Способ определения местоположения измеренных глубин звуковыми сигналами

Использование: в способах определения местоположения измеренных глубин звуковыми сигналами. Сущность: в способе определения местоположения измеренных глубин звуковыми сигналами излучают звуковые сигналы посредством многолучевого эхолота, принимают отраженные сигналы, их обрабатывают и определяют величины глубин при различных наклонах излучения с определением погрешности в оценке местоположения отраженного сигнала от случайного вращения судна. При этом излучение звуковых сигналов осуществляют по 32 каналам, при приеме отраженных сигналов формируют 256 лучей, по архивным данным устанавливают местоположение локальных опасных форм рельефа, при определении значений глубины над локальными опасными формами рельефа, превышающими измеренные фоновые глубины, уменьшают дискретность измерений глубины в поперечном направлении путем сокращения полосы захвата, при выявлении глубин, превышающих измеренные фоновые глубины, рассчитывают диаметр опасной формы рельефа. Технический результат: повышение точности измерения глубины многолучевым эхолотом путем получения достоверных определений погрешности измерения. 3 ил.

 

Изобретение относится к области навигации, а более конкретно к способам определения местоположения измеренных глубин преимущественно посредством многолучевого эхолота.

Известные способы определения местоположения измеренных глубин звуковыми сигналами (Wiele T.V. Aspect of Accuracy Analis for Sounding. // The gidrographic journal. N95, 2000, 19-21 pp. [1]. Hare R. Depth and position error budgets for multibeam echosounding. // JHR, v.72, N2, 1995, 37-69 pp. [2]), включают излучение звуковых сигналов в виде импульсов посредством многолучевого эхолота, прием отраженных сигналов, измерение глубин, включающее обработку сигналов и определение величин глубин при различных наклонах излучения с определением погрешности в оценке местоположения отражения звукового импульса от дна при различных наклонах излучения. При этом основной составной частью является оценка погрешности за счет вращения судна, обусловленного килевой и бортовой качкой и рысканьем судна относительно курса. Решение этой задачи в известных способах сводится к составлению матрицы вращения с помощью соответствующих углов Эйлера. Дисперсии углов Эйлера и элементы матрицы вращения используются для получения линеаризованных уравнений для оценки погрешности измерений.

При таком решении задачи конечные результаты не являются достоверными по двум основным причинам.

Во-первых, существует двенадцать вариантов представления одного и того же конечного вращения твердого тела (судна) вокруг неподвижной точки (центра тяжести судна) с использованием углов Эйлера в трехмерном пространстве. Каждый вариант отличается своей последовательностью осей, вокруг которых осуществляются повороты, с соответствующими своими углами Эйлера, при этом реальное вращательное движение судна не соответствует полностью ни одному из этих вариантов. От выбора базового варианта зависит конкретный вид функциональной зависимости между углами Эйлера в элементах матрицы вращения. Это в конечном итоге приводит к различным уравнениям в окончательном выражении для определения погрешности за счет вращения судна при измерении глубины многолучевым эхолотом, что приводит к неоднозначности полученных результатов.

Во-вторых, использование в качестве основного параметра в оценке погрешности углов Эйлера не обеспечивает получение достоверных конечных результатов, т.к. дисперсия как момент вероятностного распределения информативна только для нормального распределения, а угол Эйлера задан на конечном интервале [0; 2π] и не может соответствовать нормальному закону распределения.

Для соответствия значений угла Эйлера нормальному распределению осуществляют переход от конечного интервала к бесконечному с помощью тангенса угла, но это не приводит к положительному эффекту, т.к. распределение Коши не имеет дисперсии (Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1978, 831 с.[3]).

Повышение точности измерения глубины многолучевым эхолотом путем получения достоверных определений погрешности измерения реализовано в способе определения местоположения измеренных глубин звуковыми сигналами, включающем излучение звуковых сигналов посредством многолучевого эхолота, прием отраженных сигналов, измерение глубин, содержащие обработку сигналов и определение величин глубин при различных наклонах излучения с определением погрешности в оценке местоположения отражения сигнала от случайного вращения судна, в котором определение погрешности осуществляют по значению плотности распределения случайного вращения судна в соответствии с зависимостью , где: dP - плотность распределения случайного вращения судна; θ - полярное расстояние; φ - долгота; δ - угол поворота судна вокруг оси (патент RU №2266551 [6]).

