Способ изготовления подложки для высокотемпературных тонкопленочных сверхпроводников и подложка

Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов, в частности к изготовлению подложек для этих материалов. Сущность изобретения: способ изготовления биаксиально текстурированной подложки для высокотемпературных тонкопленочных сверхпроводников предусматривает проведение следующих стадий: А) получение заготовки, изготовленной из тройного сплава системы Ni-W-Cr, состав которого находится внутри области на фазовой диаграмме Ni-W-Cr, ограниченной треугольником АВС с координатами вершин, ат.%: (A) Ni89.5W3.0Cr7.5, (В) Ni88.5Сr11.5 и (С) Ni85Cr15; Б) холодную прокатку данной заготовки с получением ленты; и В) отжиг полученной ленты при температуре от 900 до 1200°С со скоростью нагрева до температуры отжига от 10 до 20°С/с. Изобретение позволяет повысить содержание кубической текстуры, а именно получить не менее 98% биаксиально текстурованных зерен в подложке, и обеспечить твердость на ее поверхности не менее 145 кг/см2. 2 н. и 5 з.п. ф-лы, 2 ил., 4 табл.

 

Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов, в частности к изготовлению подложек для этих материалов, и может быть использовано при промышленном производстве длинномерных сверхпроводящих лент для создания токопроводящих кабелей, токограничителей, обмоток мощных электромагнитов, электродвигателей и т.д.

В заявке KR 20070027906 раскрывается способ изготовления подложки для сверхпроводящей тонкопленочного материала, включающий: прокатку Ni или Ni-сплава в виде стержня с прямоугольным сечением, и термообработку прокатанного Ni или Ni-сплава стержня, в котором прокатку проводят со степенью 5-15% за проход с линейной скоростью 100 м/мин и менее, отжиг проводится при температуре выше температуры рекристаллизации в инертной атмосфере, содержащей водород. Сплав может содержать Co, Cr, V, Mo, W или В. Данное техническое решение обеспечивает биаксиально текстурированную подложку, характеризующуюся не менее 95% кубической текстуры, а также ограничением количества малоугловых границ зерен и их равномерным распределением по ширине подложки.

К недостаткам известного технического решения относится тот факт, что содержание кубической текстуры в диапазоне 95-98% не является достаточным для достижения максимальных характеристик тонкопленочных высокотемпературных сверхпроводящих материалов (плотности критического тока более 1 МА/см2) из-за повышенного содержания высокоугловых границ. Известное техническое решение не указывает на особенности термообработки, указывая лишь на необходимость проводить ее выше температуры рекристаллизации. Для обработки при таких температурах существенным параметром является длительность отжига, в зависимости от которой могут быть получены различные степени текстуры. Также существенно, что выбранная температура отжига не должна превышать температуру вторичной рекристаллизации, которая приводит к существенному снижению содержания кубической текстуры.

В патенте US 6602313 раскрывается способ изготовления подложки для высокотемпературных тонкопленочных сверхпроводников, включающий получение тройных порошковых сплавов систем Ni-Cu-Al; Ni-Cr-Al; Ni-W-Al; Ni-V-Al; Ni-Mo-Al путем компактирования соответствующих порошков указанных металлов, прессование прутковой заготовки, холодную прокатку заготовки в ленту с общей степенью деформации 99% и по 10% за проход, отжиг для получения кубической текстуры при 1400°C в течение 60 мин в потоке аргона, содержащего около 4% водорода. Соответственно также раскрывается и лента для подложки, которая характеризуется гомогенной мелкозернистой структурой и ориентацией текстуры {100}<100>. Содержание зерен с кубической ориентацией составляет более 95%. Температура Кюри данной ленты меньше, чем у чистого никеля. Осажденные на данной подложке буферные и сверхпроводящий слой характеризуются хорошей эпитаксией и отсутствием микротрещин.

Данное техническое решение является наиболее близким к предложенному.

