Способ радиолокации нелинейно-инерционных объектов

Изобретение относится к методам и средствам ближней радиолокации нелинейно-рассеивающих объектов. Достигаемый технический результат - улучшение характеристик обнаружения тех из них, эквивалентные электрические схемы которых помимо нелинейных резисторных элементов содержат инерционные элементы - индуктивности и емкости. Для этого в качестве излучаемого сигнала используется последовательность гармонических колебаний Gn, частоты f1, n=1, 2, …, N, со ступенчатой зависимостью их мощности от «n», а физическая сущность обработки сигналов, отраженных от нелинейно-рассеивающих объектов на двойной частоте f2=2f1 и соответствующих излученным колебаниям Gn, сводится к измерению межпериодного приращения фазы отраженных сигналов (φn+1n), определению модуля этих приращений [φn+1n], вычислению их среднего значения и сравнению его с порогом. 1 ил.

 

Изобретение относится к технике ближней радиолокации, а именно к методам и средствам поиска, обнаружения и распознавания нелинейно-рассеивающих объектов (НРО).

Известны способы нелинейной радиолокации [1; 2], в которых осуществляется облучение НРО зондирующим сигналом (ЗС) в виде одного или двух гармонических колебаний и регистрация в приемнике радиолокатора энергии отраженного сигнала на кратных и/или комбинационных частотах.

Множество НРО можно разбить на две группы, различающиеся электрофизическими свойствами НРО:

- RLC-объекты, модель которых в виде эквивалентной электрической цепей содержат нелинейные резисторные (R) элементы и инерционные элементы - индуктивные (L) и/или емкостные (С). Типичным представителем RLC-объектов являются мобильные телефоны, электронные подслушивающие устройства, приемные устройства радиоуправляемых взрывателей и т.п.;

- R-объекты, электрическая модель которых содержат лишь нелинейные резисторные элементы. Типичными представителями R-объектов являются элементы стальных конструкций, сварные или клепаные, подверженных коррозии и ржавчине [3].

Предполагается, что в рассматриваемом способе именно RLC-объекты представляют собой интересующие нас НРО.

Недостаток аналогов состоит в низкой эффективности процедуры обнаружения RLC-объектов. Это объясняется присутствием в районе поиска большого количества R-объектов, поток сигналов от которых на входе нелинейного радиолокатора существенно повышает уровень ложных тревог и снижает тем самым эффективность поиска и обнаружения RLC-объектов. Вместе с тем, выделяемая в аналогах энергия отраженного от HPO сигнала не обладает достаточной информативностью для вскрытия надежных признаков распознавания RLC-объектов и R-объектов.

Наиболее близким среди аналогов является способ нелинейной радиолокации [1; 2], заключающийся в излучении гармонического колебания G(t) частоты f1 в направлении НРО, приеме отраженного сигнала R(t), выделении из него колебания на двойной частоте f2=2f1 и вынесении решения об обнаружении НРО путем сравнения энергии принятого сигнала с порогом. Чтобы максимально приблизить прототип к предложенному способу, введем следующие уточнения его модели:

- обозначим через Т время, отводимое для обнаружения НРО в заданной точке пространства;

- ЗС прототипа представим как последовательность гармонических колебаний Gn, n=1, 2, …, N, излучаемых поочередно, в соответствии с индексом «n», в течение соответствующих временных периодов Tn:

каждый длительностью τ=T/N. Все Gn обладают собственной когерентностью в течение временных интервалов Tn (1), которые можно назвать периодами когерентности ЗС. Между собой колебания Gn не обязательно должны быть когерентными. Мощности pn всех колебаний Gn предполагаются одинаковыми, не зависящими от «n»;

- аналогично отраженный от НРО сигнал R(t) может быть представлен в виде последовательности сигналов Rn, n=1, 2, …, N, поступающих в приемник нелинейного радиолокатора также поочередно, в соответствии с индексом «n». Учитывая малые размеры искомых НРО, длительность каждого из Rn совпадает с τ. Кроме того, предполагая малую дальность до искомого НРО, а следовательно, малую задержку отраженного сигнала по сравнению с длительностью τ=T/N, интервалы существования Rn можно выбрать совпадающими с периодами когерентности Tn(1);

- выделение колебания на двойной частоте f2=2f1 осуществляется методом синхронного детектирования каждого из Rn в течение соответствующего периода когерентности Tn, т.е. весь временной интервал 0≤t≤T состоит N периодов синхронного детектирования, каждый длительностью τ.

