Способ получения оксида урана


 


Владельцы патента RU 2481272:

Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") (RU)

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству его соединений, и может быть использовано в химической и ядерной технологиях. Способ получения оксида урана включает нагрев диоксида урана до температуры 500÷900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2÷4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, с последующим исключением внешнего источника тепла. Причем перед нагревом диоксида урана в реакционной емкости к диоксиду урана добавляют металлический уран в количестве 20÷40% мас. от массы диоксида урана. Изобретение обеспечивает упрощение и снижение энергоемкости процесса получения оксида урана. 1 табл., 1 пр.

 

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству его соединений, и может быть использовано в химической и ядерной технологиях.

Известен способ получения оксида урана, заключающийся в нагреве металлического урана в реакционной емкости внешним источником тепла до температуры 500-900°С в кислородсодержащей среде с последующей выдержкой при указанной температуре до прекращения процесса образования оксида урана (см. Я.М.Стерлин. Металлургия урана. - М.: Государственное издательство литературы в области атомной науки и техники, 1962, с.64-69).

Недостатками этого способа получения оксида урана являются значительные энергозатраты на поддержание заданного температурного режима, а также невысокая производительность.

Известен способ получения оксида урана, заключающийся в нагреве металлического урана в реакционной емкости в среде кислородсодержащего агента внешним источником тепла до температуры 500-900°С и последующей выдержке до прекращения процесса, причем в качестве реакционной емкости используют емкость, образующую замкнутое пространство с внутренним объемом, составляющим 2-4 объема загруженного металлического урана, и имеющую отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, а после нагрева до температуры 500-900°С внешний источник отключают (см. патент RU 2247076, МПК C01G 43/01, 22.07.2003).

Недостатком известного способа получения оксида урана является значительное отклонение содержания кислорода в получаемом оксиде урана от стехиометрического содержания кислорода в оксиде урана (закиси-окиси урана) при использовании в качестве исходного продукта диоксида урана.

Наиболее близким к заявленному способу получения оксида урана по технической сущности и достигаемому результату - прототипом - является способ получения оксида урана, заключающийся в нагреве урансодержащего продукта до 500-900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2-4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, причем при получении в качестве оксида урана закиси-окиси урана из диоксида урана в качестве урансодержащего продукта используют диоксид урана, подвергнутый предварительному измельчению до крупности менее 2 мм, процесс осуществляют в две стадии: на первой стадии в емкости, образующей замкнутое пространство с отверстиями, а на второй стадии урансодержащий продукт перегружают в реакционную емкость с открытой поверхностью, составляющей 30-40% от общей поверхности реакционной емкости, и осуществляют нагрев до 500-600°С с последующей выдержкой до прекращения процесса (см. патент RU 2299857, МПК C01G 43/01, 15.11.2005).

Недостатком известного способа получения оксида урана являются сложность и энергоемкость процесса.

Эти недостатки связаны с тем, что процесс осуществляют в две стадии: на первой стадии - в емкости, образующей замкнутое пространство с отверстиями, а на второй стадии - в емкости с открытой поверхностью. Причем нагрев до 500-900°С на первой стадии и последующий нагрев до 500-600°С с выдержкой при этой температуре на второй стадии осуществляют внешним источником тепла.

Перед авторами стояла задача упрощения и снижения энергоемкости способа получения оксида урана.

Поставленная задача решается тем, что в способе получения оксида урана, включающем нагрев урансодержащего продукта - диоксида урана до температуры 500-900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2-4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости с последующим исключением внешнего источника тепла, перед нагревом диоксида урана в реакционной емкости до 500-900°С в объеме диоксида урана размещают произвольным образом металлический уран в количестве 20-40% масс. от массы диоксида урана.

Причинно-следственная связь между существенными признаками и достигаемым техническим результатом заключается в следующем.

Предложенный способ получения оксида урана (U3O8) реализуется в условиях, обеспечивающих саморазогрев и тепловой баланс процесса за счет экзотермической реакции взаимодействия урана с кислородом

3U+4O2→U3O8+260 ккал/(г·атом урана)

после предварительного нагрева до температуры 500÷900°С.

Однако окисление диоксида урана (UO2) до закиси-окиси урана (U3O8) после нагрева до 500-900°С проходит в одну стадию по реакции

UO2→U3O8+Q,

а окисление металлического урана происходит ступенчато, с предварительным образованием промежуточных оксидов по реакции

U→UO→UO2→U3O8+Q.

Таким образом, в заявленном способе предварительно образуется закись-окись урана из диоксида урана, а реакция взаимодействия металлического урана с кислородом продолжается, при этом выделяющееся тепло способствует гомогенизации продукта окисления с получением содержания кислорода в закиси-окиси урана, близкого к стехиометрическому содержанию.

Т.е. в заявленном способе получения оксида урана совмещаются два процесса, а именно, получение непосредственно закиси-окиси урана и ее гомогенизации по кислородному коэффициенту, что упрощает способ и снижает его энергоемкость.

