Способ получения растений-регенерантов ириса мечевидного (i. ensata thunb.) in vitro



Способ получения растений-регенерантов ириса мечевидного (i. ensata thunb.) in vitro
Способ получения растений-регенерантов ириса мечевидного (i. ensata thunb.) in vitro
Способ получения растений-регенерантов ириса мечевидного (i. ensata thunb.) in vitro

 


Владельцы патента RU 2481766:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный университет" (RU)

Изобретение относится к способу получения растений-регенерантов ириса мечевидного (I.ensata Thunb.) in vitro. Способ включает стерилизацию бутонов при условии, что бутоны, смоченные в 96%-ном этиловом спирте, обжигают в пламени спиртовки, обеззараживают в 0,1%-ном растворе сульфохлорантина в течение 20 минут, затем части трубки околоцветника делят на фрагменты 3×3 мм и высаживают на питательную среду Мурасиге-Скуга, содержащую 3-5 мкМ НУК в сочетании с 4-8 мкМ БАП. Затем культивируют и укореняют. При этом через 30 суток культивирования образовавшиеся зачатки побегов с флоральными элементами пересаживают на питательные среды с БАП 20 мкМ и через 30 суток культивирования побеги укореняют на среде Мурасиге-Скуга с НУК 3 мкМ. Изобретение позволяет получать растения-регенеранты прямым методом, минуя каллусную культуру, с высоким процентом укоренения. 3 ил., 2 табл.

 

Изобретение относится к биотехнологии, в частности к культивированию органов и тканей растений, и может быть использовано в цветоводстве для повышения коэффициента размножения, оздоровления посадочного материала, а также в селекционной практике для создания новых улучшенных сортов I.ensata.

Известен способ получения растений-регенерантов I.ensata, согласно которому в качестве эксплантов используют молодые побеги. Их культивируют на среде Мурасиге-Скуга, дополненной гормонами и сахарозой. Наблюдают индукцию двух видов каллуса: зеленого и белого. Из зеленого каллуса были получены побеги. Введение активированного угля в питательную среду положительно влияло на образование корней у этих побегов (Yabuya Т, Ikeda Y., Adachi Т. (1991) In vitro propagation of Japanese garden iris iris ensata Thunb. // Euphytica 57, P.77-82).

Недостатком данного способа (аналога) является следующее. Получение каллусной ткани с последующей индукцией органогенеза или соматического эмбриогенеза не пригодно для использования при микроразмножении сортов растений, так как повышается вероятность сомаклональной изменчивости исходного материала.

Наиболее близким является способ получения растений-регенерантов I.ensata на основе индукции развития почек в эксплантах околоцветник - завязь прямым путем, минуя каллусообразование. Экспланты культивировали на питательных средах Мурасиге-Скуга, дополненных фитогормонами НУК(α-нафтилуксусная кислота) и БАП (6-бензиламинопурин) в количестве 0-5 мг/л. Отмечена высокая способность к побегообразованию у данного типа эксплантов. Укоренить побеги автору не удалось (Kawase К, Mizutani Н, Yoshioka М, Fukuda S (1995) Shoot formation on floral organs of Japanese iris in vitro // Journal of the Japanese Society for Horticultural Science 64, P.143-8).

Недостатками данного способа является отсутствие способности к укоренению у полученных побегов I.ensata.

Наиболее близким является способ прямой регенерации флоральных элементов в ткани трубки околоцветника I.ensata. Бутоны, смоченные в 96% этиловом спирте, обжигали в пламени спиртовки. Следующий этап обеззараживания проводили в 0,1% растворе сульфохлорантина в течение 20 минут. Части цветка делили на фрагменты 3×3 мм. В качестве эксплантов использовали фрагменты трубки околоцветника. Экспланты высаживали на питательные среды на основе MS (по прописи Мурасиге и Скуга), дополненные фитогормонами: 1-нафтилуксусной кислотой (НУК) 3-5 мкМ и 6-бензиламинопурином (БАП) 4-8 мкМ. Данным способом трубка околоцветника I.ensata способна регенерировать флоральные элементы (Тихомирова Л.И. Особенности индукции морфогенеза из различных фрагментов цветка ириса в культуре in vitro // Turczaninowia. 2010. - №13 (3). - C.147-151).

Недостатками данного способа (прототипа) является отсутствие способности к размножению и укоренению полученных флоральных элементов I.ensata, a также отсутствие подтверждения идентичности материнским экземплярам.

