Преобразователь температуры в напряжение



Преобразователь температуры в напряжение

 


Владельцы патента RU 2480719:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" (ФГБОУ ВПО ТГТУ) (RU)

Изобретение относится к измерительной технике и может найти применение в термометрии. Преобразователь температуры в напряжение содержит последовательно соединенную термопару и усилитель, источник опорного напряжения, который выходом подключен к первому входу сумматора, а также аналоговое делительное устройство и дифференциальный усилитель, соединенные последовательно через прямой вход дифференциального усилителя, а также первый масштабный преобразователь и второй масштабный преобразователь, входом подключенный к первому входу сумматора, а выходом - к инвертирующему входу дифференциального усилителя. Выход усилителя через первый масштабный преобразователь подключен ко второму входу сумматора, а выход сумматора связан со вторым выходом аналогового делительного устройства. Вход квадратора соединен с выходом усилителя и входом первого масштабного преобразователя, а выход подключен к первому входу аналогового делительного устройства. Технический результат: повышение точности работы преобразователя температуры в напряжении с возможностью его настройки и калибровки. 1 ил.

 

Предлагаемое изобретение относится к измерительной технике и может найти применение в термометрии.

Известны устройства для преобразования измеренной температуры в напряжение (авт. свид. СССР N473065, М. кл. G01R 7/20, G01R 17/10. бюл. №21 от 05.06.75), содержащие измерительные мосты, питаемые от источника постоянного тока с двумя плечами из активных сопротивлений или с четырьмя составными триодами два из которых прямой проводимости, а два обратной проводимости, где первичными преобразователями температуры являются полупроводниковые терморезисторы, включенные в цепи делителей баз триодов.

Недостатком этих устройств является сложность настройки и калибровки преобразователей.

Известен также преобразователь температуры в напряжении (авт. свид. СССР №1597598 A1 G01K 7/00, 07.10.90, бюл. №37), принятый за прототип, содержащий усилитель, подключенный входом к термопаре, выход которого соединен с первым входом аналогового делительного устройства и через последовательно соединенные масштабный преобразователь и второй вход сумматора подключен ко второму входу делительного устройства, при этом первый вход сумматора связан с источником опорного напряжения, выход которого также соединен через второй масштабный преобразователь со вторым входом дифференциального усилителя, первый вход которого связан с выходом делительного устройства.

Недостатком этого преобразователя является низкая точность работы. Покажем это на примере выходного сигнала указанного преобразователя:

где К2, К3, К4, К5 - безразмерные коэффициенты; U0 - опорное напряжение; Ex - термоЭДС термопары. Из (7) видно, что уменьшаемое в скобах после деления числителя и знаменателя дроби на величину Ех становится безразмерной величиной. Из этой безразмерной величины, представленной напряжением на выходе аналогового делительного устройства, вычитается конкретная физическая величина К6 U0, что является недопустимым с точки зрения физического смысла.

Техническим результатом предлагаемого изобретения является повышение точности работы с возможностью настройки и калибровки преобразователя температуры в напряжение.

В предлагаемом преобразователе температуры в напряжение это достигается тем, что он содержит последовательно соединенную термопару и усилитель, источник опорного напряжения, выходом подключенный к первому входу сумматора, аналоговое делительное устройство и дифференциальный усилитель, соединенные последовательно через прямой вход дифференциального усилителя, первый масштабный преобразователь и второй масштабный преобразователь, входом подключенный к первому входу сумматора, а выходом к инвертирующему входу дифференциального усилителя, при этом выход усилителя через первый масштабный преобразователь подсоединен ко второму входу сумматора, выход сумматора связан со вторым входом аналогового делительного устройства, а также квадратор, вход которого соединен с выходом усилителя и входом первого масштабного преобразователя, а выход подключен к первому входу аналогового делительного устройства.

На фиг.1 приведена схема предлагаемого преобразователя температуры в напряжение.

Преобразователь температуры в напряжение содержит термопару 1, соединенную с входом усилителя 2, связанного через последовательно соединенный квадратор 3 с первым входом аналогового делительного устройства 4, а также через последовательно соединенный первый масштабный преобразователь 5 со вторым входом сумматора 6, первый вход которого соединен с источником опорного напряжения 7, который через второй масштабный преобразователь 8 подключен ко второму входу дифференциального усилителя 9, первый вход которого связан с выходом делительного устройства 4, при этом выход сумматора соединен со вторым входом делителя 4.

