Дифференциальный операционный усилитель с парафазным выходом

Изобретение относится к устройствам усиления аналоговых сигналов. Техническим результатом является повышение стабильности выходного статического синфазного напряжения дифференциального усилителя. В усилителе в схему введен дополнительный р-n переход (17), включенный между эмиттером транзистора источника опорного тока (5) и общей шиной (18) первого (7) и второго (10) источников питания, причем первый (14) вспомогательный выход устройства соединен с базой транзистора источника опорного тока (5) через первый (19) резистор обратной связи, а второй (16) вспомогательный выход устройства соединен с базой транзистора источника опорного тока (5) через второй (20) резистор обратной связи. 1 з.п. ф-лы, 6 ил.

 

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения (например, мостовых усилителях мощности, драйверах дифференциальных линий связи, фильтрах, компараторах и т.п.).

Известны схемы классических двухкаскадных дифференциальных операционных усилителей (ДУ) с парафазным выходом, которые стали основой многих серийных аналоговых микросхем [1-39].

ДУ данного класса широко применяются в структуре СВЧ-устройств [1, 2, 3], реализованных на базе SiGe-технологий. Это связано с возможностью построения на их основе активных RC-фильтров гигагерцового диапазона для современных и перспективных систем связи, драйверов дифференциальных линий связи между СФ-блоками A/d и D/a-классов и т.п. В значительной степени этому способствует простота установления статического режима ДУ при низковольтном питании (1,2÷2,1)В, которое характерно для SiGe транзисторов с предельными частотами 120÷160 ГГц.

Ближайшим прототипом (фиг.1) заявляемого устройства является дифференциальный усилитель, описанный в патенте фирмы Mitsubishi US 5.367.371 fig.2, fig.3, содержащий первый 1 и второй 2 входные транзисторы, затворы (базы) которых соединены с соответствующими входами 3 и 4 устройства, транзистор источника опорного тока 5, коллектор которого соединен с объединенными истоками (эмиттерами) первого 1 и второго 2 входных транзисторов, а эмиттер через первый 6 токостабилизирующий двухполюсник соединен с первым 7 источником питания, первый 8 выходной транзистор, база которого связана со стоком (коллектором) первого 1 входного транзистора и через первый 9 двухполюсник коллекторной нагрузки соединена со вторым 10 источником питания, второй 11 выходной транзистор, база которого соединена со стоком (коллектором) второго 2 входного транзистора и через второй 12 двухполюсник коллекторной нагрузки связана со вторым 10 источником питания и объединенными коллекторами первого 8 и второго 11 выходных транзисторов, второй 13 токостабилизирующий двухполюсник, включенный между эмиттером первого 8 выходного транзистора, соединенным с первым 14 вспомогательным выходом устройства, и первым 7 источником питания, третий 15 токостабилизирующий двухполюсник, включенный между эмиттером второго 11 выходного транзистора, соединенным со вторым 16 вспомогательным выходом устройства и первым 7 источником питания.

Основная цель предлагаемого изобретения состоит в создании условий, при которых выходное статическое синфазное напряжение ДУ будет иметь высокую стабильность и нулевое значение.