Задачей изобретения является создание способа получения растений-регенерантов, идентичных материнским растениям I.ensata, способных к дальнейшему размножению и укоренению.

Сущность изобретения

Способ получения растений-регенерантов I.ensata, заключающийся в том, что образование побегов осуществляется непосредственно из ткани экспланта, минуя стадию каллусообразования, зачатки побегов с флоральными элементами разделяют и пересаживают на питательные среды с БАП 20 мкМ и полноценные вегетативные побеги укореняют на среде с НУК 3 мкМ.

Способ получения растений-регенерантов ириса мечевидного (I.ensata Thunb.) in vitro, заключающийся в том, что бутоны, смоченные в 96% этиловом спирте, обжигают в пламени спиртовки, обеззараживают в 0,1% растворе сульфохлорантина в течение 20 минут, затем части трубки околоцветника делят на фрагменты 3×3 мм и высаживают каждый фрагмент на питательную среду Мурасиге-Скуга, содержащую 3-5 мкМ НУК в сочетании с 4-8 мкМ БАП, затем культивируют и укореняют, а через 30 суток культивирования образовавшиеся зачатки побегов с флоральными элементами пересаживают на питательные среды с БАП 20 мкМ и через 30 суток культивирования побеги укореняют на среде Мурасиге-Скуга с НУК 3 мкМ.

Способ обеспечивает высокий процент выхода генетически стабильных регенерантов. Для подтверждения идентичности материнским экземплярам проводят анализ методом RAPD полногеномной ДНК.

Способ реализуют следующим образом.

Получение растений-регенерантов I.ensata осуществляют в два этапа, в качестве эксплантов используют фрагменты трубки околоцветника.

1 этап. Цветки берут в фазе бутонизации (VII этап органогенеза), когда они плотно закрыты листочками обертки. Стерилизацию материала проводят в условиях ламинар-бокса. Бутоны цветка, смоченные в 96% этиловом спирте, обжигают в пламени спиртовки, далее проводят обеззараживание в 0,1% растворе сульфохлорантина в течение 20 минут. Подобный способ обеспечивает на 100% стерильность и жизнеспособность материала. Части трубки околоцветника делят на фрагменты размером не более 3×3 мм и помещают на питательные среды.

Питательные среды готовят по прописи Мурасиге и Скуга, содержащие 30 г/л сахарозы. В них вводят фитогормоны в разных концентрациях: 3-5 мкМ НУК в сочетании с 4-8 мкМ БАП, всего девять вариантов сред (таблица 1) pH среды доводят до 5,8-5,9 и добавляют 0,6% агара. Среды разливают в пластиковые контейнеры по 30 мл или в культуральные флаконы по 10 мл. Автоклавируют приготовленные питательные среды в течение 20 мин при 120°С. Экспланты культивируют в условиях фотопериода 16/8 часов свет/темнота при 24-26°С.

В первые две недели культививования in vitro все экспланты увеличиваются в размерах и приобретают зеленую окраску. Далее еще через две недели в тканях экспланта развиваются зачатки вегетативных побегов, у которых вместо примордиев первых листьев формируются структуры, похожие на доли околоцветника - флоральные элементы. Со временем эти структуры приобретают характерную для цветков данного сорта окраску (Фиг.1).

2 этап. Для получения вегетативных побегов I.ensata из фрагментов трубки околоцветника готовят питательные среды. Зачатки побегов с флоральными элементами пересаживают на питательные среды (используются среды Мурасиге-Скуга или Гамборга B5), содержащие 20 мкМ БАП (таблица 2). Этап, во время которого из эксплантов формируются вегетативные побеги, характеризуется как промежуточный. Через 30 дней регенерируют полноценные побеги с зелеными листьями. В результате данным способом через 60 суток получают полноценные вегетативные побеги I.ensata в количестве 5-8 штук на один эксплант (Фиг.2), которые укореняют на среде Мурасиге-Скуга с НУК 3 мкМ. А после этапа укоренения получают растения-регенеранты, идентичные материнским экземплярам. Для подтверждения идентичности растений-регенерантов и материнских растений I.ensata проводят анализ с помощью ПЦР (Фиг.3).