Недостаток прототипа состоит в низкой эффективности обнаружения RLC-объектов на фоне потока «ложных» сигналов от R-объектов.

Целью изобретения является повышение эффективности обнаружения RLC-объектов.

Для достижения поставленной цели в способе-прототипе, заключающемся в генерации последовательности гармонических колебаний Gn, n=1, 2, …, N, частоты f1, поочередном, в соответствии с индексом «n», излучении Gn в направлении искомого объекта, приеме соответствующих отраженных сигналов Rn, n=1, 2, …, N с выделением в них сигналов удвоенной частоты f2=2f1, определении комплексных огибающих Zn принятых сигналов Rn, измерении суммарной мощности принятых сигналов PΣ=ΣZnZn* и принятии решения об обнаружении нелинейно-рассеивающего объекта путем сравнения выходной величины устройства обработки с порогом, согласно изобретению дополнительно осуществляется изменение мощности генерируемых колебаний Gn, формирование последовательности опорных сигналов Sn, n=1, 2, …, N путем ограничения Gn и выделения в них колебаний удвоенной частоты f2, определение комплексных огибающих Wn опорных сигналов Sn, вычисление комплексных коэффициентов межпериодной корреляции KZ,n=Zn+1Zn* и KW,n=Wn+1Wn* огибающих Zn и Wn соответственно, вычисление коэффициентов взаимной межпериодной корреляции Kn=Im(KZ,nKW,n*) и их модульных значений [Kn], вычисление результирующего коэффициента корреляции KΣ=Σ[Kn], причем в качестве выходной величины устройства обработки используется КΣ, а в качестве порога используется величина, пропорциональная РΣ.

На фиг.1 изображена возможная схема нелинейного радиолокатора, реализующая предложенный способ, элементы 1-11 которой несут следующее техническое содержание: 1 - синтезатор частот f1 и f2=2f1; 2 - усилитель мощности; 3 - блок управления мощностью излучаемого сигнала; 4 - приемник отраженных сигналов; 5 - устройство формирования опорных сигналов двойной частоты f2=2f1; 6 - синхронный детектор приемника; 7 - синхронный детектор передатчика; 8 - арифметическое устройство; 9 - первая пороговая схема; 10 - ключевая схема; 11 - вторая пороговая схема. Элементы 1, 2 и 3 образуют передатчик радиолокатора.

Функционирование предложенного способа удобно рассматривать, обращаясь к схеме нелинейного радиолокатора, фиг.1. Предварительно сделаем следующее замечание. Среди различных моделей RLC-объектов нас будут интересовать лишь те из них, нелинейные резисторные элементы (R) которых обладают следующей отличительной особенностью: их вольт-амперная характеристика обязана содержать квадратичную парциальную составляющую, удваивающую частоту f1 ЗС, в результате чего в отраженных сигналах Rn будет присутствовать составляющая на двойной частоте f2=2f1.

Синтезатор 1 вырабатывает непрерывное гармоническое колебание частоты f1, которое с его первого выхода поступает на основной вход усилителя 2, на вспомогательный вход которого поступает сигнал от блока 3, управляющего выходной мощностью усилителя 2 с таким расчетом, чтобы мощность pn парциального гармонического колебания Gn на выходе передатчика зависела от «n», например изменялась по ступенчатому закону

с постоянным шагом Δр.

В предложенном способе не исключается ситуация, когда вариации мощности ЗС могут сопровождаться искажениями фазы ЗС

где ψn - случайная фаза, меняющаяся от одного периода когерентности Tn к другому. Даже если колебание частоты f1 с выхода синтезатора 1 сохраняет свою когерентность в течение всего времени обнаружения Т, колебания Gn перестают быть когерентными между собой после вариации мощности ЗС.