Преобразователь температуры в напряжение работает следующим образом. Температура измеряемой среды Тх преобразуется термопарой 1 в термоЭДС Ex, которая усиливается усилителем 2 до значения напряжения;

Где К2 - коэффициент усиления усилителя 2.

На выходе масштабного преобразователя 5 с коэффициентом передачи К5 формируется напряжение;

а на выходе квадратора 3

На второй вход сумматора 6 подается выходное напряжение с выхода источника 7 опорного напряжения. Соответственно на выходе сумматора в 6 формируется напряжение

Выходное напряжение U6 сумматора поступает на второй вход аналогового делительного устройства 4, на первый вход которого подается напряжение с выхода квадратора 3. После осуществления операции деления устройства 4 напряжение равно;

где К4 - коэффициент передачи делителя 4.

Напряжение U8 поступает на инвертирующий вход дифференциального усилителя 9, а на прямой вход - напряжение U4, то выходное напряжение Uвых дифференциального усилителя 9

где K8 - коэффициент преобразования масштабного преобразователя 8.

Подставив (5) и (7) в уравнение (6), получим выражение для выходного напряжения предложенного преобразователя температуры

,

где К9 - коэффициент передачи дифференциального усилителя 9.

Выбором коэффициентов К9 и К4 обеспечивается заданное значение нормированного уровня выходного напряжения. Выбором коэффициентов К2 и К5 обеспечивается близкая к линейной зависимость Uвых от преобразуемой температуры Тх в диапазоне Txmin…Txmax, а величиной коэффициента K8 обеспечивается необходимое значение напряжения смещения (Uсм=K8U0) для уменьшения аддитивной составляющей погрешности преобразования и для создания нулевого уровня выходного напряжения Txmin≠0, т.е. в случае, если нормированный диапазон унифицированного сигнала на выходе преобразователя задается от 0 до Uвых.max.

Таким образом, введение квадратора обеспечивает повышение точности работы преобразователя температуры в напряжение по сравнению с прототипом.

Преобразователь температуры в напряжение, содержащий последовательно соединенную термопару и усилитель, источник опорного напряжения, выходом подключенный к первому входу сумматора, аналоговое делительное устройство и дифференциальный усилитель, соединенные последовательно через прямой вход дифференциального усилителя, первый масштабный преобразователь и второй масштабный преобразователь, входом подключенный к первому входу сумматора, а выходом к инвертирующему входу дифференциального усилителя, при этом выход усилителя через первый масштабный преобразователь подсоединен ко второму входу сумматора, а выход сумматора связан со вторым входом аналогового делительного устройства, отличающийся тем, что он дополнительно снабжен квадратором, вход которого соединен с выходом усилителя и входом первого масштабного преобразователя, а выход подключен к первому входу аналогового делительного устройства.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения в заданном участке температуры, теплового потока и давления. .

Изобретение относится к области термометрии и может быть использовано при тепловых испытаниях конструкций для определения их поверхностных температурных полей. .

Изобретение относится к области приборостроения и может быть использовано при определении коэффициента излучения поверхности материалов. .

Изобретение относится к области энергетики, в частности к тепловым измерениям и измерениям расхода углероводородных горючих и теплоносителей. .

Изобретение относится к устройствам тепла или холода и предназначено для оценки температурных изменений параметров микромеханических модулей. .

Изобретение относится к измерению температуры поверхности. .

Изобретение относится к измерительной технике, в частности к измерениям температуры в зоне резания лезвийным инструментом с использованием термопары. .

Изобретение относится к обработке металлов резанием и может быть использовано при измерении температуры на контактных участках режущего инструмента в процессе обработки заготовок различных марок сталей и сплавов.

Изобретение относится к области термометрии и может быть использовано в системах контроля технологических процессов

Изобретение относится к взрывозащищенным головкам датчиков температуры. Головка состоит из коробки в форме эллиптического цилиндра со скосом сверху под углом к ее оси, совпадающей с осью цилиндра с отверстием. В плоскости скоса коробка имеет цилиндрическую часть под крышку высотой H и диаметром, превышающим большую ось эллипса. Снизу крышки расположен цилиндр с отверстием для крепления элементов измерения. Сбоку коробки, со стороны длинной образующей, расположен выступ для установки кабельного ввода, а напротив, со стороны короткой образующей, расположено стопорное устройство, включающее отверстие с резьбовой втулкой и установленным в ней винтом, головка которого расположена в пазу крышки. В конце цилиндрической части коробки имеется проточка под уплотнительное кольцо, а снизу крышки имеется ответная проточка под это уплотнительное кольцо, за которой по окружности торца крышки выполнены полукруглые пазы. Проточка на корпусе имеет выступ диаметром, превышающим диаметр ответной проточки на крышке, так что при закрытии крышки в упор образуется гарантированный зазор h между верхней частью скоса коробки и дном крышки. Во втором варианте в зазоре h устанавливается стекло с помощью пружинного кольца, расположенного в пазу крышки с герметизирующей прокладкой, а дно крышки имеет смотровое отверстие. Технический результат - повышение надежности работы во взрывоопасных зонах, упрощение изготовления, монтажа и эксплуатации, а также удобства при проведении поверочных и ремонтных работ. 2 н.п. ф-лы, 6 ил.