Поставленная задача решается тем, что в дифференциальном операционном усилителе с парафазным выходом (фиг.1), содержащем первый 1 и второй 2 входные транзисторы, затворы (базы) которых соединены с соответствующими входами 3 и 4 устройства, транзистор источника опорного тока 5, коллектор которого соединен с объединенными истоками (эмиттерами) первого 1 и второго 2 входных транзисторов, а эмиттер через первый 6 токостабилизирующий двухполюсник соединен с первым 7 источником питания, первый 8 выходной транзистор, база которого связана со стоком (коллектором) первого 1 входного транзистора и через первый 9 двухполюсник коллекторной нагрузки соединена со вторым 10 источником питания, второй 11 выходной транзистор, база которого соединена со стоком (коллектором) второго 2 входного транзистора и через второй 12 двухполюсник коллекторной нагрузки связана со вторым 10 источником питания и объединенными коллекторами первого 8 и второго 11 выходных транзисторов, второй 13 токостабилизирующий двухполюсник, включенный между эмиттером первого 8 выходного транзистора, соединенным с первым 14 вспомогательным выходом устройства, и первым 7 источником питания, третий 15 токостабилизирующий двухполюсник, включенный между эмиттером второго 11 выходного транзистора, соединенным со вторым 16 вспомогательным выходом устройства и первым 7 источником питания, предусмотрены новые элементы и связи: в схему введен дополнительный р-n переход 17, включенный между эмиттером транзистора источника опорного тока 5 и общей шиной 18 первого 7 и второго 10 источников питания, причем первый 14 вспомогательный выход устройства соединен с базой транзистора источника опорного тока 5 через первый 19 резистор обратной связи, а второй 16 вспомогательный выход устройства соединен с базой транзистора источника опорного тока 5 через второй 20 резистор обратной связи.

На фиг.1 показана схема ДУ-прототипа.

На фиг.2 показана схема заявляемого устройства в соответствии с п.1, а на фиг.3 - в соответствии с п.2 формулы изобретения.

На фиг.4 показано включение заявляемого устройства в качестве выходного функционального узла в структуре широкополосного усилителя, содержащего входной нелинейный преобразователь 27 на основе р-n переходов 29, 30, выходы которого подключены ко входам 3, 4 ДУ фиг.2.

На фиг.5 показана схема заявляемого ДУ (фиг.2) в среде компьютерного моделирования PSpice на моделях интегральных транзисторов ФГУП НПП «Пульсар».

На фиг.6 приведена частотная зависимость коэффициента усиления по напряжению схемы фиг.5.

Дифференциальный операционный усилитель с парафазным выходом (фиг.2) содержит первый 1 и второй 2 входные транзисторы, затворы (базы) которых соединены с соответствующими входами 3 и 4 устройства, транзистор источника опорного тока 5, коллектор которого соединен объединенными истоками (эмиттерами) первого 1 и второго 2 входных транзисторов, а эмиттер через первый 6 токостабилизирующий двухполюсник соединен с первым 7 источником питания, первый 8 выходной транзистор, база которого связана со стоком (коллектором) первого 1 входного транзистора и через первый 9 двухполюсник коллекторной нагрузки соединена со вторым 10 источником питания, второй 11 выходной транзистор, база которого соединена со стоком (коллектором) второго 2 входного транзистора и через второй 12 двухполюсник коллекторной нагрузки связана со вторым 10 источником питания и объединенными коллекторами первого 8 и второго 11 выходных транзисторов, второй 13 токостабилизирующий двухполюсник, включенный между эмиттером первого 8 выходного транзистора, соединенным с первым 14 вспомогательным выходом устройства, и первым 7 источником питания, третий 15 токостабилизирующий двухполюсник, включенный между эмиттером второго 11 выходного транзистора, соединенным со вторым 16 вспомогательным выходом устройства и первым 7 источником питания. В схему введен дополнительный р-n переход 17, включенный между эмиттером транзистора источника опорного тока 5 и общей шиной 18 первого 7 и второго 10 источников питания, причем первый 14 вспомогательный выход устройства соединен с базой транзистора источника опорного тока 5 через первый 19 резистор обратной связи, а второй 16 вспомогательный выход устройства соединен с базой транзистора источника опорного тока 5 через второй 20 резистор обратной связи.

На фиг.3, в соответствии с п.2 формулы изобретения, первый 14 вспомогательный выход устройства связан с базой транзистора источника опорного тока 5 через последовательно соединенные первый 21 дополнительный буферный усилитель и первый 19 резистор обратной связи, а второй 16 вспомогательный выход устройства связан с базой транзистора источника опорного тока 5 через последовательно соединенные второй 22 дополнительный буферный усилитель и второй 20 резистор обратной связи.