Недостатками данного известного технического решения является низкое содержание зерен с кубической ориентацией, очень высокая температура термообработки, превышающая температуру вторичной рекристаллизации некоторых из указанных сплавов, а также недостаточное, для некоторых из указанных сплавов, понижение температуры Кюри. Так, содержание кубической текстуры в диапазоне 95-98% не является достаточным для достижения максимальных характеристик тонкопленочных высокотемпературных сверхпроводящих материалов (плотности критического тока более 1 МА/см2) из-за повышенного содержания высокоугловых границ. Использование порошковых заготовок для проката ограничивает максимальную длину изготавливаемой ленты-подложки, так как порошковые заготовки с высокой степенью плотности могут быть изготовлены только способами компактирования, неприменимыми для заготовок большого размера. Указанная в техническом решении температура (1400°C) превышает типичную температуру вторичной рекристаллизации в сплавах на основе никеля, что делает неконтроллируемым рост металлических зерен произвольной ориентации. При выборе сплавов для использования в качестве подложек для изготовления тонкопленочных высокотемпературных сверхпроводящих материалов, очень важным является отсутствие ферромагнитных свойств при температуре использования (как правило, температура жидкого азота). Это требование (ТC<77 К) не соблюдается, как минимум, для части из приведенных сплавов.

Задачей изобретения является устранение всех присущих известному техническому решению недостатков, и, в частности, повышение содержания кубической текстуры более 98%, а твердости - более 145 кг/см3.

Поставленная задача решается способом изготовления биаксиально текстурированной подложки для высокотемпературных тонкопленочных высокотемпературных сверхпроводников, который включает следующие стадии:

А) получение заготовки, изготовленной из тройного сплава системы Ni-W-Cr, состав которого находится внутри области на фазовой диаграмме Ni-W-Cr, ограниченной треугольником АВС с координатами вершин, ат.%: (A) Ni89.5 W3.0 Cr7.5, (В) Ni88.5 Cr11.5 и (С) Ni85 Cr15;

Б) холодная прокатка полученной в соответствии со стадией (А) заготовки с получением ленты;

В) отжиг полученной в соответствии со стадией (Б) ленты при температуре от 900 до 1200°C со скоростью нагрева до температуры отжига от 10 до 20°C/с.

В частных воплощениях изобретения на стадии (А) получают заготовку из сплава, полученного вакуумной плавкой.

В этом случае целесообразно заготовку получить путем ее ковки.

В иных частных воплощениях холодную прокатку на стадии (Б) осуществляют со степенью от 5 до 10% за проход и с общей степенью 97-99,5%.

Нагрев на стадии (В) возможно осуществлять путем пропускания тока с плотностью 2000-4000 А/см2.

В наилучших воплощениях изобретения целесообразно после стадии (С) дополнительно проводить полирование ленты.

Поставленная задача также решается биаксиально текстурированной подложкой для высокотемпературных тонкопленочных высокотемпературных сверхпроводников, которая выполнена в соответствии с вышеописанным способом, обладает не менее 98% содержанием зерен с кубической ориентацией и твердостью поверхности не менее 145 кг/см2.

Сущность изобретения состоит в следующем.

Использование тройного сплава, состав которого находится внутри области на фазовой диаграмме Ni-W-Cr, ограниченной треугольником АВС с координатами вершин, ат.%: (A) Ni89.5 W3.0 Cr7.5, (B) Ni88.5 Cr11.5 и (С) Ni85 Cr15 позволяет по сравнению с другими тройными сплавами, приведенными в US 6602313, повысить количество кубической текстуры до значений >98%, увеличить максимально возможную длину ленты подложки до значений, превышающих 1 км, гарантированно понизить температуру Кюри ниже значения 77 К.

На фиг.1 приведена тройная фазовая диаграмма системы Ni-W-Cr.

Сплав характеризуется однофазной структурой, представляющей собой твердый раствор Cr и W в Ni, характеризующийся гранецентрированной кубической решеткой (ГЦК).

Как следует из данной диаграммы, две координаты вышеупомянутой треугольной области - В и С представляют собой двойной сплав с содержанием вольфрама, равным нулю, следовательно, в состав сплава для подложки не входят, поскольку состав сплава является трехкомпонентным и находится внутри этой области.

Этот факт указывает на то, что существенным признаком является наличие в сплаве вольфрама, однако не столь существенно его нижнее содержание.

Действительно, даже сколь угодно малые количества вольфрама влияют на рекристаллизационные процессы в подложке, в частности на величину зерна при последующем отжиге полученной ленты, подвижность межзеренных границ и количество зерен с кубической ориентацией при этом отжиге, что будет показано в примерах реализации изобретения.

