорганическими люминофорами из твердых растворов алюминатов и силикатов редкоземельных элементов. Пленка формируется методом литья из раствора суспензии поликарбоната и люминофора в хлорированных алифатических растворителях и содержит поликарбонат от 10 до 14% массовых, неорганический люминофор со структурой граната 4-8% массовых, пластификатор на основе акрило-нитрил-стирольной композиции 0,08-0,8%, поверхностно-активное вещество полиоксимоноолеат 0,5-2% и растворитель на основе хлорированных алифатических растворителей из группы метиленхлорида и\или хлороформа, дополняя ее состав до 100%. Изобретение обеспечивает возможность создания полимерной люминесцентной гибкой самонесущей поликарбонатной пленки, пригодной для использования в сцинтилляторах, в которых контактирование осуществляется механическим закреплением, а также в полупроводниковых осветительных структурах, в которых осуществляется адгезионное закрепление пленки, имеющей оптический контакт с гетероструктурой. 5 з.п. ф-лы, 1 табл., 7 пр.

Изобретение относится к области неразрушающего контроля материалов и изделий радиографическими методами и может быть использовано в производственных и полевых условиях для обнаружения опасных материалов на контрольно-пропускных пунктах, на железнодорожных станциях, в аэропортах, таможенных службах, а также в научных исследованиях. Техническим результатом изобретения является повышение пространственного разрешения экрана-преобразователя до десятков микрометров, не зависящего от длины экрана-преобразователя и энергии излучения, уменьшение вклада в сцинтилляционный сигнал рассеянного излучения и тем самым увеличение контраста радиографического изображения, и одновременно получение изображений в различных участках спектра. Технический результат достигается тем, что в экране-преобразователе однокоординатные сцинтилляционные детекторы последовательно расположены в направлении распространения просвечивающего излучения, перекрывая сечение просвечивающего пучка, выходы однокоординатных сцинтилляционных детекторов объединены на фотоприемном устройстве так, что повторяют форму перекрываемого сечения, соединены последовательно. 5 ил.

Изобретение относится, в частности, к системам построения ядерных изображений, в особенности, включающим в себя гигроскопические сцинтилляционные кристаллы и т.п. Ядерный детектор для системы построения ядерных изображений включает в себя герметично запечатываемую оболочку (50) детектора, множество сцинтилляционных кристаллов (32), размещенных в оболочке (50) детектора, множество датчиков (34), присоединенных к сцинтилляционным кристаллам (32), уплотнительный слой (51), который герметично запечатывает сцинтилляционные кристаллы (32) и датчики (34) в оболочке (50) детектора, и проводник (60), проходящий от каждого датчика (34), причем проводники (60) подключены к шине, проходящей через уплотнительный слой (51), для передачи собранной информации для обработки. Технический результат - поддержание целостности гигроскопического кристалла. 4 н. и 9 з.п. ф-лы, 2 ил.

Изобретение относится к медицинской технике, а именно к спектральной компьютерной визуализации. Система визуализации содержит стационарный гентри, поворотный гентри, установленный на стационарном гентри, рентгеновскую трубку, закрепленную на поворотном гентри, которая поворачивается и испускает полихроматическое излучение, пересекающее область исследования. Излучение имеет среднее напряжение испускания, которое поочередно переключается между, по меньшей мере, двумя разными средними напряжениями испускания в течение процедуры визуализации. Двухслойная детекторная матрица с энергетическим разрешением в режиме счета фотонов регистрирует излучение, пересекающее область исследования., и регистрирует излучение в, по меньшей мере, двух разных диапазонах напряжений. Детекторная матрица выполнена с возможностью формирования выходных сигналов с энергетическим разрешением, в зависимости как от напряжения испускания, так и от диапазона напряжений. Блок реконструкции выполняет спектральную реконструкцию выходных сигналов с энергетическим разрешением. Способ оперирования системой содержит этапы, на которых переключают спектр испускания излучения, в течение процедуры визуализации, устанавливают набор энергетических порогов согласованно с переключением спектра испускания, регистрируют испускаемое излучение и идентифицируют энергию зарегистрированного излучения по набору энергетических порогов. Использование изобретения позволяет расширить арсенал средств компьютерной визуализации. 2 н. и 13 з.п. ф-лы, 11 ил.
Наверх