Стенд для испытаний объектов на удар

Изобретение относится к испытательной технике, а именно к стендам для испытаний на комплексное воздействие механического удара и различных физических факторов, в частности к стендам для испытаний изделий на воздействие ударных нагрузок. Устройство содержит ствол, навеску пороха, мишень, снаряд выполнен составным в виде полого стакана, внутренняя цилиндрическая полость стакана выполнена ступенчатой, при этом полость меньшего диаметра обращена к днищу стакана, а в полости большего диаметра последовательно размещены шайба с отверстием, стержень из мягкого пластичного материала и рабочий стрежень из твердого материала. Стержень из более твердого материала выступает за кромку стакана и имеет ударную площадку. Диаметр отверстия шайбы меньше диаметров сопряженных с ней полостей. В стенке корпуса из полости меньшего диаметра имеется пропускное отверстие для выхода воздуха. Требуемая длительность и амплитуда воздействия снаряда при взаимодействии с мишенью регулируется за счет изменения диаметра отверстия шайбы, материала и длины обоих стержней снаряда. Технический результат заключается в возможности одновременно варьировать длительность и амплитуду импульса воздействия на мишень, так и варьировать один из параметров импульса при сохранении другого. 3 з.п. ф-лы, 2 ил.

 

Предлагаемое изобретение может быть использовано в военной, народно-хозяйственной и научно-исследовательской деятельности, где предполагается интенсивное динамическое воздействие на объект (мишень) и возникает необходимость регулирования определенных параметров ударного импульса.

Актуальность решаемой проблемы основана на следующем.

При взаимодействии поражающих элементов (снарядов, ударников, пуль, осколков и др.) с мишенью (преградой) основными параметрами, определяющими характер разрушения, являются скорость соударения, жесткость материалов, длина и масса (снаряда), толщина (для мишени). Как правило, для каждой из комбинаций параметров снаряда и мишени соответствует свой определенный ударный импульс, характеризующиеся амплитудой и длительностью воздействия. Предлагаемое техническое решение дает возможность варьировать параметрами импульса как одновременно обоими, так и одним из них без изменения другого, за счет изменения параметров снаряда (длины, массы, материалов элементов, входящих в конструкцию снаряда) и скорости взаимодействия снаряда и мишени. Соотношение параметров снаряда и взаимодействия с мишенью определяются расчетно-экспериментальным путем в зависимости от требуемых параметров импульса воздействия.

Известны различные конструкции стендов для испытаний материалов на удар.

Известен стенд для испытаний материалов на многократный удар (см. св. РФ №21957, G01M 7/08, опубл. 27.02.2002), содержащий основание с наковальней для установки мишени и ударник (снаряд), соединенный посредством гибкого элемента с механизмом подъема и сброса ударника, состоящим из лебедки с электроприводом, спускового устройства и элемента для управления спусковым устройством, ударник выполнен в виде стакана с утолщенным дном, имеющим со стороны наковальни сферическую форму, в полости которого жестко закреплен осевой стержень с фиксатором для установки сменных грузов.

Недостатками данной конструкции является ограниченный диапазон величин энергии удара, зависящий от высоты подъема груза и массы составного сбрасываемого груза. Невозможность варьирования длительностью импульса воздействия.

Наиболее близким прототипом к заявленному объекту является стенд порохового типа для создания интенсивных ударных нагрузок (см. «Методы исследования свойств материалов при интенсивных динамических нагрузках» стр.36-39, г.Саров, ФГУП РФЯЦ-ВНИИЭФ, 2003), содержащий ствол, навеску пороха, снаряд, мишень. Разгон снаряда в данном стенде осуществляется расширяющимися горячими газами, образующимися при сгорании порохового заряда. Величина импульса воздействия снаряда на мишень регулируется за счет изменения скорости подлета снаряда к мишени.

Недостатком данной конструкции является невозможность одновременного варьирования длительности и амплитуды импульса воздействия или варьирования одним из параметров импульса при сохранении другого.

Задача, на решение которой направлено предлагаемое изобретение, заключается в разработке стенда для испытаний объектов на удар, имеющего возможность одновременного варьирования длительностью и амплитудой импульса воздействия на мишень или варьирования одним из параметров импульса при сохранении другого.