Осуществление известного способа [6] основывается на том, что конечное движение судна между двумя последовательными посылками звукового импульса может быть представлено как винтовое перемещение вокруг некоторой неподвижной оси (теорема Эйлера-Даламбера) и конечное вращение судна можно определить с использованием направляющих косинусов оси поворота вместе с углом поворота вокруг этой оси [3]. Для каждого момента посылки звукового импульса имеется своя ось поворота и свой угол поворота вокруг нее. Направление этой оси относительно фиксированной прямоугольной системы координат, связанной с центром масс судна, лежит в конусе с осью, совпадающей с осью, которая направлена по курсу судна, а ось поворота направлена в сторону левого борта, а ось вращения направлена вертикально вверх. При этом косинусы оси вращения относительно этих осей связаны с углами Эйлера выражениями [3]:

где Ω=sin(δ/2), δ - угол поворота вокруг оси; α, β, γ - углы Эйлера следующей последовательности поворотов, определяющих вращение:

1. Поворот вокруг оси u3 на угол α;

2. Поворот вокруг оси u2 на угол β;

3. Поворот вокруг оси u3 на угол γ.

Так как промерные работы выполняются при достаточно малых углах бортовой и килевой качки и при устойчивом движении судна по курсу (Руководство по промерным работам [4]), то для оценок углов Эйлера используются значения соответствующих углов качки - бортовой для β, килевой для γ, и ошибок курсовых углов для α. При этом α≈γ<<β, т.е. при малых углах Эйлера выражение (1), (2) и (3) приводят к соотношению c3≈c2>>c1, которые показывают, что ось вращения судна лежит в конусе с осью, совпадающей с осью u1.

При переходе к сферическим координатам описания положения оси вращения θ и φ (0≤θ≤π - полярное расстояние, 0≤φ≤2π - долгота) вращение судна будет определяться трехмерным параметрическим пространством (θ, φ, δ), где 0≤δ≤2π.

При равномерном распределении этих трех параметров вероятностная мера соответствует выражению (Кендалл, Моран П. Геометрические вероятности. М.: Наука, 1972, 192 c. [5]):

Определив плотность распределения параметров θ, φ, δ и используя выражение (4), определяют плотность распределения случайного вращения судна. В полярных координатах ось вращения судна будет иметь координаты, близкие к θ≈π/2, φ≈0.

Для задания плотностей распределения каждого из углов θ, φ, δ, заданных на конечных интервалах, используют бета-распределение с плотностью [3]:

Здесь Г(*) - гамма-функция, a, b - положительные действительные параметры.

В конечном итоге плотность распределения случайного вращения судна с учетом выражений (4) и (5) определяется в соответствии с выражением:

что позволяет определить плотность распределения случайного вращения судна, не связанного какой-либо заданной последовательностью поворотов относительно осей, что повышает достоверность определения погрешности в местоположении измеренных глубин многолучевым эхолотом.

При этом при выполнении промерных работ с использованием многолучевого эхолота излучают звуковые сигналы, принимают отраженные сигналы, обрабатывают полученные сигналы (усиливают, формируют), определяют величины глубин при различных наклонах излучения с оценкой погрешности местоположения отраженного звукового импульса от дна с учетом случайного вращения судна, определяемой по значению плотности распределения случайного вращения судна в соответствии с зависимостью

Однако при решении прикладных задач, например, связанных со строительством подводных трубопроводов на больших глубинах, весьма важным является, чтобы все формы рельефа или искусственные подводные объекты были идентифицированы в ходе батиметрической инструментальной съемки по измеренным глубинам звуковыми сигналами, формируемыми, в частности, высокочастотными многолучевыми эхолотами для получения детальной картины рельефа дна.