Сигналы Rn принимаются приемной антенной и, пройдя приемник 4, в котором осуществляется их предварительная фильтрация на двойной частоте f2, поступают на основной вход синхронного детектора 6. Комплексные огибающие Zn принятых сигналов Rn, соответствующие колебаниям Gn ЗС

имеют амплитуду An и фазу, состоящую из двух слагаемых:

- φn, фаза НРО, характеризующая электрофизические свойства НРО;

- 2ψn, случайная фаза, «навязанная» фазой ЗС (3).

Устройство 5 формирует опорные сигналы Sn в каждый n-й период когерентности Tn. Для этого выходные колебания передатчика Gn частоты f1 ограничиваются по амплитуде с последующей их фильтровой обработкой, которая подавляет частоту f1 и все кратные f1 частоты, кроме составляющей на частоте f2=2f1, в результате чего на выходе 5 формируется последовательность опорных гармонических сигналов Sn, n=1, 2, …, N, на двойной частоте f2, с постоянной - не зависящей от «n» - амплитудой и с фазой, меняющейся от одного периода когерентности Tn к другому по случайному закону и равной удвоенной фазе колебания Gn. Комплексные огибающие Wn опорных сигналов Sn имеют вид:

При этом предполагается, что постоянная времени фильтра устройства 5 значительно меньше длительности T/N. По существу, устройство 5 имитирует процесс умножения частоты, происходящий в резисторном элементе HPO. Сигналы Sn поступают на основной вход синхронного детектора 7.

На двойные вспомогательные входы синхронных детекторов 6 и 7 подаются квадратурные колебания Cos2πf2t и Sin2πf2t частоты f2 со второго выхода синтезатора 1, в результате чего на двойных выходах синхронного детектора 6 получаем квадратурные составляющие Xn и Yn комплексных огибающих Zn принятых сигналов Rn:

а на двойных выходах синхронного детектора 7 - квадратурные составляющие Un и Vn комплексных огибающих Wn опорных сигналов Sn:

В конце каждого из Tn квадратурные составляющие Xn, Yn, Un, Vn преобразуются в цифровую форму и поступают на входы арифметического устройства 8, где вычисляются:

- отсчеты мощности принятых сигналов Rn:

- комплексные коэффициенты межпериодной корреляции огибающих Zn:

- комплексные коэффициенты межпериодной корреляции огибающих Wn:

- коэффициенты взаимной межпериодной корреляции

- суммарная мощность принятых сигналов Rn:

- результирующий коэффициент корреляции:

где «*» - знак комплексного сопряжения, «Im» - оператор выделения мнимой части комплексного числа, [Kn] - модульные значения Kn.

Сущность проводимых в устройстве 8 вычислений вытекает из амплитудно-фазовых представлений (4), (5) комплексных огибающих Zn и Wn после подстановки их в (8), (9) и с последующей подстановкой (8), (9) в (10), (11):

Согласно (15) коэффициенты Kn пропорциональны взвешенным значениям синуса разности фаз НРО (φn+1n) в соседних периодах излучения ЗС. Предполагая в (15) малость между периодных приращений фаз НРО:

алгоритм (11) можно рассматривать как подавление коррелированных составляющих в последовательности фаз HPO {φn} и выделения в ней слабо коррелированных величин. Кроме того, алгоритм (11) позволяет нейтрализовать отрицательное влияния фазовой неопределенности ЗС на эффективность нелинейного радиолокатора, что следует из того, что в (15) отсутствуют случайные фазы ψn ЗС.

Величина РΣ сравнивается в первой пороговой схеме 9 с мощностью внутренних шумов радиолокатора, где принимается положительное или отрицательное решение об обнаружении НРО, независимо от того, является он R-объектом или RLC-объектом. Заметим, что вычисление РΣ и сравнение PΣ c порогом выполняются также и в прототипе. В случае положительного решения ключевая схема 10 дает разрешение на сравнение во второй пороговой схеме 11 коэффициента КΣ с порогом, пропорциональным величине РΣ. В случае превышения этого порога принимается решение об обнаружении именно RLC-объекта.