Новый технический результат, получаемый при применении предлагаемого изобретения, заключается в том, что при взаимодействии снаряда с мишенью необходимые параметры импульса достигаются не только за счет массы и скорости подлета снаряда, но и за счет изменения жесткости снаряда, регулируемого диаметром отверстия регулировочной шайбы, материалом и длиной обоих стержней.

Технический результат достигается тем, что в стенде для испытаний объектов на удар, содержащем ствол, навеску пороха, мишень, снаряд выполнен в виде стакана с утолщенным дном, полость стакана выполнена ступенчатой и разделена шайбой, при этом полость большего диаметра образована у кромки стакана и в ней установлено два осевых стержня, один из которых выполнен из пластичного деформируемого материала (например, свинца), а другой из материала, имеющего высокую жесткость. Часть стержня из более твердого материала выступает за кромку стакана и имеет ударную площадку, а стержень из более мягкого материала размещен между ним и шайбой. Требуемая длительность воздействия и амплитуда давления при взаимодействии снаряда с мишенью регулируется за счет изменения диаметра отверстия шайбы, материала и длины обоих стержней, скорости подлета снаряда, его длины и массы. Диаметр отверстия шайбы меньше диаметров сопряженных с ней полостей. В стенке корпуса из полости меньшего диаметра имеется перепускное отверстие для воздуха.

Предлагаемый объект поясняется следующим образом.

Снаряд выполнен составным в виде полого стакана, внутренняя цилиндрическая полость стакана выполнена ступенчатой и разделена шайбой, при этом полость большего диаметра образована у кромки стакана и в ней установлено два осевых стержня, один из которых является рабочим телом, выполненным из пластичного деформируемого материала, а другой является бойком, выполненным из материала, имеющего высокую жесткость. Площадь контакта снаряда с мишенью регулируется изменением диаметра ударной площадки бойка. В ходе взаимодействия снаряда с объектом испытаний боек из твердого материала перемещается в полости большего диаметра в направлении расположения шайбы, тем самым вынуждая рабочее тело из более мягкого пластичного материала деформироваться, вследствие чего происходит перетекание рабочего тела из полости большего диаметра через отверстие в шайбе в полость с меньшим диаметром. В стенке корпуса из полости меньшего диаметра имеется пропускное отверстие для выхода воздуха, обеспечивающее возможность заполнения полости мягким материалом рабочего тела. Длительность воздействия снаряда на мишень регулируется за счет изменения диаметра отверстия шайбы, материала и длины обоих стержней. Величина амплитуды давления регулируется посредством изменения скорости подлета снаряда к мишени, его длины и массы, а также площадью контакта, регулируемой за счет изменения диаметра ударной площадки бойка. Значительное количество регулируемых параметров дает возможность получения большого диапазона воздействий снаряда на мишень. При этом существует возможность как одновременно варьировать длительностью и амплитудой импульса воздействия на мишень, так и варьировать одним из параметров импульса при сохранении другого.

На фиг.1 представлен стенд для испытаний объектов на удар, на фиг.2 представлена конструкция снаряда.

Стенд для испытаний объектов на удар состоит из ствола 1, навески пороха 2, снаряда 3, мишени 4. Разгон снаряда в данном стенде осуществляется расширяющимися горячими газами, образующимися при сгорании порохового заряда. Величина импульса воздействия снаряда на мишень регулируется за счет изменения скорости подлета снаряда к мишени и изменения параметров самого снаряда. Используемый снаряд в предлагаемом объекте состоит из бойка 5 (стержень из твердого материала), рабочего тела 6 (стержень из мягкого пластичного материала), шайбы 7, корпуса снаряда 8. Корпус снаряда имеет сквозное отверстие (⌀2 мм), предназначенное для выхода воздуха из полости корпуса ударника при деформировании рабочего тела 6.

Устройство работает следующим образом.

Нагружение мишени осуществляется вследствие взаимодействия снаряда с мишенью. Разгон снаряда в данном стенде осуществляется расширяющимися горячими газами, образующимися при сгорании порохового заряда. Скорость подлета снаряда к мишени регулируется за счет изменения следующих параметров: массы навески порохового заряда, массы снаряда, расстояния между снарядом (установленным в стволе) и мишенью.