При съемке рельефа дна многолучевыми эхолотами глубины в горизонтальной плоскости измеряются (формируются) с определенной дискретностью, которая связана с углом направления луча, способом формирования лучей, частотой многолучевого эхолота, разрешающей способностью формирования луча. Причем эта дискретность является в общем случае функцией глубины L=f(H) (схема распределения измеренных глубин многолучевым эхолотом показана на фиг.1). Например, для высокочастотного многолучевого эхолота типа ЕМ 100, используемого при проведении батиметрической инструментальной съемки при проектных работах при прокладке подводных магистральных трубопроводов для транспортировки углеводородов, горизонтальная дискретность распределения глубин на равном расстоянии в мелководном режиме равна L=6,3% Н, где Н - глубина, при распределении глубин на равных углах это расстояние на боковых лучах увеличивается по сравнению с центральными лучами. Это приводит к тому, что при увеличении глубины съемки возможен пропуск опасной для трубопровода формы рельефа. С точки зрения проектирования параметров трубопровода пересечение трубопроводом такой опасной формы приводит к увеличению свободного пролета трубы и увеличению нагрузки в точке касания трубы с рельефом опасной формы (фиг.2). При проектировании параметров трубопровода основой является батиметрический профиль, и отсутствие фиксации на профиле опасной глубины в реальных условиях может приводить к превышению допустимых нагрузок на трубу и соответственно к ее повреждению, поэтому задача определения вероятности пропуска опасной формы рельефа при проведении батиметрической съемке является весьма актуальной. Задачей настоящего изобретения является повышение точности измерения глубины многолучевым эхолотом путем получения достоверных определений погрешности измерения.

Поставленная задача решается за счет того, что в способе определения местоположения измеренных глубин звуковыми сигналами, включающем излучение звуковых сигналов посредством многолучевого эхолота, прием отраженных сигналов, их обработку и определение величины глубин при различных наклонах излучения с определением погрешности в оценке местоположения отраженного сигнала от случайного вращения судна, в котором определение погрешности выполняют по значению плотности распределения случайного вращения судна в соответствии с зависимостью где: dP - плотность распределения случайного вращения судна; θ - полярное расстояние; φ - долгота; δ - угол поворота судна вокруг оси, в котором в отличие от прототипа, излучение звуковых сигналов посредством многолучевого эхолота осуществляют по 32 каналам, при приеме отраженных сигналов формируют 256 лучей, по архивным данным устанавливают местоположение локальных опасных форм рельефа, при определении значений глубины над локальными опасными формами рельефа, превышающими измеренные фоновые глубины, уменьшают дискретность измерений глубины в поперечном направлении путем сокращения полосы захвата, при выявлении глубин, превышающих измеренные фоновые глубины, рассчитывают диаметр опасной формы рельефа.

Данная совокупность отличительных признаков, заключающихся в том, что излучение звуковых сигналов посредством многолучевого эхолота осуществляют по 32 каналам, при приеме отраженных сигналов формируют 256 лучей, по архивным данным устанавливают местоположение локальных опасных форм рельефа, при определении значений глубины над локальными опасными формами рельефа, превышающими измеренные фоновые глубины, уменьшают дискретность измерений глубины в поперечном направлении путем сокращения полосы захвата, при выявлении глубин, превышающих измеренные фоновые глубины, рассчитывают диаметр опасной формы рельефа, из известного уровня техники не выявлена, что позволяет сделать вывод о соответствии заявляемого решения критерию патентоспособности - «изобретательский уровень».

Сущность способа поясняется чертежами (фиг.1-3).

Фиг.1. Схема распределения измеренных глубин многолучевым эхолотом. Судно 1, расположенное на поверхности моря 2, оснащенное многолучевым эхолотом 3, приемоизлучающая антенна которого установлена в днище 4 судна 1 и которая формирует лучи 5 в направлении морского дна 6; L - дискретность измерения глубины в поперечном направлении.

Фиг.2. Схема расположения трубопровода на опасной для его эксплуатации форме рельефа, где позициями обозначены: трубопровод 7, морское дно 6, форма опасного рельефа 8.