На фиг.4 первый 8 и второй 11 выходные транзисторы реализованы в виде составных активных элементов, содержащих соответственно биполярные транзисторы 23, 25 и вспомогательные р-n переходы 24, 26. Входной каскад 27 широкополосного усилителя (фиг.4) содержит цепь смещения потенциалов 28, р-n переходы 29, 30, входные транзисторы 31, 32, резистор местной обратной связи 33 и вспомогательные источники тока 34, 35.

Рассмотрим работу ДУ (фиг.2).

Статический режим по току транзисторов 1, 2 и 8, 11 предлагаемого ДУ устанавливается двухполюсниками 6, 13 и 15:

,

,

,

где Ic1, Ic2 - токи стока (коллектора) транзисторов 1 и 2,

I17=I0, I13, I15, I6 - токи двухполюсников 17, 13, 15, 6.

В соответствии со вторым законом Киргофа статические напряжения на выходах 14 и 16 ДУ:

где Uэб.17=Uэб.5 - напряжения «эмиттер-база» транзистора 5 и р-n перехода 17;

Iб - ток базы транзистора 5.

С учетом типовых численных значений Iб и R19=R20 практических схем ДУ из уравнения (2) можно сделать вывод о том, что в заявляемом ДУ статические выходные напряжения U14=U16 близки к единицам милливольт.

Дальнейшее уменьшение U14=U16 возможно за счет рационального выбора сопротивлений резисторов 19 и 20.

В зависимости от количества р-n переходов 17 в ДУ (фиг.2) можно установить и другие заданные величины статического выходного синфазного напряжения.

Таким образом, заявляемый дифференциальный операционный усилитель имеет малый нулевой уровень выходного синфазного напряжения. Это весьма существенно для его согласования с последующими функциональными узлами различных систем на кристалле, а также для получения более широкого диапазона изменения выходных противофазных напряжений.

Библиографический список

1. Budyakov, A. Design of Fully Differential OpAmps for GHz Range Applications [Текст] / Budyakov A., Schmalz K., Prokopenko N., Scheytt C., Ostrovskyy P. // Проблемы современной аналоговой микросхемотехники: сб. материалов VI Международного научно-практического семинара. В 3-х ч. Ч.1. Функциональные узлы аналоговых интегральных схем и сложных функциональных блоков / под ред. Н.Н.Прокопенко. - Шахты: Изд-во ЮРГУЭС, 2007 - С.106-110.

2. S.P.Voinigescu, et al., "Design Methodology and Applications of SiGe BiCMOS Cascode Opamps with up to 37-GHz Unity Gain Bandwidth," IEEE CSICS, Techn. Digest, pp.283-286, Nov. 2005, фиг.2.

3. S.P.Voinigescu, et al., "SiGe BiCMOS for Analog, High-Speed Digital and Millimetre-Wave Applications Beyond 50 GHz", IEEE BCTM, pp.1-8, Oct.2006.