Как следует из этой диаграммы, содержание вольфрама некоторым образом коррелируется с содержанием хрома - чем больше хрома в заданной области, тем меньше вольфрама. Все это связано с необходимостью достижения для используемого сплава величин температуры Кюри ниже 77 К. Вольфрам и хром при введении в состав ГЦ К сплава на основе никеля понижают температуру Кюри со значения 627 К, свойственного чистому никелю, приблизительно на 50-60 К с каждым ат.%. Таким образом, для необходимого понижения температуры Кюри до значений ниже 77 К, т.е., на 550 К, общее количество введенных элементов должно составить не менее 9-11 ат.%.

В целом, заявленный состав сплава, во-первых, не является ферромагнитным при 77 К; во-вторых, обладает оптимальным коэффициентом линейного расширения, который не позволяет слоям, нанесенным на подложку, растрескиваться при последующих нагревах и, в-третьих, позволяет при оптимальных условиях отжига получить содержание кубической текстуры, превышающее 98%, а твердость - более 145 кг/см2.

Под оптимальными условиями отжига применительно к данному составу сплава понимаются температура и скорость нагрева ленты при отжиге.

Проведение отжига холоднокатаной ленты из вышеописанного сплава при 900-1200°C со скоростью нагрева не менее 10°C/с позволяет получить требуемые значения содержания кубической текстуры. Увеличение легирующего компонента в никеле, как правило, приводит к затруднению процессов текстурообразования и снижению количества кубической ориентации в рекристаллизованной ленте. Тройные сплавы заявленного состава лежат в области, расположенной на границе составов, в которых может быть получена кубическая текстура способом холодной прокатки и термообработки и поэтому получение в них содержания кубической текстуры >98% невозможно при более низких скоростях нагрева, так как при промежуточных температурах в интервале 600-900°C наблюдается преимущественный рост зерен с другой ориентацией, например двойников (разориентация относительно идеальной кубической ориентаций 60° или так называемой WR22-ориентации (разориентация 22°). Зерна указанных примесных ориентаций образуют с кубической <100>(001) ориентацией высокоугловые границы, что нежелательно, так как высокоугловые границы значительно снижают плотность критического тока в тонких пленках сверхпроводника, осажденных на такие подложки. Поэтому критически важным обстоятельством оказывается необходимость снижения времени нахождения ленты-подложки в этом интервале температур, что реализуется применением высокой скорости нагрева.

Частные воплощения изобретения касаются уточнения степеней деформации за проход - оптимальными являются следующие степени 5-10%. Прокатка с такими степенями позволяет реализовать оптимальные условия для возникновения в сплаве текстуры прокатки типа меди, что приводит к наибольшему содержанию кубической текстуры в ленте после рекристаллизационного отжига. Использование данных степеней при реализации изобретения не означает, что лента не может быть прокатана с другими степенями за проход. Общая степень деформации в интервале 97-99,5% является общепринятой величиной, позволяющей прокатать заготовку в ленту.

Скорости нагрева до температуры отжига могут быть реализованы путем нагрева электрическим током с плотностью 2000-4000 А/см2 в условиях вакуума или в водородсодержащей газовой среде, но данные скорости могут быть реализованы и другими путями, например, путем быстрого протягивания ленты через высокотемпературную трубчатую печь с градиентом температуры на начальном участке в пределах 20-100°C на 1 см длины печи, осуществляемого также в условиях вакуума или в водородсодержащей газовой среде.

Изготовление сплава для подложки может быть выполнено сплавлением металлических компонентов в вакуумной печи, данное воплощение является наиболее желательным, поскольку позволяет получить дополнительный технический результат - получить подложку с максимальной длиной. Однако декларируемый основной технический результат также может быть получен и при других выполнениях сплава, например по порошковой методике.

Заготовка под холодную прокатку может быть получена из слитка любым общепринятым способом, предусматривающим деформационную обработку слитка, например прессованием, горячей прокаткой или ковкой.

Ковка придает некоторые дополнительные свойства, например, при получении заготовки ковкой - достигается необходимый для образования текстуры прокатки типа меди размер зерна в пределах 10-50 мкм.