Фиг.3. Геометрия определения диаметра опасной формы рельефа дна. S - диаметр опасной формы рельефа дна, L - дискретность измерения глубины в поперечном направлении, h - высота опасной формы рельефа.

Многолучевой эхолот 3 представляет собой многолучевой эхолот со сложным линейно-частотным модулированным сигналом и предназначен для измерения глубин от 20 до 6000 м. Развертка мощности принятых сигналов осуществляется по дальности и углу. Характер изменения мощности в луче с дальностью зависит от формы рельефа дна. Из 32 приемных каналов формируют 256 лучей, что позволяет получить квазинепрерывный профиль рельефа. Приемная антенна многолучевого эхолота 3 диапазона частот 30 кГц состоит из 32 элементов.

Предлагаемый способ реализуется следующим образом.

Посредством многолучевого эхолота 3, установленного на судне 1, оснащенного техническими средствами навигации для определения скорости, курса, координат, углов качки, выполняют батиметрическую съемку, например, в интересах обеспечения выбора трассы для укладки подводного магистрального трубопровода для транспортировки углеводородов. При этом посредством многолучевого эхолота 3 формируют 32 луча в направлении морского дна 6. Принимают отраженные от морского дна 6 сигналы.

Посредством судовых средств обработки принятых сигналов определяют величины глубин Н. Транслируют эти величины глубин Н на видеопланшет для построения рельефа морского дна 6 по трассе движения судна 1. При этом по архивной информации выявляют районы с локальными опасными формами рельефа. При подходе к таким районам уменьшают дискретность измерений глубины в поперечном направлении путем сокращения полосы захвата.

При выявлении глубин, превышающих измеренные фоновые глубины, рассчитывают диаметр опасной формы в соответствии с зависимостью: S=2h/tg(a), где h - высота превышения фоновой глубины.

Определение погрешности в оценке местоположения отраженного сигнала от случайного вращения судна, в котором определение погрешности выполняют по значению плотности распределения случайного вращения судна в соответствии с зависимостью , где: dP - плотность распределения случайного вращения судна; θ - полярное расстояние; φ - долгота; δ - угол поворота судна вокруг оси.

Предлагаемый способ может быть реализован без привлечения внешних источников информации с использованием только штатных судовых средств: многолучевого эхолота с видеопланшетом, измерителей координат, скорости, курса, углов качек (система стабилизации, азимутгоризонткомпас или инерциальная навигационная система) и персональный компьютер, что позволяет сделать вывод о соответствии заявляемого решения критерию патентоспособности «промышленная применяемость».

Источники информации

1. Wiele T.V. Aspect of Accuracy Analis for Sounding. // The gidrographic journal. N95, 2000, 19-21 pp.

2. Hare R. Depth and position error budgets for multibeam echosounding. // JHR, v.72, N2, 1995, 37-69 pp.

3. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1978, 831 с.

4. Руководство по промерным работам

5. Кендалл, Моран П. Геометрические вероятности. М.: Наука, 1972, 192 с.

6. Патент RU №2266551.

Способ определения местоположения измеренных глубин звуковыми сигналами, включающий излучение звуковых сигналов посредством многолучевого эхолота, прием отраженных сигналов, их обработку и определение величины глубин при различных наклонах излучения с определением погрешности в оценке местоположения отраженного сигнала от случайного вращения судна, в котором определение погрешности выполняют по значению плотности распределения случайного вращения судна в соответствии с зависимостью ,
где dP - плотность распределения случайного вращения судна; θ - полярное расстояние; φ - долгота; δ - угол поворота судна вокруг оси, отличающийся тем, что излучение звуковых сигналов посредством многолучевого эхолота осуществляют по 32 каналам, при приеме отраженных сигналов формируют 256 лучей, по архивным данным устанавливают местоположение локальных опасных форм рельефа, при определении значений глубины над локальными опасными формами рельефа, превышающими измеренные фоновые глубины, уменьшают дискретность измерений глубины в поперечном направлении, путем сокращения полосы захвата, при выявлении глубин, превышающих измеренные фоновые глубины, рассчитывают диаметр опасной формы рельефа.



