Тепломассообменный аппарат с комбинированной схемой взаимодействия потоков газа и жидкости



Тепломассообменный аппарат с комбинированной схемой взаимодействия потоков газа и жидкости
Тепломассообменный аппарат с комбинированной схемой взаимодействия потоков газа и жидкости
Тепломассообменный аппарат с комбинированной схемой взаимодействия потоков газа и жидкости

 


Владельцы патента RU 2480699:

Федеральное государственное бюджетное учреждение науки Казанский научный центр Российской академии наук (КазНЦ РАН) (RU)

Изобретение относится к тепломассообменному аппарату с комбинированной схемой взаимодействия потоков газа и жидкости, содержащий корпус, водораспределительную систему, в основании которой установлены трубки для подачи жидкости в каналы непосредственного взаимодействия потоков газа и жидкости в прямотоке регулярной насадки. Аппарат характеризуется тем, что блоки регулярной насадки расположены в средней части корпуса аппарата по всему его поперечному сечению и состоят из каналов с непосредственным взаимодействием потоков газа и жидкости в прямотоке и каналов с противоточным движением фаз через стенку канала, в которые жидкость поступает через отверстия в стенках каналов с непосредственным взаимодействием потоков газа и жидкости в прямотоке, нижние части каналов с противоточным движением фаз выведены в газораспределительную зону аппарата. Использование настоящего аппарата позволяет увеличить пропускную способность при сохранении достаточно высокой эффективности. 3 ил.

 

Изобретение предназначено для проведения теплоомассообменных процессов, в частности для охлаждения оборотной воды, может быть использовано на предприятиях химической, нефтехимической, энергетической и другой промышленности.

Известна градирня [см. патент RU 2350871 С1 МПК F28С 1/00, F23D 11/10], содержащая башню, на боковой поверхности которой расположены воздуховходные окна с форсунками для эжекции охлаждающего воздуха, причем в окнах установлены наклонные внутрь градирни жалюзи, образующие расположенные ярусами каналы, а форсунки размещены перед входными горловинами последних. Форсунки выполнены акустическими, каждая из которых содержит корпус с размещенным внутри генератором акустических колебаний в виде сопла и резонатора, трубок для подвода воздуха и жидкости. Недостатком изобретения является сложность изготовления конструкции.

Известна также градирня тепловой электрической станции [см. патент RU 2269733 С2 МПК F28С 1/00, F01K 13/00], содержащая корпус с воздухозаборными отверстиями, в котором размещены устройства для распределения воды, подключенные к трубопроводу нагретой в конденсаторе воды, бассейн для сбора охлажденной воды, расположенный под корпусом и соединенный трубопроводом с конденсатором турбины. Градирня снабжена воздухоотводящими отверстиями, а корпус градирни расположен горизонтально и выполнен в виде параллелепипеда или полуцилиндра, причем воздухозаборные отверстия расположены с одной стороны корпуса, а воздухоотводящие отверстия - с другой, при этом воздухоотводящие отверстия подключены воздуховодом к всасывающему патрубку дутьевого вентилятора котла, а движение воздуха в градирне обеспечивается за счет разрежения, создаваемого дутьевым вентилятором котла. Недостатком изобретения является невысокая эффективность тепломассообмена.

Наиболее близким по технической сущности и достигаемому результату является комбинированная градирня [см. патент RU 2306513 С1 МПК F28С 1/06], содержащая корпус в виде вытяжной башни с воздуховходными окнами в нижней части или корпус вентилятора, водоуловительное устройство, водосборный бассейн, размещенный под корпусом градирни, водораспределительную систему с разбрызгивающими форсунками, выходные отверстия которых направлены вверх, и оросительное устройство, разбрызгивающие форсунки. Недостатком этого изобретения является низкая пропускная способность и относительная скорость движения жидкой и газовой фаз.

Задачей изобретения является увеличение пропускной способности аппаратов для проведения тепломассообменных процессов в системе газ-жидкость, при сохранении достаточно высокой эффективности работы и относительно низких энергетических затрат.

Тепломассообменный аппарат с комбинированной схемой взаимодействия потоков газа и жидкости, содержащий корпус, водораспределительную систему, газораспределительную зону, блоки регулярной насадки, отличающийся тем, что блоки регулярной насадки могут состоять из каналов с непосредственным взаимодействием потоков газа и жидкости в прямотоке и каналов с противоточным движением фаз через стенку канала, что в стенках каналов с противоточным движением выполнены отверстия для прохода жидкости.

Сущность изобретения поясняется чертежами. На фиг.1 схематично изображен тепломассообменный аппарат с комбинированной схемой взаимодействия потоков газа и жидкости, вид сбоку; на фиг.2 - отверстие в стенке канала для орошения жидкостью канала с противоточным движением фаз через стенку канала; на фиг.3 - разрез аппарата по линии Б-Б.

Тепломассообменный аппарат с комбинированной схемой взаимодействия потоков газа и жидкости состоит из корпуса 1, внутри которого расположена водораспределительная система 2, в основании которой установлены трубки 3 для подачи жидкости в шестиугольные каналы 4 регулярной насадки. Блоки регулярной насадки расположены в средней части корпуса 1 аппарата, по всему его поперечному сечению. Причем блоки регулярной насадки состоят из каналов 4 с непосредственным взаимодействием потоков газа и жидкости в прямотоке и каналов 5 с противоточным движением фаз через стенку канала, в которые жидкость поступает через отверстия 6 в стенках каналов 4, для снижения гидравлического сопротивления. Нижние части каналов 5 выведены в газораспределительную зону 7 аппарата. В верхней части корпуса 1 имеется патрубок для ввода жидкости 8 в аппарат, в средней части - патрубки для вывода потока газа 9 и вывода жидкости 10, в нижней части - патрубок для ввода газа 11.