4. Патент США №5.684.419

5. Патентная заявка WO 2009/042474, fig.5

6. Патентная заявка WO 96/21271

7. Патентная заявка США 2010/0019946, fig.3

8. Патент США №6.693.489

9. Патентная заявка WO 2005/074136, fig.1

10. Патентная заявка США 2006/0038616, fig.1

11. Патентная заявка США 2010/0102884, fig.2

12. Патент США №6.285.245, fig.1

13. Патент США №4.517.524

14. Патент США №4.276.485, fig.1

15. Патентная заявка США 2005/0088232

16. Патент Франции №2409640, fig.1

17. Патентная заявка США 2005/0110571, fig.7

18. Патентная заявка США 2009/108882, fig.3

19. Патентная заявка США №2009/0221259, fig.13

20. Патентная заявка США №2005/0200414

21. Патент США №4.680.553, fig.13

22. Патентная заявка США №2004/0046592, fig.2

23. Патент JP №54079553, fig.1

24. Патент GB №2008883, fig.1

25. Патент США №6.462.618

26. Патент США №3.541.464

27. Патентная заявка WO 2004/102789

28. Патент США №5.389.893

29. Патент Японии JP 53-142849

30. А.св. СССР 1102019

31. Патентная заявка WO 2005/077525

32. Патентная заявка США №2006/0181348

33. Патент Англии GB 2419052

34. Патентная заявка США №2008/0290941

35. Патент Японии JP 55030218

36. Патент Англии GB 1350352

37. Патент Японии JP 54-47467

38. Патент Японии JP 55099810

39. Патент ФРГ DE 2821942

1. Дифференциальный операционный усилитель с парафазным выходом, содержащий первый (1) и второй (2) входные транзисторы, затворы (базы) которых соединены с соответствующими входами (3) и (4) устройства, транзистор источника опорного тока (5), коллектор которого соединен с объединенными истоками (эмиттерами) первого (1) и второго (2) входных транзисторов, а эмиттер через первый (6) токостабилизирующий двухполюсник соединен с первым (7) источником питания, первый (8) выходной транзистор, база которого связана со стоком (коллектором) первого (1) входного транзистора и через первый (9) двухполюсник коллекторной нагрузки соединена со вторым (10) источником питания, второй (11) выходной транзистор, база которого соединена со стоком (коллектором) второго (2) входного транзистора и через второй (12) двухполюсник коллекторной нагрузки связана со вторым (10) источником питания и объединенными коллекторами первого (8) и второго (11) выходных транзисторов, второй (13) токостабилизирующий двухполюсник, включенный между эмиттером первого (8) выходного транзистора, соединенным с первым (14) вспомогательным выходом устройства, и первым (7) источником питания, третий (15) токостабилизирующий двухполюсник, включенный между эмиттером второго (11) выходного транзистора, соединенным со вторым (16) вспомогательным выходом устройства и первым (7) источником питания, отличающийся тем, что в схему введен дополнительный р-n переход (17), включенный между эмиттером транзистора источника опорного тока (5) и общей шиной (18) первого (7) и второго (10) источников питания, причем первый (14) вспомогательный выход устройства соединен с базой транзистора источника опорного тока (5) через первый (19) резистор обратной связи, а второй (16) вспомогательный выход устройства соединен с базой транзистора источника опорного тока (5) через второй (20) резистор обратной связи.

2. Дифференциальный операционный усилитель с парафазным выходом по п.1, отличающийся тем, что первый (14) вспомогательный выход устройства связан с базой транзистора источника опорного тока (5) через последовательно соединенные первый (21) дополнительный буферный усилитель и первый (19) резистор обратной связи, а второй (16) вспомогательный выход устройства связан с базой транзистора источника опорного тока (5) через последовательно соединенные второй (22) дополнительный буферный усилитель и второй (20) резистор обратной связи.



 

Похожие патенты:

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов. .

Изобретение относится к области радиотехники и связи. .

Изобретение относится к области радиотехники и связи. .

Изобретение относится к области радиотехники и связи. .

Изобретение относится к области радиотехники и связи. .

Изобретение относится к области радиотехники и связи. .

Изобретение относится к вычислительной технике. .

Изобретение относится к области устройств усиления аналоговых сигналов. .

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения (например, SiGe-операционных усилителях (ОУ), СВЧ-усилителях, компараторах, непрерывных стабилизаторах напряжения и т.п.).

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов в структуре аналоговых микросхем различного функционального назначения (например, СВЧ-усилителях, смесителях и перемножителях сигналов и т.п.).

Изобретение относится к области радиотехники и связи. Техническим результатом является расширение диапазона активной работы входного каскада ОУ для дифференциального сигнала за счет новых элементов связи. Входной каскад быстродействующего операционного усилителя содержит первый (1) и второй (2) входные транзисторы, эмиттеры которых через соответствующие первый (3) и второй (4) вспомогательные резисторы соединены с эмиттерами первого (5) и второго (6) выходных транзисторов с объединенными базами, первый (7) и второй (8) входы устройства, связанные с соответствующими базами первого (1) и второго (2) входных транзисторов, третий (9) и четвертый (10) вспомогательные резисторы, первый (11) и второй (12) вспомогательные прямосмещенные р-n переходы, первый (13) токостабилизирующий двухполюсник, токовые выходы устройства (14), (15), (16), (17), связанные с коллекторами входных (1), (2) и выходных (5), (6) транзисторов. 18 ил.