 

Похожие патенты:

Изобретение относится к области контрольно-измерительной техники и решает задачу выделения исследуемого сигнала из смеси с помехой. .

Изобретение относится к гидроакустической технике и может быть использовано в составе водолазного оборудования. .

Изобретение относится к области гидроакустики и может быть использовано в гидроакустических системах дальнего мониторинга. .

Изобретение относится к гидроакустике и может быть использовано в просветных приемоизлучающих системах контроля дальнего действия. .

Изобретение относится к области гидроакустики и может быть использовано в гидроакустических системах дальнего мониторинга. .

Изобретение относится к геоакустике и может быть использовано для направленного приема акустических шумов. .

Изобретение относится к гидроакустике и может быть использовано для гидроакустических исследований и определения местоположения подводных и поверхностных объектов с использованием акустических комбинированных приемников.

Изобретение относится к области гидроакустики и может быть использовано для гидроакустических исследований объектов шумоизлучения в натурном водоеме. .

Изобретение относится к медицинской технике, а именно к устройству и способу ультразвуковой визуализации. .

Изобретение относится к области гидрографии, в частности к способам и техническим средствам определения глубин акватории фазовым гидролокатором бокового обзора, и может быть использовано для выполнения съемки рельефа дна акватории

Использование: приемник предназначен для проведения векторно-скалярных измерений параметров гидроакустических полей в морях и океанах. Сущность: приемник включает корпус с инерционной массой, расположенной в центре корпуса, шесть АЦП, микропроцессор и три измерительных канала, оси чувствительности которых расположены в пространстве согласно осям ортогональной системы координат. Каждый из каналов состоит из двух чувствительных элементов, выполненных на основе пьезокерамики и установленных навстречу друг другу. Чувствительные элементы одним концом фиксируют инерционную массу, а другим опираются на корпус. Каждый чувствительный элемент подключен к входу своего АЦП, выходные коды которых подаются в микропроцессорное устройство. Технический результат: компенсация разницы электроакустических коэффициентов передачи чувствительных элементов приемника, что приводит к снижению поперечной чувствительности заявляемого приемника и ведет к улучшению формы диаграммы направленности, а также конструктивное и технологическое упрощение за счет исключения отдельных датчиков гидрофонного канала и упрощения технологии изготовления корпуса приемника.1 ил.

Изобретение относится к области поисковых и подводно-технических работ при наличии сплошного ледового покрова в районе нахождения аварийного подводного объекта, например, подводной лодки. Способ основан на передаче акустических сигналов в водной среде. Сигнализатор связывают с буем прочным тросиком, например, из кевлара, выстреливают изделие через торпедный аппарат или отдают стопором из корпуса носителя, при этом буй подвсплывает к ледовой поверхности, а сигнализатор, оказавшийся на нужном горизонте распространения звуковых волн, запускают кодовым сигналом на излучение. Устройство для подачи сигнала об аварии подо льдом по гидроакустическому каналу путем установки сигнализатора на заданной глубине включает плавучий буй. Буй оснащен синтетическим тросиком заданной длины, который закреплен на сигнализаторе для удержания его на глубине зоны подводного звукового канала, при этом буй всплыл и прижат к нижней кромке льда. Значительно облегчается проведение поисково-спасательной операции по обнаружению подводных судов в условиях Арктики за счет увеличения дальности прохождения сигнала аварийного сигнализатора. 2 н.п. ф-лы, 1 ил.