Возможность практического использования подтверждается следующими примерами.

В лабораторных условиях была опробована работоспособность стенда для испытаний объектов на удар, включающий в себя: ствол, навеску пороха, мишень, снаряд, в результате чего были получены необходимые параметры воздействия на исследуемый образец: при скорости снаряда 84 м/с на исследуемый образец воздействовал импульс, максимальная амплитуда давления которого равна 170 МПа при длительности воздействия 1000 мкс.

В опытах с использованием стенда для испытаний объектов на удар, включающего в себя: ствол, навеску пороха, мишень и обычный (несоставной) снаряд, представляющий стержень из стали 3 ⌀30 мм, длиной от 180 до 360 мм, массой от 1 до 2 кг при скоростях от 70 до 115 м/с было достигнуто давление от 150 до 200 МПа, при этом длительность воздействия во всех опытах не превышала 250 мкс (что не соответствовало требованиям технического задания).

Таким образом, как это подтвердили результаты экспериментальных исследований, использование стенда для испытаний объектов на удар дает возможность получения большого диапазона воздействий на исследуемый образец. При этом сохраняется возможность одновременно варьировать длительностью и амплитудой импульса воздействия на мишень, а также варьировать одним из параметров импульса при сохранении другого.

1. Стенд для испытаний объектов на удар, содержащий ствол, навеску пороха, снаряд, мишень, отличающийся тем, что снаряд выполнен составным в виде полого стакана, внутренняя цилиндрическая полость стакана выполнена ступенчатой, при этом полость меньшего диаметра обращена к днищу стакана, а в полости большего диаметра последовательно размещены шайба с отверстием, стержень из мягкого пластичного материала и рабочий стрежень из твердого материала.

2. Устройство по п.1, отличающееся тем, что диаметр отверстия шайбы меньше диаметров сопряженных с ней полостей.

3. Устройство по п.1, отличающееся тем, что рабочий стержень из более твердого материала выступает за кромку стакана и имеет ударную площадку.

4. Устройство по п.1, отличающееся тем, что в стенке корпуса из полости меньшего диаметра имеется пропускное отверстие для выхода воздуха.



 

Похожие патенты:

Изобретение относится к области строительства. .

Изобретение относится к контрольно-измерительной технике и предназначено для создания поверочных ударных импульсов, необходимых для осуществления контроля трактов измерения ударных ускорений.

Изобретение относится к испытательной технике и может быть использовано для исследования стойкости различных изделий, их узлов и приборов к воздействию импульсных инерционных нагрузок.

Изобретение относится к области испытательной техники, в частности к технологии испытаний трубопроводов, и направлено на повышение эффективности строительства и/или капитального ремонта трубопровода за счет оптимизации использования имеющихся труб.

Изобретение относится к технике испытаний конструкций на динамические воздействия. .

Изобретение относится к области авиастроения и безопасности полетов и может быть использовано для исследования процессов ударного взаимодействия элементов конструкции самолета при столкновении с птицей или другими посторонними предметами.

Изобретение относится к испытательной технике, в частности к стендам для испытаний конструкций изделий на ударные перегрузки. .

Изобретение относится к области авиастроения и безопасности полетов и может быть использовано для исследования процессов ударного взаимодействия элементов конструкции самолета при столкновении с птицей или другими посторонними предметами.

Изобретение относится к области динамических (ударных) испытаний узлов изделий, преимущественно узлов ракетных и артиллерийских снарядов. .

Изобретение относится к испытательной технике и может быть использовано для создания цуга воздушных ударных волн (ВУВ), подобных возникающим в атмосфере при взрыве сосредоточенных зарядов ВВ, профиль каждой из которых характеризуется крутым ударным фронтом, положительной фазой, в которой давление больше атмосферного, и отрицательной фазой, в которой давление меньше атмосферного