Для улучшения качества поверхности можно также провести полировку ленты любым известным способом - химическим полированием, электролитическим, плазменным и т.д.

Изобретение осуществляется следующим образом.

Пример 1.

Для выплавки сплавов использовались металлы высокой чистоты: Ni 99.92%, W 99.94%, Cr 99.94%, которые сплавляли в алундовых тиглях в атмосфере аргона в вакуумной индукционной печи.

Было получено четыре состава сплавов:

1. Ni - 8.2 ат.% Cr - 2.4 ат.% W;

2. Ni - 10.5 ат.% Cr - 1.5 ат.% W;

3. Ni - 11,0 ат.% Cr - 0.5 ат.% W;

4. Ni - 14,5 ат.% Cr - 0.5 ат.% W.

Выплавленные слитки ковали в заготовку прямоугольной формы при температурах от 800 до 1000°C.

Затем заготовки прокатывали на полированных валках с общей степенью деформации 99% и 5-10% за проход и подвергали отжигам в протяжной вакуумной печи при температуре 900-1200°C для формирования кубической текстуры.

Выбор оптимальной скорости нагрева осуществляли на образце №2 (см. таблицу 1).

В таблице 2 приведены свойства подложки, выполненной из сплавов 1-4 в зависимости от различных параметров ее получения.

Как следует из представленных данных, полученная в соответствии с предложенным способом подложка для высокотемпературного тонкопленочного сверхпроводника обладает стабильной биаксиальной текстурой с количеством текстурованных зерен не менее 98% и твердостью, превышающей 145 кг/см2. Шероховатость такой ленты составляет 50-100 нм, но при помощи полировки она может быть улучшена до 10-20 нм. Сплавы Ni-Cr-W такого состава не проявляют ферромагнитных свойств при 77 К.

Использование немагнитной металлической подложки со средней шероховатостью 10-20 нм и содержанием зерен с кубической ориентацией не менее 98% позволяет получать на них покрытия высокотемпературных сверхпроводников с высокой степенью текстуры (разориентация кристаллографической оси с сверхпроводящего соединения YBa2Cu3O7 менее 7 градусов, разориентация зерен YВа2Cu3O7 в плоскости менее 7 градусов). Высокая степень текстуры металлической подложки обуславливает высокие сверхпроводящие свойства этих пленок (температура перехода в сверхпроводящее состояние не менее 86 К, плотность критического тока при 77 К не менее 1 МА/см2). Отсутствие ферромагнетизма металлической текстурированной подложки приводит к отсутствию потерь, вызванных потерями в ферромагнитных материалах при эксплуатации ВТСП-провода на переменном токе при температуре 77 К. Твердость ленты-подложки в 145 кг/см2 важна для обеспечения надежности протяжки ленты подложки через высокотемпературные печи и установки для получения слоев. Во всех этих процессах металлическая лента нагревается до температуры 600°C при этом на нее действует растягивающая сила порядка 5-10 кг/см2. Как свидетельствуют многочисленные результаты исследований в этой области, твердости 143 кг/см2, измеряемой при комнатной температуре, обеспечиваемой широко используемой подложкой из никеля, содержащей 5 ат.% вольфрама, достаточно для получения хороших сверхпроводящих свойств итоговой структуры.

Пример 2.

На текстурированную ленту подложку состава Ni - 8.2 ат.% Cr - 2.4 ат.% W с количеством кубической ориентации 99% и шероховатостью поверхности 18 нм, полученную текстурированием при 1100°C и скорости нагрева 15°C/с, наносили методом химического осаждения из паровой фазы последовательно буферные слои оксида магния (MgO, толщина 120 нм), оксида лантана и марганца (LaMnO3, толщина 30 нм) и слой высокотемпературного сверхпроводника (YBa2Cu3О7, толщина 1000 нм). По данным рентгеновского анализа, все слои выросли в высокоориентированном виде с ширинами пиков на полувысоте, приведенными в таблице 3. Характеристикой ориентации служат полные ширины рентгеновских пиков на половине высоты (ПШПВ), выраженные в градусах. Данные рентгеновского исследования в геометрии Брегга-Брентано, свидетельствующие о высокой степени текстурированности слоев, представлены на Фиг.2.

Пример 3.