Использование: в технических средствах для оперативного освещения подводной обстановки в акваториях Мирового океана. Сущность: предлагается использовать устройство, представляющее собой синтез транспортировочного модуля, укомплектованного электрической энергосиловой установкой (ЭСУ) и бортовой электронной аппаратурой (БЭА), осуществляющей управление системами АНПА, включая ЭСУ и систему БЭА. В БЭА встроено устройство излучения зондирующих низкочастотных посылок и приема поступающей из моря информации, конструктивно оформленное на консолях носовых и кормовых рулевых устройств автономного, необитаемого, подводного аппарата (АНПА). Такая конструкция заявляемого устройства должна осуществлять обнаружение и выделение в эхо-сигнале (на фоне естественных (реверберации и шумы моря) и искусственных помех на дистанциях до 5000 м) характерных признаков подводных объектов за счет взаимодействия падающей первичной волны и вторичных волн, образующихся внутри и вокруг этих объектов, и наличия результатов этого взаимодействия в спектре и фазе эхо-сигнала. Расшифровка устройством (без вмешательства человека) заданных информационных признаков подводных объектов позволяет с большей вероятностью преодолеть существующую неопределенность в оценке подводной обстановки. Технический результат: улучшение помехоустойчивости и помехозащищенности АНПА при повышенной дистанции обнаружения до 5 км и увеличенном количестве обнаруженных объектов, повышение производительности поиска в любом направлении и оперативности. 2 з.п. ф-лы, 11 ил.

Использование: геология, гидроакустика. Сущность: в акустическом устройстве определения дальности увеличивается точность определения дальности благодаря введению генератора подстраиваемой частоты, индикатора, максимального сигнала, блока определения заднего фронта сигнала, панели выдачи кода поправки и вычитателя, при этом выход генератора подстраиваемой частоты соединен с входом индикатора и с входом акустического широкополосного приемника низкочастотного диапазона, а вход генератора соединен с выходом этого приемника, соединенного также входом индикатора максимального сигнала и через блок определения заднего фронта сигнала со вторым входом преобразователя временного рассогласования, группа выходов которого соединена с первой группой входов вычитателя, имеющего вторую группу входов, соединенную с группой выходов панели выдачи кода поправки и имеющего группу выходов, соединенную с группой входов индикатора. Технический результат: повышение точности. 1 ил.

Изобретение относится к измерительной технике, метрологии и гидроакустике и может быть использовано для бездемонтажной проверки рабочего состояния гидроакустического тракта в натурных условиях. На вход проверяемого гидроакустического тракта подают тестовые сигналы в виде тепловых шумов Джонса с разными спектрами. Измеряют отклики указанного тракта на тестовые сигналы. Определяют отношение получаемых откликов подаваемых тестовых сигналов и отношение самих тестовых сигналов. При равенстве этих отношений диагностируют исправность гидроакустического тракта. Технический результат заключается в устранении необходимости проведения температурных измерений при определении работоспособности гидроакустического тракта в натурных условиях. 1 ил.

Изобретение относится к измерительной технике и преимущественно предназначено для использования в системах контроля и измерения скорости и расхода жидких и газообразных продуктов. Оно может быть использовано при транспортировке топливных продуктов, в водоснабжении, медицинской технике, а также в океанографии при измерении скорости течений в морях и океанах. Технический результат изобретения -повышение точности измерения при контроле параметров потока. Точность измерения скорости потока можно повысить, зная скорость распространения звука в среде и величины задержек в электронных схемах и акустических преобразователях.