Изобретение относится к системам безопасности в чрезвычайных ситуациях и может быть использовано для подбора толщины ограждения, предназначенного для защиты от осколков взрывного характера технологического оборудования. Стенд для подбора толщины ограждения, предназначенный для защиты от осколков взрывного характера, содержит взрывную камеру, в верхнем основании которой имеется отверстие, перекрываемое элементом, площадь отверстия может меняться путем ввинчивания сменных колец, элемент перекрывает отверстие в кольце, над которым закрепляется ограждение. Второе отверстие перекрывается клапаном, который прижимается к отверстию с помощью электромагнита и открывается пружиной при размыкании контактов. Усилие прижатия клапана и сжатия пружины устанавливается таким образом, чтобы суммарное усилие было равно допускаемому давлению, умноженному на площадь отверстия клапана. Перекрывающий элемент выполнен иммитирующим осколок взрывного характера, над которым установлено модельное защитное ограждение. Поверхность перекрывающего элемента, обращенная в сторону модельного защитного ограждения, имеет поверхность, моделирующую неровности, присущие осколкам взрывного характера. Достигается повышение эффективности защиты ограждения. 1 ил.

Изобретение относится к области испытательной техники и, в частности, к технологии восстановления несущей способности трубопровода. Способ включает в себя лабораторные испытания на удар и растяжение-сжатие по схеме «стресс-теста» цилиндрических образцов с трещиноподобными дефектами, моделирование условий деформирования металла труб под действием внутреннего давления в направлении действия главного напряжения. По результатам испытаний определяют предельную величину деформации, обеспечивающую запас пластичности металла труб в условиях действия кольцевых напряжений, равных 110% предела текучести. С учетом результатов лабораторных испытаний осуществляют испытание участка трубопровода на удар методом «стресс-теста» и восстановление его несущей способности. Напряженно-деформированное состояние и прогнозируемый срок безопасной эксплуатации отремонтированного участка трубопровода определяют расчетным путем. Технический результат - повышение эффективности капитального ремонта трубопровода. 1 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к испытательной технике, в частности к ударным испытательным стендам. Устройство содержит корпус, выполненный в виде двух соединенных между собой щек, поворотный захват, закрепленный на корпусе, фиксатор, предназначенный для удержания захвата в рабочем положении, приспособление для изменения положения фиксатора, содержащее реверсивный электродвигатель, установленный на одной из щек, шестерню, закрепленную на валу электродвигателя, ходовой винт, размещенный между щеками с возможностью вращения вокруг собственной оси, зубчатое колесо, жестко закрепленное на ходовом винте и находящееся в зубчатом зацеплении с шестерней, каретку, образующую с ходовым винтом резьбовую передачу. При этом фиксатор установлен на корпусе с возможностью вращения относительно расположенной в корпусе оси и шарнирно соединен с одним концом тяги, другой конец которой шарнирно соединен с кареткой. Технический результат заключается в возможности проведения испытаний крупногабаритных объектов большой массы и автоматизации процесса сброса объекта. 1 з.п. ф-лы, 5 ил.

Изобретение относится к способам и устройствам для исследования работоспособности и надежности устройств ударного действия. Сущность: сваебойный молот располагают на стенде с возможностью перемещения вдоль вертикальной оси, а энергопоглотитель располагают под шаботом молота соосно с последним. Испытания производят при постоянной на всем пути торможения силе сопротивления, близкой к режиму отказов, т.е. при максимальных нагрузках. Давление в тормозной камере устройства определяется скоростью истечения рабочей жидкости через щель между наружной поверхностью бойка и внутренней боковой поверхностью цилиндрического двухступенчатого кольца, которую выполняют в форме параболоида, а передачу энергии от ударника в энергопоглотитель осуществляют через жидкость. Стенд содержит вертикально расположенные испытываемый молот, рабочий орган и энергопоглотитель. Корпус энергопоглотителя с наружным фланцем в верхней части выполнен в виде цилиндрической полости, соосной с испытуемым молотом и снабженной глухим днищем, на обращенной внутрь корпуса торцевой поверхности которого образована коаксиальная глухая двухступенчатая расточка, в которой установлено сопряженное с нею по соответствующей наружной боковой поверхности двухступенчатое кольцо, снабженное коаксиальной внутренней боковой поверхностью, выполненной в форме параболоида. В направляющем блоке, закрепленном на фланце корпуса, образована коаксиальная с корпусом сквозная цилиндрическая ступенчатая расточка, в которой как в направляющих размещен ограниченно подвижный вдоль оси и снабженный кольцевым выступом в средней части ударник. Технический результат: повышение надежности и расширение функциональных возможностей. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к области испытательной техники, в частности испытаний объектов на воздействия воздушных ударных волн. Устройство содержит ударную трубу, источник ударной волны, размещенный на одном торце ударной трубы, и заглушку, размещенную на другом торце ударной трубы. Заглушка выполнена в виде сужающейся по ходу движения ударной волны оболочки, в стенке которой выполнены отверстия, снабженные клапанами, обеспечивающими в каждый момент времени пропорциональность эффективной открытой площади дроссельных отверстий модулю разности между давлениями внутри и снаружи ударной трубы. Технический результат заключается в возможности компенсации влияния окружающей атмосферы на газодинамические процессы внутри ударной трубы и получения неискаженной формы ударной волны в волноводе ударной трубы при общей длительности ударной волны не ограниченной длиной волновода. 2 з.п. ф-лы, 3 ил.