На текстурированную ленту подложку состава Ni - 10.5 ат.% Cr - 1.5 ат.% W с количеством кубической ориентации 99% и шероховатостью поверхности 18 нм, полученную текстурированием при 1100°C и скорости нагрева 15°C/с, наносили методом химического осаждения из паровой фазы последовательно буферные слои оксида магния (MgO, толщина 120 нм), сложного оксида лантана и марганца (LaMnO3, толщина 30 нм) и слой высокотемпературного сверхпроводника (YBa2Cu3O7, толщина 1000 нм) (Образец 3а, табл.4). Та же тонкопленочная структура была нанесена на ленту того же состава, текстурированную при 1100°C, но нагретую до этой температуры со скоростью 1°C/с, при этом содержание кубической ориентации в образце составило 78% (Образец 3b). Третий тонкопленочный образец был получен на подложке состава Ni - 13.0 ат.% Cr - 1.5 ат.% W, полученной текстурированием при 1100°C и скорости нагрева 15°C/с, количество зерен кубической ориентации в подложке в этом случае составило 90% (образец 3c). По данным измерения магнитной восприимчивости, плотность критического тока при температуре кипения жидкого азота, 77 К, составила 1.1 МА/см2 для образца 3a, 0.08 МА/см2 для образца 3b и 0.15 МА/см2 для образца 3c.

Таблица 1
Образец Скорость движения ленты, мм/с Скорость нагрева на начальном участке, °C/с Количество биаксиально текстурированных зерен, %
1 1.0 2.5 82
2 1.5 7.5 97
3 2.0 10 99
4 3.0 15 99
5 4.0 20 98
Таблица 2
№ сплава Скорость нагрева, °C/с Т-ра отжига, °C Общая степень деформации при холодной прокатке, % Степень деформации при холодной прокатке за проход, % Полировка Свойства подложки
Количество биаксиально текстурированных зерен, % Твердость, кг/мм2 Шероховатость поверхности, нм
1. 10 900 99,5 5-10 98 150 45
2. 15 1100 99 5-10 + 99 148 12
3. 20 1100 99 5-10 + 99 155 18
4. 15 1200 97 5-10 98 146 55
Таблица 3
Слой Толщина слоев, мкм Анализируемый пик ПШПВ (в направлении прокатки), град ПШПВ (поперек прокатки), град Разориентация в плоскости, град
Подложка Ni-Cr-W 70 (002) 5.2 6.7 5.5
Буферный слой MgO 0.12 (002) 5.4 6.8 5.7
Буферный слой LaMnO3 0.03 (002) 5.4 6.8 5.7
Слой ВТСП YBa2Cu3O7 1 (005) 4.7 5.2 5.1
Таблица 4
Образец Состав сплава Скорость нагрева ленты, °C/с Количество биаксиально текстурированных зерен, % Плотность критического тока в пленке сверхпроводника, МА/см2
Ni - 10.5 ат.% Cr - 1.5 ат.% W 15 99 1.1
3b Ni - 10.5 ат.% Cr - 1.5 ат.% W 1 78 0.08
Ni - 13.0 ат.% Cr - 1.5 ат.% W 1 90 0.15

1. Способ изготовления биаксиально текстурированной подложки для высокотемпературных тонкопленочных сверхпроводников, характеризующийся тем, что включает следующие стадии:
А) получение заготовки, изготовленной из тройного сплава системы Ni-W-Cr, состав которого находится внутри области на фазовой диаграмме Ni-W-Cr, ограниченной треугольником АВС с координатами вершин, ат.%: (A) Ni89.5W3.0Cr7.5, (В) Ni88.5Cr11.5 и (C) Ni85Cr15;
Б) холодная прокатка полученной в соответствии со стадией (А) заготовки с получением ленты;
В) отжиг полученной в соответствии со стадией (Б) ленты при температуре от 900 до 1200°C со скоростью нагрева до температуры отжига от 10 до 20°C/с.

2. Способ по п.1, характеризующийся тем, что на стадии (А) получают заготовку из сплава, полученного вакуумной плавкой.

3. Способ по п.2, характеризующийся тем, что на стадии (А) получают кованую заготовку.

4. Способ по п.1, характеризующийся тем, что холодную прокатку на стадии (Б) осуществляют со степенью от 5 до 10% за проход и с общей степенью 97-99,5%.