Тепломассообменный аппарат с комбинированной схемой взаимодействия потоков газа и жидкости работает следующим образом. Поток газа через патрубок 11 в корпусе 1 попадает в газораспределительную зону 7 аппарата и по каналам 5 движется вверх. Жидкость подается через патрубок 8, заполняет водораспределительную систему 2 и по трубкам 3 направляется в каналы 4 насадки. Жидкость движется по всей поверхности регулярной насадки в виде равномерной пленки. Стекающая по каналам 4 жидкость собирается внизу средней части аппарата, откуда выводится через патрубок 10 из аппарата. Газ, поднимаясь вверх, вовлекает жидкость, вытекающую из отверстий 6 в стенках каналов 4 регулярной насадки, в совместное движение, распределяя ее по каналу 5. Поток газа, достигнув верхней части насадки, перераспределяется в каналы 4 для контакта с жидкостью из распределительных труб 3, где тепломассообмен осуществляется через стенки соседних каналов 5, после чего выводится из аппарата через патрубок 9.

Благодаря такой конструкции аппарата увеличивается коэффициент массо- и теплопередачи, а вытекающая из отверстий 6 жидкость позволяет снизить гидравлическое сопротивление.

Техническим результатом является увеличение пропускной способности аппаратов для проведения тепломассообменных процессов в системе газ-жидкость, при сохранении достаточно высокой эффективности работы и относительно низких энергетических затрат.

Тепломассообменный аппарат с комбинированной схемой взаимодействия потоков газа и жидкости, содержащий корпус, водораспределительную систему, в основании которой установлены трубки для подачи жидкости в каналы непосредственного взаимодействия потоков газа и жидкости в прямотоке регулярной насадки, отличающийся тем, что блоки регулярной насадки расположены в средней части корпуса аппарата по всему его поперечному сечению и состоят из каналов с непосредственным взаимодействием потоков газа и жидкости в прямотоке и каналов с противоточным движением фаз через стенку канала, в которые жидкость поступает через отверстия в стенках каналов с непосредственным взаимодействием потоков газа и жидкости в прямотоке, нижние части каналов с противоточным движением фаз выведены в газораспределительную зону аппарата.



 

Похожие патенты:

Изобретение относится к космической технике, в частности к системам терморегулирования объектов, расположенных на космических аппаратах, и может быть использовано на предприятиях, занимающихся разработкой и эксплуатацией космической техники.

Изобретение относится к области теплоэнергетики и может быть использовано в качестве центробежно-вихревого тепломассообменника - ЦВТ (бойлера для контактного нагрева воды паром), а также для нагрева технологических жидкостей, например в микробиологической, пищевой, химической, нефтяной и других промышленностях.

Изобретение относится к теплоэнергетике и может быть использовано в установках для нагрева воды уходящими дымовыми газами котельных или тепловых агрегатов. .

Изобретение относится к области теплоэнергетики и может быть использовано для контактного нагрева воды паром при одновременном использовании кинетической энергии пара для вращения воды, передаваемой на силовой вал, передающий энергию на транспортирование нагретой воды, и, при необходимости, на привод электрогенератора, вырабатывающий электроэнергию.

Изобретение относится к области энергетики. .

Изобретение относится к теплообменным аппаратам, предназначенным для осуществления взаимодействия больших объемов теплообменивающихся сред без их непосредственного контакта.

Изобретение относится к теплообменным аппаратам, предназначенным для осуществления взаимодействия воздуха и воды (либо иной жидкости) без непосредственного контакта этих сред и при больших их объемах.

Изобретение относится к теплообменным аппаратам, предназначенным для осуществления взаимодействия воздуха и воды (либо иной жидкости) без непосредственного контакта этих сред и при больших их объемах.

Изобретение относится к области энергетики и может использоваться для подогрева воды в технологических схемах предприятий и в системах отопления. .

Изобретение относится к области тепломассообмена и может быть использовно при конденсации технологических паров, для деаэрации воды, для охлаждения газов и нагрева жидкостей и растворов, для абсорбции веществ, содержащихся в газообразных средах.

Изобретение относится к контактным охладителям, в частности к градирням, и может быть использовано на тепловых электрических станциях для охлаждения оборотной воды.

Изобретение относится к контактным охладителям, в частности к градирням, и может быть использовано на тепловых электрических станциях для охлаждения оборотной воды.

Изобретение относится к теплоэнергетике, в частности к теплообменным устройствам, предназначенным для передачи тепла от теплоносителя к потребителю тепла, имеющему температуру более низкую, чем температура теплоносителя, и обеспечивающим таким образом охлаждение последнего.

Изобретение относится к теплоэнергетике. .

Изобретение относится к контактным охладителям, в частности к градирням, и может быть использовано на тепловых электрических станциях для охлаждения оборотной воды.

Изобретение относится к контактным охладителям, в частности к градирням, и может быть использовано на тепловых электрических станциях для охлаждения оборотной воды.

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. .

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. .

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. .

Изобретение относится к испарительному охладителю для охлаждения газового потока, в частности воздушного потока, содержащему несколько охлаждающих элементов, расположенных в проточном канале, к которым посредством питающего устройства подводится подлежащая испарению или превращению в пар жидкость, преимущественно вода.

Изобретение относится к теплоэнергетике, в частности к системам оборотного водоснабжения промышленных предприятий
Наверх