Изобретение относится к области термического анализа и может быть использовано для определения фазовых переходов извлеченной из стального расплава пробы. Заявлен погружной зонд, имеющий погружной конец измерительной головки, в которой расположены имеющая впускной канал пробоотборная камера и выступающая своим горячим спаем в пробоотборную камеру термопара, которая имеет кабельный ввод для сигнальных кабелей термопары. Кабельный ввод выходит из измерительной головки из выходного отверстия на противоположном погружному концу конце измерительной головки. Прямая линия между погружным концом и выходным отверстием образует продольную ось измерительной головки. Перпендикулярно продольной оси проведена воображаемая плоскость через горячий спай и через самую дальнюю от погружного конца часть впускного канала. В одном из вариантов измерительная головка имеет плотность по меньшей мере 7 г/см3 между своим погружным концом и плоскостью, перпендикулярно разрезающей прямую линию между погружным концом и выходным отверстием, а общая плотность измерительной головки равна менее чем 7 г/см3. В другом варианте изобретения общая плотность измерительной головки, включая по меньшей мере частично окружающую сигнальный кабель металлическую трубу и включая части сигнального кабеля, равна менее чем 7 г/см3. Технический результат: повышение точности измерений. 2 н. и 13 з.п. ф-лы, 7 ил.

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в процессе теплоизмерений. Заявлен цифровой измеритель температуры, содержащий источник 1 опорного напряжения, соединенный своим выходом с переключателем 2, выходы которого соединены через датчик 3 температуры и цифроуправляемое сопротивление (ЦУС) 4 с входами усилителей 5 и 6 постоянного тока. Выходы усилителей 5 и 6 подключены к входам блока вычитания 7, выход которого через последовательно соединенный генератор управляемой частоты 8 связан с суммирующим входом реверсивного счетчика 9 (PC). Вычитающий вход PC 9 соединен с выходом генератора тактовых импульсов 10 через последовательно включенные делитель частоты 11 и двоичный умножитель частоты 12. Выходы разрядов PC 9 соединены с группой разрядных входов ЦУС 4, двоичного умножителя частоты 12 и дешифратора 13. Выход дешифратора 13 соединен с входом цифрового индикатора 14. Технический результат: повышение быстродействия измерения температуры вследствие создания следящей системы автоматического управления и высокой точности измерений. 1 ил.

Изобретение относится к измерительной технике и может быть использовано в устройствах для проведения длительного и непрерывного измерения температуры газовой или жидкой среды, в том числе агрессивной, а также при отсутствии возможности периодической поверки или замены измерительной части устройства. Устройство для измерения температуры содержит термопару, состоящую из двух разнородных термоэлектрических проволок, образующих соединение при измерении и соединение при контроле. Устройство снабжено фиксирующим элементом из электропроводящего материала. Проволоки установлены с возможностью осевого перемещения и прохода через фиксирующий элемент или его охвата. При этом проволоки соприкасаются между собой или с фиксирующим элементом, а точки касания образуют соединение при измерении. Технический результат: возможность замены отработавшей рабочей части термопары на новую с характеристиками исходной и без демонтажа как термопары, так и устройства в целом. 4 з.п. ф-лы, 11 ил.

Изобретение относится к технике измерения физической температуры объекта с помощью термопары и может быть использовано в области температурных измерений с использованием термопар, в частности, в литейном производстве для определения скоростей охлаждения различных зон слитка при кристаллизации или закалке. Измеритель температуры содержит компаратор, несколько термопар с дифференциальными усилителями, аналого-цифровой преобразователь и микроконтроллер. Технический результат - повышение функциональных возможностей устройства за счет обеспечения возможности одновременного измерения температуры в нескольких точках и записи значений температуры с последующим выводом на обрабатывающее устройство. 1 ил.