5. Способ по п.1, характеризующийся тем, что нагрев на стадии (В) осуществляют путем пропускания тока с плотностью 2000-4000 А/см2.

6. Способ по п.1, характеризующийся тем, что после стадии (С) дополнительно осуществляют полирование ленты.

7. Биаксиально текстурированная подложка для высокотемпературных тонкопленочных высокотемпературных сверхпроводников, характеризующаяся тем, что выполнена в соответствии с любым из предшествующих пунктов, обладает не менее 98% содержанием зерен с кубической ориентацией и твердостью поверхности не менее 145 кг/см2.



 

Похожие патенты:
Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов и может быть использовано при промышленном производстве длинномерных сверхпроводящих лент для создания токопроводящих кабелей, токоограничителей, обмоток мощных электромагнитов, электродвигателей и т.д.

Изобретение относится к области сверхпроводимости и нанотехнологий, а именно к способу получения и обработки композитных материалов на основе высокотемпературных сверхпроводников (BTCП), которые могут быть использованы в устройствах передачи электроэнергии, для создания токоограничителей, трансформаторов, мощных магнитных систем.

Изобретение относится к области получения сверхпроводящих соединений и изготовления нанопроводников и приборов на их основе, что может быть использовано в электротехнической, радиотехнической, медицинской и других отраслях промышленности, в частности для оптического тестирования интегральных микросхем, исследования излучения квантовых точек и в системах квантовой криптографии.

Изобретение относится к способам формирования методом лазерного напыления нанопленок сложного металлооксидного соединения состава YВа2Сu3O7-х (YBCO) повышенной проводимости и может быть использовано при создании элементов наноэлектроники.

Изобретение относится к устройствам для высокотемпературного осаждения сверхпроводящих слоев на подложках в форме ленты с использованием импульсного лазера и может быть использовано в электротехнической промышленности.

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности к изготовлению сверхпроводниковых туннельных переходов, джозефсоновских переходов, структур типа сверхпроводник-изолятор-сверхпроводник (СИС), структур сверхпроводник-изолятор-нормальный металл (СИН), болометров на холодных электронах.
Изобретение относится к изготовлению сверхпроводящей ленты на основе соединения Nb3Sn и может быть использовано при изготовлении сверхпроводящих магнитных систем различного назначения.
Изобретение относится к изготовлению сверхпроводящей ленты на основе соединения Nb3Sn и может быть использовано при изготовлении сверхпроводящих магнитных систем различного назначения.

Изобретение относится к криоэлектронике и может быть использовано для экранирования интегральных схем и других магниточувствительных устройств. .

Изобретение относится к электричеству, к электрофизике и теплопроводности материалов, к явлению нулевого электрического сопротивления, т.е. к гиперпроводимости, и нулевого теплового сопротивления, т.е. к сверхтеплопроводности материалов при околокомнатных и более высоких температурах. Сущность изобретения: на поверхности или в объеме невырожденного или слабо вырожденного полупроводникового материала размещают электроды, образующие выпрямляющие контакты с материалом. При этом выбирают расстояние между электродами (D) значительно меньше глубины проникновения в материал электрического поля (L), (D<<L), вызванного контактной разностью потенциалов. Минимальное расстояние между электродами DMIN=20 нанометров, максимальное расстояние между электродами DMAX=30 микрометров. До, после или во время формирования электродов в материал вводят электронно-колебательные центры (ЭКЦ) в концентрации (N) от 2·1012 см-3 до 6·1017 см-3. Доводят температуру материала до температуры гиперпроводящего перехода (Th) или до более высокой температуры. Технический результат: возможность осуществления эффекта гиперпроводимости и сверхтеплопроводности при температурах вблизи и выше комнатной. 12 з.п. ф-лы, 26 ил.