Дадим физическую интерпретацию всего алгоритма обнаружения RLC-объекта. Функцию, выполняемую пороговой схемой 11, можно рассматривать как измерение отношения КΣΣ и сравнения его с порогом. С учетом того, что:

весь алгоритм обнаружения RLC-объекта можно интерпретировать как сравнение с порогом среднего значения модуля приращения фазы HPO:

где усреднение осуществляется с весовыми коэффициентами An+1An.

Перейдем к обоснованию эффективности предложенного способа. Исходной предпосылкой к созданию предложенного способа является известное свойство токов в нелинейно-инерционных электрических цепях [4, 5], заключающееся в том, что не только амплитуды, но и фазы токов функционально зависят от амплитуды гармонического источника электродвижущей силы в этих цепях. Применительно к рассматриваемой ситуации это означает зависимость не только амплитуды А отраженного от RLC-объекта сигнала, но и его фазы φ от мощности ЗС. Вместе с тем, при наблюдении R-объектов фаза φ отраженного сигнала не зависит от мощности ЗС, хотя зависимость его амплитуды А от мощности ЗС сохраняется. Поэтому входящие в (15) приращения фазы (φn+1n), определяющие величину КΣ, будут иметь заметные отклонения от нулевого значения лишь при наблюдении RLC-объектов, а при наблюдении R-объектов эти приращения, а следовательно, и величина КΣ будут близки к нулевым значениям. В результате отношение КΣΣ будет значительно больше в случае наблюдения RLC-объектов, чем в случае наблюдения R-объекта, что позволяет рассматривать отношение КΣΣ в качестве параметра, по которому можно осуществить распознавание RLC-объектов и R-объектов.

Выше неявно предполагалось, что относительное расположение искомого RLC-объекта и радиолокатора в течение времени обнаружения Т остается неизменным. Очевидно, что при смене предполагаемого места нахождения искомого RLC-объекта рассмотренный выше процесс излучения ЗС и обработки отраженного сигнала повторяется.

Величина Т лежит приблизительно пределах от долей до нескольких секунд, N≈5-10, а величины начальной мощности ЗС р0 и шага Δр определяются по результатам эталонных испытаний по обнаружению типовых RLC-объектов.

В заключение отметим, что предложенный способ может быть использован в различных нелинейных радиолокаторах, выделяющих из отраженного сигнала не только вторую, но и любую другую кратную гармонику при облучении НРО одним гармоническим колебанием или комбинационные частоты в случае облучения HPO двумя и более гармоническими колебаниями.

Необходимые для этого изменения в схеме предложенного устройства очевидны.

Источники информации

1. Мусабеков П.М., Панычев С.Н. Нелинейная радиолокация: методы, техника и область применения. Зарубежная радиоэлектроника. Успехи современной радиоэлектроники, 2000 г., №5, с.54-61.

2. Беляев В.В., Маюнов А.Т., Разиньков С.Н. Состояние и перспективы развития «нелинейной» радиолокации. Успехи современной радиолокации, 2002 г., №6, с.59-78.

3. Штейншлейгер В.Б. Нелинейное рассеяние радиоволн металлическими объектами. Успехи физических наук, 1984 г., том 142, вып.1, с.131-145.

4. Бессонов Л.А. Нелинейные электрические цепи. Высшая школа, 1977 г.

5. Данилов Л.В., Матханов П.Н., Филиппов Е.С. Теория нелинейных электрических цепей. Энергоатомиздат, 1990 г.