Количество вводимого металлического урана в диоксид урана 20-40% масс. определяется тем, что при меньшем содержании урана (<20% масс.) из-за недостатка выделившегося тепла при сгорании металлического урана не обеспечивается гомогенизация получаемого продукта - закиси-окиси урана по кислородному коэффициенту. Кислородный коэффициент находится в пределах 2,50-2,70, однако разброс в таких пределах не допускается по техническим условиям на продукт.

В случае введения металлического урана в двуокись урана более 40% масс. происходит избыточное тепловыделение при сгорании металлического урана, что приводит к спеканию получаемого продукта с образованием агломерата, требующего дополнительного измельчения и, следовательно, приводит к усложнению процесса.

Предложенный способ получения оксида урана - закиси-окиси урана иллюстрируется следующим примером.

Пример

Двуокись урана в виде компактного материала или крупки <2 мм загружали в реакционную емкость из нержавеющей стали, выполненную в виде прямоугольного контейнера с крышкой и отверстиями для доступа кислородсодержащего агента. Размеры реакционной емкости изменялись таким образом, что соотношение ее внутреннего объема и загружаемого урансодержащего продукта составляло от 2 до 4, а площадь отверстий составляла от 5 до 25% от общей площади поверхности реакционной емкости, к диоксиду урана добавляли металлический уран в количестве 20-40% масс. от массы диоксида урана.

Реакционную емкость с урансодержащим продуктом помещали в муфельную печь и нагревали до 500÷900°С. При достижении заданной температуры 500÷900°С внешний источник нагрева (муфельная печь) отключали, и далее процесс окисления протекал в режиме самонагрева до прекращения процесса.

В таблице приведены примеры осуществления предложенного способа получения оксида урана на граничные и промежуточные значения параметров в сопоставлении с известным способом.

Как следует из приведенных в таблице данных, предложенный способ получения оксида урана (примеры 1-3) обеспечивает в сравнении с известным способом (примеры 4-5) его упрощение и снижение энергоемкости.

Таблица
Параметры Примеры
1 2 3 4 известный 5 известный
Температура нагрева внешним источником, °С 500 700 900 500 900
Масса загрузки диоксида урана, кг 0,365 0,704 0,680 0,5 1,0
Масса загрузки металлического урана, кг 0,073 0,211 0,272 - -
Соотношение масс металла и диоксида, % 20 30 40 - -
Объем загруженного урансодержащего продукта, см3 100 200 200 150 300
Объем реакционной емкости, см3 200 300 400 300 1200
Соотношение объемов реакционной емкости и загруженного продукта 2 1,5 2 2 4
Соотношение площади отверстий и поверхности реакционной емкости, % 5 15 25 5 25
Параметры 2-й стадии окисления Температура нагрева, °С - - - 500 600
Соотношение площади поверхности и общей поверхности реакционной емкости, % - - - 30 40
Энергоемкость процесса, кВт/час 2,0 2,6 3,2 4,8 6,1
Количество стадий окисления 1 1 1 2 2
Качество продукта U3O8 Кислородный коэффициент 2,65 2,63 2,64 2,65 2,64
Отклонение от стехиометрии, % -0,75 -1,50 -1,12 -0,75 -1,12

Способ получения оксида урана, включающий нагрев урансодержащего продукта - диоксида урана до температуры 500÷900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2÷4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, с последующим исключением внешнего источника тепла, отличающийся тем, что перед нагревом диоксида урана в реакционной емкости до 500÷900°С к диоксиду урана добавляют металлический уран в количестве 20÷40 мас.% от массы диоксида урана.



 

Похожие патенты:

Изобретение относится к области разработки экономически рентабельной и экологически безопасной технологии конверсии тетрафторида обедненного урана, полученного тем или иным способом, в частности, в окислы урана, предназначенные для длительного хранения или использования в реакторах на быстрых нейтронах, и алкилфториды, используемые в дальнейшем в качестве озонобезопасных хладоагентов, растворителей, пожаротушащих веществ или средств травления полупроводниковых плат.

Изобретение относится к области разработки экономически рентабельной технологии конверсии обедненного тетрафторида урана с получением окислов урана для длительного хранения или использования в быстрых реакторах, а также с попутным получением ценных фторсодержащих веществ.

Изобретение относится к области технологии ядерных материалов, в частности к производству ядерного топлива с определенным содержанием изотопа 235U. .
Изобретение относится к области неорганической химии, в частности металлургии урана и производству соединений урана, и может быть использовано в химической и ядерной промышленности, например, для изготовления топливных сердечников ТВЭЛов ядерных реакторов.

Изобретение относится к области металлургии и может быть использовано в производстве ядерного топлива. .

Изобретение относится к области металлургии. .

Изобретение относится к способу переработки радиоактивных отходов топливных композиций, содержащих диоксид урана и полиэтилен, с получением товарной закиси-окиси урана, используемой для воспроизводства ядерного топлива.