Изобретение относится к области высокотемпературной сверхпроводимости и может использоваться для изготовления ленточных высокотемпературных сверхпроводников второго поколения. Сущность: устройство для нанесения сверхпроводящих слоев содержит камеру осаждения с зоной нагрева, через которую перемещается протяженная подложка; импульсно-периодический лазер, сфокусированный на мишень, имеющую покрытие из сверхпроводящего материала; механизм для перемещения импульсного лазерного луча по поверхности мишени, от которой в результате импульсной лазерной абляции отделяется материал и ударяет в нагреваемую протяженную подложку; механизм перемещения мишени, и блок управления последовательных движений лазерного луча и перемещения мишени. Технический результат достигается за счет того, что механизм перемещения мишени содержит постоянно вращающийся вал, на котором закреплена мишень, имеющая осевую симметрию относительно оси вращения, параллельной направлению перемещения подложки через зону нагрева. Технический результат: упрощение устройства при обеспечении возможности повышения скорости нанесения сверхпроводящих слоев. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к сборке из металлических элементов, составляющей заготовки для сверхпроводника. Сборка содержит, по меньшей мере, один проводниковый элемент, адаптированный для обеспечения сверхпроводящей нити в конечном сверхпроводнике, и по меньшей мере один легирующий элемент, обеспечивающий источник легирования для легирования проводникового элемента, и источник олова. Сборка содержит по меньшей мере такое число легирующих элементов, расположенных вне проводниковых элементов, каково число проводниковых элементов, и металлическая сборка содержит по меньшей мере два легирующих элемента для каждого проводникового элемента. Проводниковый элемент и легирующий элемент выполнены в виде прутков и составляют отдельные элементы. Трубчатый элемент размещен вне проводникового элемента и легирующего элемента. Сборка размещена так, что по меньшей мере два легирующих элемента позиционированы рядом и в двух различных направлениях каждого проводникового элемента. Изобретение обеспечивает получение высококачественного сверхпроводника, позволяет повысить производительность и снизить затраты на производство. 2 н. и 7 з.п. ф-лы, 9 ил.

Изобретение относится к технологии криоэлектроники и может быть использовано при изготовлении высокотемпературных сверхпроводящих (ВТСП) схем. Техническим результатом изобретения является повышение качества ВТСП схем, увеличение их температурного рабочего диапазона, повышение удельного сопротивления ВТСП материала в нормальном состоянии путем введения ферромагнитной примеси в ВТСП пленку при электроискровой обработке отрицательными импульсами, мощность которых находится из заявленного соотношения. 4 ил.

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих пленок. Изобретение обеспечивает получение на золотом буферном подслое сверхпроводящих пленок с высокими токонесущими свойствами, обеспечивающими значения плотности сверхпроводящего критического тока не ниже 105 А/см2. В способе формирования YBa2Cu3O7-x пленок с высокой токонесущей способностью на золотом буферном подслое золотая контактная площадка формируется на диэлектрической подложке перед нанесением пленок YBa2Cu3O7-x на диэлектрической подложке. Для распылении мишеней из золота и керамики YBa2Cu3O7 используется лазер с длиной волны излучения 1,06 мкм, длительностью импульса 10÷20 нс и частотой повторения импульсов 10 Гц, плотностью мощности лазерного излучения (5÷7)·108 Вт/см2, при этом предварительно нагревается мишень из золота и подложка до температуры T=450-500°C, устанавливается давление 0,1÷0,5 Па, после этого распыляется мишень из золота на подложку через маску, расположенную на расстоянии 0,3÷0,5 мм от подложки, затем нагревается мишень YBa2Cu3O7 до T=600÷700°C, нагревается подложка до температуры 800÷840°C, устанавливается давление 50-100 Па, и распыляется мишень YBa2Cu3O7 на сформированные контактные площадки до толщины 50 -200 нм с образованием пленок с критической температурой сверхпроводящего перехода Tc=88-89 K, шириной сверхпроводящего перехода ΔTc= 2÷3 K, плотностью критического тока Jc>105 А/см2. 6 ил.

Изобретение относится к формированию на диэлектрических подложках золотых контактных площадок к пленкам YBa2Cu3O7-х. Изобретение обеспечивает получение качественных золотых контактных площадок к сверхпроводящим пленкам. В способе формирования на диэлектрической подложке контактных площадок к пленкам YBa2Cu3O7-х контактные площадки формируют перед напылением пленок YBa2Cu3O7-х на диэлектрической подложке, для чего производится нагрев мишени и подложки до температуры 450-500°C, напыление контактной площадки из золота производится методом лазерного распыления мишени из золота твердотельным импульсным лазером с длиной волны излучения 1,06 мкм, длительностью импульса 10-20 нс и частотой повторения импульсов 10 Гц, плотностью мощности лазерного излучения (5-7)·108 Вт/см2. Диэлектрическая подложка устанавливается на расстоянии 4-6 мм от золотой мишени рабочей поверхностью к мишени при давлении в вакуумной камере 0,1-0,5 Па. 2 ил.