Изобретение относится к устройствам усиления аналоговых сигналов. Техническим результатом является расширение диапазона активной работы входного каскада операционного усилителя (ОУ) для дифференциального сигнала. Входной каскад ОУ содержит первый (1) и второй (2) входные транзисторы, первый (3) и второй (4) выходные транзисторы, первый (5) и второй (6) вспомогательные транзисторы, первый (7) и второй (8) входы устройства, первый (9) и второй (10) прямосмещенные p-n-переходы, первый (11) токостабилизирующий двухполюсник, токовые выходы устройства (12), (13), (14), (15), первую (16) шину источника питания (ИП), где между вторым (10) p-n-переходом, включенным в эмиттер второго (6) транзистора, и второй (17) шиной ИП включен первый (11) двухполюсник, между первым (9) p-n-переходом, включенным в эмиттер первого (5) транзистора, и второй (17) шиной ИП включен второй (18) двухполюсник, между общим узлом (19) первого (9) p-n-перехода и второго (18) двухполюсника, а также общим узлом (20) второго (12) p-n-перехода и первого (11) двухполюсника последовательно включены третий (21) и четвертый (22) резисторы, общий узел (23) которых соединен с базами первого (3) и второго (4) входных транзисторов. 18 ил.

Изобретение относится к области радиотехники и связи. Техническим результатом является расширение диапазона активной работы входного каскада ОУ для дифференциального сигнала, а также получение граничных напряжений его проходной характеристики iвых=f(uвх) на уровне Uгр=1÷2 В, что приводит к повышению быстродействия ОУ более чем на порядок. Комплементарный входной каскад быстродействующего операционного усилителя содержит: первый (1) и второй (2) входные транзисторы, первый (3) и второй (4) выходные транзисторы с объединенными базами, первый (5) и второй (6) входы устройства, первый (7) и второй (8) вспомогательные транзисторы, первый (9) токостабилизирующий двухполюсник, первые (10), (11) токовые выходы устройства, вторые (12), (13) токовые выходы устройства, первую (14) шину источника питания, вторую (15) шину источника питания, второй (16) токостабилизирующий двухполюсник, первый (17) дополнительный резистор, второй (18) дополнительный резистор, третий (19) и четвертый (20) дополнительные резисторы. 20 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов в структуре аналоговых микросхем различного функционального назначения. Техническим результатом является повышение стабильности выходного статического синфазного напряжения дифференциального операционного усилителя при нулевом входном синфазном сигнале. В усилитель введены третий и четвертый входные транзисторы, эмиттеры которых связаны с эмиттерами первого и второго входных транзисторов, причем база третьего входного транзистора соединена с базой первого входного транзистора, база четвертого входного транзистора соединена с базой второго входного транзистора, коллекторы третьего и четвертого входных транзисторов связаны с шиной второго источника питания, эмиттеры первого и второго входных транзисторов подключены к эмиттерам первого и второго дополнительных транзисторов, коллектор первого дополнительного транзистора соединен с коллектором первого входного транзистора, коллектор второго дополнительного транзистора соединен с коллектором второго входного транзистора, при этом первый вспомогательный выход устройства связан с базами первого и второго дополнительных транзисторов через первый резистор обратной связи, а второй вспомогательный выход устройства связан с базами первого и второго дополнительных транзисторов через второй резистор обратной связи. 1 з.п. ф-лы, 7 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления и преобразования аналоговых сигналов, в структуре «систем на кристалле» и «систем в корпусе» различного функционального назначения (например, операционных усилителей, работающих на емкостную нагрузку). Технический результат заключается в повышении быстродействия драйвера при работе на емкостную нагрузку за счет исключения влияния на переходный процесс первого и второго конденсаторов цепи нагрузки. Технический результат достигается за счет быстродействующего драйвера дифференциальной линии связи, который содержит первый и второй источники входных противофазных напряжений, связанных с соответствующими входами первого и второго выходных каскадов, первый и второй конденсаторы нагрузки, подключенные к соответствующим выходам первого и второго выходных каскадов, выход первого выходного каскада, вход первого неинвертирующего повторителя напряжения, токовый выход первого инвертирующего повторителя тока, первый дополнительный конденсатор, второй дополнительный конденсатор. 5 ил.