Изобретение относится к способам переработки концентратов оксидов природного урана и может быть использовано в технологии получения материалов топливного цикла, в частности, для получения обогащенного урана.
Изобретение относится к области получения топлива для атомных электростанций и может быть использовано для получения оксидов урана высокой степени чистоты при переработке химического концентрата природного урана.

Изобретение относится к области неорганической химии, в частности металлургии урана и производству соединений урана, и может быть использовано в химической и ядерной технологиях.
Изобретение относится к области химической технологии неорганических веществ и может быть использовано при переработке обедненного гексафторида урана

Изобретение может быть использовано в химической промышленности. Способ выделения фтора включает загрузку смеси, содержащей фторид урана и окислитель, в реакционный сосуд со сплошным основанием и проемом, обращенным в сторону от основания, нагрев этой смеси в реакционном сосуде и образование по меньшей мере одного оксида урана и нерадиоактивного газообразного продукта из нагретой смеси. При этом осуществляют регулирование толщины слоя смеси в реакционном сосуде для достижения требуемого выхода реакции и/или требуемой скорости реакции получения нерадиоактивного газообразного продукта. Используемая смесь может содержать тетрафторид урана UF4 и реагент для выделения фтора, выбранный из группы, включающей оксид германия GeO, диоксид германия GeO2, кремний Si, триоксид бора B2O3 и диоксид кремния SiO2. Изобретение позволяет повысить выход фтора. 3 н. и 13 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области технологии ядерных материалов и может быть использовано при конверсии тетрафторида урана. Производят получение тетрафторида кремния и диоксида урана из тетрафторида урана. Берут диоксид кремния и подвергают его механоактивации. Затем осуществляют его гомогенизацию с тетрафторидом урана в стехиометрическом соотношении. Гомогенизированную шихту гранулируют, сушат при температуре 250-300°C и подвергают термообработке в среде сухого инертного газа. Изобретение позволяет проводить конверсию тетрафторида урана с высоким выходом высокочистого тетрафторида кремния, не загрязненного летучими соединениями урана, при температуре не выше 600°C. 1 ил., 1 табл., 7 пр.

Изобретение может быть использовано для утилизации продуктов переработки отвального гексафторида урана и получения особо чистого кремния. Реакционную смесь, содержащую тетрафторид урана и двуокись кремния в мольном соотношении (1,007-1,015):1, соответственно, подвергают механохимической активации в дезинтеграторе до содержания в реакционной смеси фракции частиц 7-15 мкм в пределах 34-45%. Не позднее чем через 30 мин после окончания процесса активации реакционную смесь термообрабатывают при 600-750°C. В результате твердофазного взаимодействия между тетрафторидом урана и двуокисью кремния получают свободную от кремния закись-окись урана с содержанием фтора 0,2 - 0,26% и тетрафторид кремния. 1 ил., 5 пр.

Изобретение относится к области технологии ядерных материалов и может быть использовано при конверсии тетрафторида урана, в том числе обедненного, в октаоксид триурана с получением ценного прекурсора поликристаллического кремния - тетрафторида кремния. Способ получения тетрафторида кремния и октаоксида триурана из тетрафторида урана заключается в том, что смешивают тетрафторид урана с диоксидом кремния, который предварительно подвергают механоактивации в присутствии фторида натрия 0,5-3% масс., гомогенизируют смесь в стехиометрическом соотношении, гомогенизированную шихту гранулируют, сушат при температуре 250-300°C и проводят термообработку гранул в среде сухого воздуха в течение 1-2 ч при температуре не выше 600°C. Изобретение обеспечивает высокий выход высокочистого тетрафторида кремния, не загрязненного летучими соединениями урана, а также снижение температуры процесса, что позволяет использовать более дешевые конструкционные материалы. 1 ил., 1 табл., 16 пр.

Изобретение относится к способу получения оксидов урана в технологии производства гексафторида урана для обогащения, а именно получения триоксида урана в непрерывном процессе термической обработки нитрата уранила. Способ включает подачу уранил-нитрата в горизонтальный цилиндрический обогреваемый в центральной части реактор с приводом вала перемешивающего устройства, измельчение отвердевающего триоксида урана и перемешивание полученного в реакторе порошка, а также его перемещение с помощью вращательного и возвратно-поступательного движения перемешивающего устройства, в качестве которого используют шнековый вал с прерывистыми витками, причем измельчение порошка дополнительно обеспечивают посредством взаимодействия прерывистых витков шнекового вала с лопаткообразными неподвижными стержнями, установленными на внутренней поверхности корпуса реактора с образованием уменьшающихся зазоров между прерывистыми витками и стержнями по мере приближения к зоне выгрузки, при этом обеспечивают предотвращение проскока некондиционного продукта и отвод отходящих газов, выгрузку порошка из реактора. Способ обеспечивает увеличение производительности реактора, улучшение условий труда обслуживающего персонала, обслуживания и ремонта оборудования, а также уменьшение затрат электроэнергии. 1 з.п. ф-лы, 3 ил., 2 пр.
Наверх