Изобретение относится к способам формирования сверхпроводящих пленок с двух сторон диэлектрических подложек. Изобретение обеспечивает создание однородных по толщине сверхпроводящих пленок с двух сторон подложки в одном технологическом цикле. В способе формирования сверхпроводящих пленочных структур из материала YBaCuO с двух сторон подложки методом лазерной абляции вращение подложки осуществляют так, что каждая сторона подложки поочередно обращена к мишени YBa2Cu3О7 в течение времени 5÷7 секунд, при расстоянии до мишени 25÷30 мм. Данный способ позволяет формировать сверхпроводящие пленки YBaCuO как полностью однородные по толщине, так и с необходимым распределением толщины по поверхности подложки. 1 ил.

Использование: для получения высокотемпературных сверхпроводников и изготовления высокочувствительных приемников электромагнитного излучения. Сущность изобретения заключается в том, что способ включает в себя формирование пленки из высокотемпературного сверхпроводящего материала, который представляет собой монофазный текстурированный сверхпроводник состава (Bi,Pb)2Sr2Ca2Cu3O10, на диэлектрической подложке методом магнетронного распыления из мишени, изготовление чувствительного элемента, антенны и подводящих линий выполняется в едином процессе на одном слое образованной пленки ВТСП (Bi,Pb)2Sr2Ca2Cu3O10. Технический результат: обеспечение возможности повышения рабочей температуры детектора терагерцевого излучения и расширения частотного диапазона приемной антенны, увеличение надежности прибора.

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих ультратонких пленок сложного металлооксидного соединения состава YBa2Cu3O7-x путем оптимизации параметров лазерного излучения и условий постростового отжига в напылительной камере. Изобретение обеспечивает получение ультратонких сверхпроводящих пленок толщиной 12-25 нм с неровностью поверхности в пределах 1-2 нм. В способе формирования сверхпроводящей ультратонкой пленки YBa2Cu3O7-x на диэлектрических подложках на керамическую мишень YBa2Cu3O7-x воздействуют лазерным излучением плотностью мощности 3·108÷5·108 Вт/см2, длиной волны 1,06 мкм, длительностью импульса 10-20 нс и частотой следования импульсов 10 Гц в течение времени 15÷30 с при давлении 50÷100 Па, при температуре мишени 600÷700°С, температуре подложки 800-840°С, в результате формируют сверхпроводящую пленку толщиной 12-25 нм, после чего в диапазоне температур 840-780°С производят отжиг пленки со скоростью остывания 4°С/мин, в диапазоне температур 780-700°С - со скоростью остывания 10°С/мин, в диапазоне температур 700-400°С - со скоростью остывания 15°С/мин, в диапазоне температур 400-20°С - со скоростью остывания 19°С/мин. 2 ил.

Изобретение относится к области металлургии, в частности к получению сверхпроводящего материала в виде покрытия, и может быть использовано при изготовлении экранов электронных схем от воздействия электромагнитного и ионизирующего излучений в энергетике, транспорте, связи, приборостроении, в ракетной и аэрокосмической отраслях промышленности. Способ получения сверхпроводящего покрытия включает подачу в плазмотрон порошка материала покрытия фракцией 80-150 мкм, его нагрев до температуры плавления в прикатодной высокотемпературной области плазменной струи и напыление на подложку с предварительно нанесенным на ее поверхность изоляционным слоем. При напылении плазменную струю с напыляемым порошком SmBa2Cu3O7 на всей дистанции напыления охватывают коаксиальным цилиндрическим потоком кислорода, а подложку охлаждают теплоносителем, при этом путем регулирования расхода кислорода и скорости взаимного перемещения плазменной струи и подложки обеспечивают температуру в пятне напыления 940-980°С. Сокращается время процесса получения сверхпроводящего материала с сохранением структуры и стехиометрии исходного спеченного материала. 4 ил.
Наверх