Группа изобретений относится к передатчикам параметров процесса, используемым в системах управления технологическими процессами и мониторинга. Передатчик (10) параметров процесса для измерения температуры производственного процесса включает в себя первый электрический соединитель (1), сконфигурированный с возможностью соединения с первым проводом термопары, при этом первый электрический соединитель (1) включает в себя первый электрод (1A) и второй электрод (1B). Первый и второй электроды сконфигурированы с возможностью электрического соединения с первым проводом (18B) термопары. Второй электрический соединитель (2) сконфигурирован с возможностью соединения со вторым проводом (18A) термопары, при этом второй электрический соединитель (2) включает в себя третий электрод (2A) и четвертый электрод (2B). Третий и четвертый электроды сконфигурированы с возможностью электрического соединения со вторым проводом (18A) термопары. Второй провод выполнен из материала, отличного от материала первого провода. С первым и вторым электрическими соединителями соединена измерительная схема (28), сконфигурированная с возможностью выдачи выходного сигнала, связанного с температурой термопары. Измерительная схема дополнительно сконфигурирована с возможностью определения полярности термопары на основе, по меньшей мере, одного измерения, выполненного, по меньшей мере, между двумя электродами из числа первого, второго, третьего и четвертого электродов. Технический результат заключается в возможности определения полярности термопары. 2 н. и 19 з.п. ф-лы, 5 ил.

Изобретение относится к термометрии и может быть использовано для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике. Устройство содержит термопару в металлическом корпусе, рабочий спай которой расположен внутри защитного наконечника, выступающего за пределы корпуса. Выступающая за пределы корпуса часть термопары выполнена в виде металлической трубки диаметром d, заканчивающейся уплощенной лопаткой, торец которой является рабочим термоспаем, металлическая трубка имеет уменьшающийся в сторону уплощенной лопатки диаметр, равный 0,4÷0,5 d, а уплощенная лопатка имеет следующие размеры: длина 0,3÷0,4 d, ширина 0,7÷0,8 d, толщина 0,1÷0,2 d, при этом в металлической трубке размещены термопровода, изолированные друг от друга и от трубки, переходящей в уплощенную лопатку, и имеющие диаметр, уменьшающийся пропорционально уменьшению диаметра трубки и сохраняющийся постоянным внутри уплощенной лопатки, защитный наконечник выполнен металлическим и перфорированным. Технический результат - повышение быстродействия устройства при сохранении его механической прочности и устойчивости к газодинамическим нагрузкам измеряемого потока. 1 ил.

Изобретение относится к области температурных измерений и может быть использовано для определения скорости изменения температуры среды. Частотно-импульсный измеритель скорости изменения температуры содержит дифференциальную термопару 1 из термопар 2 и 3 с различными постоянными времени, усилитель 4, электронный ключ 5 с запоминающей емкостью 6 на выходе. Блок выделения модуля 7 и генератор управляемой частоты 8 соединен с выходом устройства и через блок задержки 9 подключен к управляющему входу электронного ключа 5, а также через генератор 8, стандартизатор импульсов 10 и инвертор 11 связаны через селектируемые пиковые детекторы 12 и 13 с электродами термопары 2. Выход стандартизатора 10 связан через детектор 13, а выход инвертора - через детектор 12. Выход ключа 5 с емкостью 6 соединен через компаратор 14 со знаковым выходом устройства, управляющим входом детектора 12 и через логическую схему «НЕ» 15 с управляющим входом детектора 13. Технический результат - обеспечение высокой точности и быстродействия при определении скорости изменения температуры. 1 ил.

Изобретение относится к области температурных измерений и может быть использовано при наземных испытаниях элементов летательных аппаратов. Устройство для измерения разности температур содержит два встречно включенных термоприемника 1 и 2, находящихся при температурах t1 и t2 в контролируемой среде, усилитель 3, делитель напряжения 4 из последовательно соединенных резисторов 5-9. При этом резистор 7 является реохордом, а резисторы 6 и 8 являются цифровыми управляемыми сопротивлениями. Устройство также содержит измерительный прибор разности температур 10, два постоянных запоминающих устройства 11 и 12, аналого-цифровой преобразователь 13, второй измерительный прибор 14, связанный с дополнительным термопреобразователем 15, помещаемым в среду с температурой t1 или t2. Выходы ПЗУ 11 и 12 связаны с цепями управления цифровых управляемых сопротивлений 6 и 8 для введения коррекции на нелинейность термопар. Технический результат - повышение быстродействия и надежности работы предлагаемого устройства. 1 ил.
Наверх