Способ нелинейной радиолокации нелинейно-инерционных объектов, заключающийся в генерации последовательности гармонических колебаний Gn, n=1, 2, …, N, частоты f1, поочередном, в соответствии с индексом n, излучении Gn в направлении искомого объекта, приеме соответствующих отраженных сигналов Rn, n=1, 2, …, N, с выделением в них сигналов удвоенной частоты f2=2f1, определении комплексных огибающих Zn принятых сигналов Rn, измерении суммарной мощности принятых сигналов P=∑ZnZn*, где знак * - знак комплексного сопряжения, и принятии решения об обнаружении нелинейно-рассеивающего объекта путем сравнения выходной величины устройства обработки с порогом, отличающийся тем, что дополнительно осуществляется изменение мощности генерируемых колебаний Gn, формирование последовательности опорных сигналов Sn, n=1, 2, …, N, путем ограничения Gn и выделения в них колебаний удвоенной частоты f2, определение комплексных огибающих Wn опорных сигналов Sn, вычисление комплексных коэффициентов межпериодной корреляции KZ,n=Zn+1Zn* и KW,n=Wn+1Wn* огибающих Zn и Wn соответственно, вычисление коэффициентов взаимной межпериодной корреляции Kn=Im(KZ,nKW,n*) и их модульных значений [Kn], где Im - оператор выделения мнимой части комплексного числа, вычисление результирующего коэффициента корреляции К=∑[Kn], причем в качестве выходной величины устройства обработки используется К, а в качестве порога используется величина, пропорциональная Р.



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства с использованием прямых и рассеянных от воздушных объектов сигналов, излучаемых передатчиками радиоэлектронных систем различного назначения.

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения.

Изобретение относится к измерительной технике. .

Изобретение относится к методам и средствам ближней радиолокации нелинейно-рассеивающих объектов. .

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства с использованием прямых и рассеянных от воздушных объектов сигналов, излучаемых передатчиками радиоэлектронных систем различного назначения.

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного пространства с использованием прямых и рассеянных от воздушных объектов сигналов, излучаемых передатчиками радиоэлектронных систем различного назначения.

Изобретение относится к способам радиолокационных измерений и может быть использовано для определения эффективных площадей рассеяния (ЭПР) и координат элементов объема протяженного объекта при его зондировании сверхширокополосным (СШП) сигналом

Изобретение относится к радиотехнике, преимущественно к радиолокации, в частности, может быть использовано для зондирования квазимонохроматическими и дискретно-частотными сигналами стационарных, линейно рассеивающих электромагнитные волны объектов
Изобретение относится к области активной радиолокации и касается обнаружения объектов, покрытых радиопоглощающим материалом, в частности самолетов типа «стелс». Достигаемый технический результат - повышение чувствительности и дальности действия. Способ заключается в облучении объекта сверхвысокочастотными импульсами передатчика и регистрации отраженного эхо-сигнала приемником, при этом облучение ведут на двух близких частотах, а регистрацию эхо-сигнала на их разностной частоте. Генерация разностной частоты происходит в композиционном материале покрытия ввиду его нелинейности. В связи с тем, что передатчик работает в сантиметровом диапазоне длин волн, а приемник в метровом, то поглощения эхо-сигнала тонким слоем покрытия практически не происходит, причем точность определения координат цели не уменьшается, так как азимут и угол места находятся по направлению коротковолновой и узконаправленной антенны передатчика.

Изобретение относится к методам и средствам радиолокации нелинейно-рассеивающих объектов. В качестве зондирующего сигнала используются три гармоники с соответствующими частотами. В результате совместной корреляционной обработки пар сигналов {r1, r0} и {r2, r0} определяются корреляционные сигналы S1 и S2 соответственно и формируются разностный SΔ=S1-S2 и суммарный SΣ=S1+S2 сигналы, а в качестве выходного сигнала радиолокатора используется либо амплитуда UΔ разностного сигнала, либо амплитуда UΣ суммарного сигнала в зависимости от выбора начальных фаз у гармоник зондирующего сигнала. Достигаемый технический результат - повышение эффективности обнаружения нелинейных объектов, в состав которых входят инерционные элементы - индуктивности и емкости, на фоне потока сигналов от безынерционных нелинейных объектов. 1 ил.