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления и преобразования аналоговых и цифровых импульсных сигналов в устройствах различного функционального назначения, работающих на емкостную нагрузку. Достигаемый технический результат - повышение быстродействия драйвера при работе на емкостную нагрузку, расширение диапазона его рабочих частот. Быстродействующий драйвер емкостной нагрузки содержит выходной каскад, вход которого соединен с источником входного сигнала, а выход подключен к конденсатору цепи нагрузки, преобразователь «напряжение-ток», потенциальный вход которого соединен с выходом выходного каскада, потенциальный выход соединен с цепью коррекции, первый токовый выход подключен ко входу первого токового зеркала, согласованного с первой шиной источника питания, второй токовый выход подключен ко входу второго токового зеркала, согласованного со второй шиной источника питания, токовые выходы первого и второго токовых зеркал связаны с выходом выходного каскада, причем приращение токов первого и второго токовых выходов преобразователя «напряжение-ток» для соответствующих полярностей выходных напряжений пропорциональны проводимости цепи коррекции. 1 н. и 1 з.п. ф-лы.,9 ил.

Изобретение относится к области радиотехники. Технический результат заключается в повышении стабильности операционного усилителя на постоянном токе. Устройство содержит входной дифференциальный каскад с токовыми выходами, согласованный с первой шиной источника питания, первое и второе токовые зеркала, согласованные со второй шиной источника питания, первый и второй токостабилизирующие двухполюсники, первый и второй токовые выходы входного дифференциального каскада связаны с эмиттером первого, второго, третьего и четвертого дополнительных транзисторов противоположного типа проводимости, базы первого и третьего дополнительных транзисторов объединены и подключены к источнику вспомогательного напряжения, коллектор первого дополнительного транзистора соединен со входом первого токового зеркала, коллектор третьего дополнительного транзистора соединен со входом второго токового зеркала, первый вспомогательный выход устройства связан с объединенными базами второго и четвертого дополнительных транзисторов через первый дополнительный резистор, второй вспомогательный выход устройства связан с объединенными базами второго и четвертого дополнительных транзисторов через второй дополнительный резистор. 3 з.п. ф-лы, 5 ил.

Группа изобретений относится к усилителю устройства обработки сигналов. Технический результат заключается в обеспечении возможности усиления входного сигнала, содержащего низкочастотный компонент. Когда переключатель (SW1) задается выключенным, а переключатель (SW2) задается включенным, напряжение контактного вывода (205) SigOut стабилизируется с помощью опорного напряжения, и напряжение смещения прикладывается к конденсатору (C1). Изменяя переключатель (SW2) из включенного состояния в выключенное при напряжении смещения, сохраненном в конденсаторе (C1), сигнал обнаружения, который вводится через контактный вывод (201) SigIn, усиливается с помощью опорного напряжения в качестве опорного уровня, и усиленный сигнал выводится из контактного вывода (205) SigOut. 2 н. и 10 з.п. ф-лы, 27 ил.

Изобретение относится к схемам входных каскадов на КМОП-транзисторах. Технический результат: расширение диапазона активной работы дифференциального входного каскада. Исток первого входного транзистора соединен со стоком четвертого входного полевого транзистора через первый дополнительный резистор, исток второго входного транзистора соединен со стоком третьего входного полевого транзистора через второй дополнительный резистор и через дополнительную цепь смещения потенциалов связан с затвором второго выходного транзистора, который подключен ко второй шине источника питания через дополнительный токостабилизирующий двухполюсник. 13 ил.
Наверх