Использование: изобретение относится к технике, использующей излучение и отражение акустических волн для поиска смотровых колодцев трубопроводов, покрытых слоем земли, асфальта, снега и т.п. Сущность: генератором в незаполненный трубопровод, являющийся волноводом, подают сигнал определенной частоты, который принимается излучателем акустического сигнала, преобразуется в акустический сигнал, который передается далее по волноводу, попадает в замкнутый объем смотрового колодца и распространяется по грунту. Наличие разрыва трубопровода в месте сообщения со смотровым колодцем и меньшей толщины грунта над колодцем, чем над трубопроводом, способствует тому, что уровень акустического сигнала над колодцем больше, чем над трубопроводом. По увеличенному уровню акустического сигнала, принимаемого акустическим датчиком, соединенным с приемником, сонастроенным по частоте с частотой генератора, определяют местоположение смотрового колодца. Указанный способ и устройство могут найти применение в работе коммунальных служб при необходимости поиска и обнаружения смотровых колодцев, скрытых под слоем земли, асфальта, снега и т.п. Технический результат: возможность обнаружения смотровых колодцев, покрытых слоем земли, асфальта, снега и т.п., независимо от материала, из которого изготовлены крышки люков смотровых колодцев или сами коммуникации; увеличение дальности обнаружения колодцев от источника сигналов; снижение стоимости оборудования, необходимого для обнаружения смотровых колодцев; снижение затрат на обучение персонала в связи с упрощением способа поиска; повышение безопасности работы персонала. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области гидроакустики и может быть использовано в морях, океанах, пресноводных водоемах в качестве геофизической косы для проведения исследований в обеспечении инженерно-геофизических работ на морском дне. Техническим результатом изобретения является снижение диаметра антенны, повышение помехозащищенности от гидродинамических помех на низких частотах, а также снижение структурных помех, возникающих при изгибах и продольных деформациях антенны при буксировке. Технический результат достигается за счет того, что в гидроакустической буксируемой антенне для геофизических работ, содержащей внешнюю эластичную кабельную оболочку, в которую вмонтирован выполненный в виде сетчатой оплетки армирующий силовой элемент, размещенный внутри оболочки набор приемников, каждый из которых состоит из двух одинаковых чувствительных пьезоэлементов, выполненных из электрически поляризованной пьезоэлектрической пленки с нанесенными на ее поверхности и прочно сцепленными с ней электродами, герметичных корпусов с вмонтированными в них электронными платами с дифференциальными усилителями и аналого-цифровыми преобразователями, цифровой линии связи и линии питания, причем к входам дифференциальных усилителей противофазно подключены чувствительные пьезоэлементы, а к выходам - аналого-цифровые преобразователи, выходы которых подключены к цифровой линии связи, линия питания и линия связи объединены в единую кабельную сборку, дополненную корделями в виде эластичных полимерных жил до придания сборке круглой формы, пленочные пьезоэлементы выполнены в виде двух лент с противоположной ориентацией поляризации, навитых под углом на поверхность кабельной сборки, при этом кабельная сборка закреплена с противоположных сторон на опорных шайбах с продольными вырезами, в которых пропущены дополнительные силовые элементы в виде сверхпрочных шнуров, а все внутреннее пространство под кабельной оболочкой заполнено вязким липким материалом, например, полиизобутиленом. 1 ил.

Изобретение относится к области гидроакустики, а именно к гидроакустическим средствам освещения подводной обстановки с высокой разрешающей способностью. Сущность: в гидроакустической системе освещения ближней обстановки, содержащей подводный модуль в виде герметичного корпуса, в котором размещены антенный блок, блок генерации излучаемого сигнала, содержащий последовательно соединенные генератор, многоотводную линию задержки и многоканальный усилитель, и блок обработки принятого сигнала, включающий последовательно соединенные блок приемных усилителей и блок аналого-цифровых преобразователей, а также блок обработки и графического отображения, соединенный кабельной линией связи с выходом подводного модуля, подводный модуль снабжен многоканальным коммутатором, включенным между антенным блоком, многоканальным усилителем мощности и блоком приемных усилителей, а также блоком управления коммутатором, вход которого соединен с выходом блока аналого-цифровых преобразователей, а выход соединен с входом генератора, и интерфейсом, включенным между блоком управления коммутатором и кабельной линией связи, причем антенный блок выполнен в виде многоэлементной линейной антенны, блок обработки и графического отображения выполнен в виде надводного модуля, размещенного на плавучей платформе и включающего последовательно соединенные с выходом интерфейса блок распаковки, блок корреляторов, блок секционирования, блок фокусирующих задержек, блок формирователей характеристик направленности, блок формирования акустического изображения с графическим дисплеем и блок управления, при этом подводный модуль закреплен к надводной платформе посредством штанги с сервоприводом с возможностью вращения вокруг оси, а блок управления включен между сервоприводом и блоком формирования акустического изображения. Технический результат: увеличение скорости обзора пространства, увеличение ширины сектора обзора, увеличение разрешающей способности по углу, а также упрощение конструкции антенного блока. 1 ил.

Изобретение относится к области навигации, а более конкретно к способам определения местоположения измеренных глубин преимущественно посредством многолучевого эхолота

Наверх