Изобретение относится к областям гидроакустики и радиолокации и может быть применено в автоматических системах вторичной обработки радиолокационных и гидроакустических станций, установленных на подвижном носителе. В нем рассматривается способ снижения вероятности ложной тревоги за счет повышения эффективности классификации ложных целей, вызванных собственными шумами носителя. Сущность способа состоит в том, что при классификации ложных целей используется дополнительный статистический критерий - коэффициент корреляции между курсом носителя и курсовым углом на цель. Для ложных целей, обусловленных собственными шумами носителя, коэффициент корреляции с ростом размера выборки будет стремиться к нулю, а для истинных целей коэффициент корреляции будет стремиться к значению дисперсии курса носителя со знаком минус (так как изменения курсового угла на истинную цель и курса носителя противоположно направлены). Техническим результатом изобретения является снижение вероятности ложной тревоги за счет использования дополнительной информации о параметрах движения носителя станции. 1 ил.

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного, наземного и морского пространства с использованием прямых и рассеянных подвижными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемый технический результат - повышение вероятности обнаружения далеких и слабо рассеивающих объектов. Повышение вероятности обнаружения далеких и слабо рассеивающих объектов достигается за счет применения новых операций адаптивной и нелинейной обработки радиосигналов, рассеянных контролируемыми объектами. 3 ил., 1 табл.

Изобретение относится к радиотехнике и может быть использовано в системах контроля наземного, морского и воздушного пространства с использованием прямых и рассеянных объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Техническим результатом изобретения является повышение эффективности обнаружения подвижных объектов. Повышение эффективности обнаружения достигается за счет применения новых операций адаптивной и нелинейной обработки с обратной связью по полезному радиосигналу. 1 ил.

Изобретение может быть использовано в импульсно-доплеровских радиовысотомерах (РВ). Достигаемый технический результат - расширение функциональных возможностей, повышение скрытности излучения и максимальной измеряемой высоты без увеличения излучаемой мощности. Сущность изобретения состоит в том, что в направлении подстилающей поверхности излучают пачку зондирующих радиоимпульсов, причем число излучаемых радиоимпульсов (ИР) и период их повторения программно выбираются так, чтобы обеспечить максимальное количество ИР за время априорной задержки (АЗ), задаваемой контроллером обмена (КО), и одновременно исключить неоднозначность измерения высоты и попадание излученного сигнала в зону неопределенности, в которой производится поиск отраженного сигнала, принимают пачку отраженных от подстилающей поверхности радиоимпульсов, преобразуют видеоимпульсы в последовательность цифровых двоичных сигналов (ЦДС) с частотой дискретизации, запоминают синхронно с началом пачки ИР, и, по окончании излучения, определяют адрес ячейки памяти, соответствующий АЗ отраженного сигнала относительно начала пачки излучения, производят узкополосную доплеровскую фильтрацию ЦДС, считываемых последовательно из ячеек памяти в диапазоне поиска адресов памяти, накапливают суммарный результат фильтрации по всем цифровым двоичным сигналам принимаемой пачки при каждой величине оцениваемой задержки, принимают решение о наличии сигнала по превышению наперед заданного порога накопления, определяют задержку отраженного сигнала относительно начала пачки ИР, выдают информацию об измеренной высоте на выход РВ через КО. 8 ил.

Изобретение относится к радиоэлектронике. Технический результат - обеспечение доступа к узкополосным сигналам в отложенном режиме и повышение числа одновременно функционирующих каналов приема. Многоканальное устройство радиомониторинга содержит антенную решетку, состоящую из N антенн, выходы которых последовательно подключены к N аналоговым приемным блокам, N АЦП и N DDC, а также k блоков хранения данных с управляемой задержкой и в предлагаемом изобретении реализованы этапы, во-первых, предварительной обработки широкополосного сигнала путем его частотной декомпозиции с помощью фильтрбанков анализа с полным восстановлением, снижения избыточности и хранения в течение требуемого времени отложенного доступа, и, во-вторых, выделения узкополосных сигналов путем считывания из блоков хранения данных с управляемой задержкой требуемого частотно-временного фрагмента широкополосного сигнала, его декомпрессии в блоках декомпрессии данных, восстановления с помощью фильтрбанков синтеза, пространственно-временной обработки в блоках пространственно-временной обработки сигнала и передачи пользователю сигналов через интерфейсы с клиентскими средствами обработки сигналов для их оконечной обработки. 4 ил.
Наверх