Изобретение относится к средствам испытания устройств на ударные нагрузки и может быть использовано для проведения испытаний защитных устройств, в том числе бамперов, транспортного средства. Данный стенд имеет платформу, которая образует рабочую плоскость для установки на ней транспортного средства, выставленную на контрольную высоту от ударной части. Одна из торцевых частей платформы расположена под ударной частью между вертикальными опорными стойками. Концы вертикальных и наклонных опорных стоек, которые находятся с противоположной стороны от упомянутой горизонтальной рамы, снабжены средствами регулирования их по высоте. Шарнирные соединения маятника с несущим каркасом и несущей плитой, соединения несущего каркаса и платформы выполнены сборно-разборными. Несущий каркас, платформа, маятник с устройством его отвода и груз переменной массы выполнены с возможностью их транспортирования в кузове грузового транспортного средства. Обеспечивается сокращение времени на монтаж и демонтаж, возможность быстрой транспортировки элементов конструкции и снижение требований к месту проведения испытаний, для которого нет необходимости в подведении электросети и подготовке основания. 2 з.п. ф-лы, 2 ил.

Изобретение относится к испытательной технике и может быть использовано для проведения ударных испытаний. Имитатор преграды содержит металлический ударник со скошенной под заданным углом к направлению его движения плоскостью и обтюратор из полимерного материала. Ударник выполнен в форме плиты со ступенчатым профилем ее тыльной поверхности, размещенной на лицевой поверхности обтюратора, имеющей ответный ступенчатый профиль. Обеспечивается возможность воспроизведения приближенных к натурным условий ударного нагружения объекта при встрече с преградой. 4 ил.

Изобретение относится к области промышленной безопасности опасных производственных объектов и может быть использовано для определения зон, опасных для человека. Способ заключается в следующем. Предварительно определяют атмосферное давление и характеристики сосуда со сжатым газом, такие как исходное давление в сосуде, объем сосуда, определяют значение тротилового эквивалента взрыва, пространственное распределение барических параметров адиабатического взрыва, полученные значения избыточного давления и импульса во фронте ВУВ наносят на диаграмму «давление-импульс» поражения людей, составляют заключение о степенях поражения людей, а по параметрам сосуда и окружающей среды, а именно по значениям исходного давления в сосуде, атмосферного давления и объема сосуда, определяют радиус круговой зоны разрушения промышленного здания. Технический результат заключается в расширении функциональных возможностей. 1 табл., 1 ил.

Изобретение относится к испытательной технике и может быть применено в устройствах для испытания изделий на воздействие ударных ускорений в большом диапазоне параметров удара при единичном и циклическом ударах. Устройство содержит основание для размещения испытуемого изделия, боек с осевым отверстием и упругие ускорители, выполненные в виде элементов сжатия. Основание и боек подвижно соединены посредством упомянутых упругих ускорителей, на концах которых установлены шарниры. Ускорители расположены наклонно относительно направления взаимодействия бойка и основания. В осевом отверстии бойка установлен толкатель с возможностью возвратно-поступательного перемещения в нем. Технический результат заключается в упрощении устройства. 1 з.п. ф-лы, 3 ил.
Наверх