Необходимым условием клонального микроразмножения является стабильное воспроизводство исходного генотипа. Однако соблюдение этого условия вызывает ряд трудностей, т.к. биологически активные компоненты питательных сред способны вызвать генетические изменения в клетках, что приводит к генетической вариабельности полученных регенерантов. Методом RAPD-анализа полногеномной ДНК отличий между материнскими экземплярами I.ensata и растениями-регенерантами, полученными методом прямой регенерации побегов из ткани экспланта трубки околоцветника, не обнаружено.

Способом получения растений-регенерантов ириса мечевидного (I.ensata Thunb.) in vitro получают побеги в количестве 5-8 штук на один эксплант, способные к дальнейшему размножению и укоренению. Высокий процент укоренения до 100% достигается на средах Мурасиге и Скуга, дополненных 3 мкМ НУК.

Таблица 1
Пути морфогенеза I.ensata в культуре in vitro в зависимости от состава питательной среды и типа экспланта
Количество гормонов в мкМ и их соотношение Тип экспланта
трубка околоцветника
1БАП 1 НУК (1:1) контроль -
4БАП 3 НУК (1,3:1) РФЭ, геммогенез
4БАП 4 НУК (1:1) РФЭ, геммогенез
4БАП 5 НУК (1:1,25) РФЭ, геммогенез
6БАП 3 НУК (2:1) РФЭ, геммогенез
6БАП 4 НУК (1,5:1) РФЭ, геммогенез
6БАП 5 НУК (1,2:1) РФЭ, геммогенез
8БАП 3 НУК (2,6:1) РФЭ, геммогенез
8БАП 4 НУК (2:1) РФЭ, геммогенез
8БАП 5 НУК (1,6:1) РФЭ, геммогенез
Примечание. Прочерк означает отсутствие регенерации у эксплантов, РФЭ - рост флоральных элементов.
Таблица 2
Содержание БАП мкМ в питательных средах на этапе 1 Содержание БАП мкМ в питательных средах этапа 2
5 7,5 10 20
4 гибель экспланта гибель экспланта гибель экспланта активный гемогенез
6 гибель экспланта гибель экспланта гибель экспланта активный гемогенез
8 гибель экспланта гибель экспланта гибель экспланта активный гемогенез
1 гибель экспланта гибель экспланта гибель экспланта гибель экспланта
Зависимость формирования вегетативных побегов из вторичных эксплантов от содержания БАП в питательной среде

Способ получения растений-регенерантов ириса мечевидного (I.ensata Thunb.) in vitro, включающий стерилизацию бутонов, заключающийся в том, что бутоны, смоченные в 96%-ном этиловом спирте, обжигают в пламени спиртовки, обеззараживают в 0,1%-ном растворе сульфохлорантина в течение 20 минут, затем части трубки околоцветника делят на фрагменты 3×3 мм и высаживают на питательную среду Мурасиге-Скуга, содержащую 3-5 мкМ НУК в сочетании с 4-8 мкМ БАП, затем культивируют и укореняют, отличающийся тем, что через 30 суток культивирования образовавшиеся зачатки побегов с флоральными элементами пересаживают на питательные среды с БАП 20 мкМ и через 30 суток культивирования побеги укореняют на среде Мурасиге-Скуга с НУК 3 мкМ.



 

Похожие патенты:

Изобретение относится к способу скрининга популяции растений листовых овощей на присутствие особей, обнаруживающих пониженную чувствительность к этилену и физиологическим нарушениям, в частности к Бурой Пятнистости и Пожелтению по сравнению с контрольным растением.
Изобретение относится к селекции растений и может быть использовано в лабораторных условиях для экспрессной оценки морозоустойчивости озимого ячменя. .

Изобретение относится к селекции растений сои. .
Изобретение относится к области сельского хозяйства, в частности к селекции и защите растений. .
Изобретение относится к селекции растений, в частности льна, и может быть использовано в практической работе для ускорения создания линий льна, устойчивых к антракнозу, путем использования незрелых зародышей и культурального фильтрата гриба Colletotrichum lini.
Изобретение относится к области сельского хозяйства. .

Изобретение относится к области сельского хозяйства, в частности к садоводству. .

Изобретение относится к области физиологии и селекции растений. .

Изобретение относится к области биотехнологии. .
Изобретение относится к области сельского хозяйства и может быть использовано для оценки качества зерна генотипов ячменя пивоваренного направления. .
Изобретение относится к области сельского хозяйства, в частности к селекции растений
Изобретение относится к области сельского хозяйства, в частности к селекции

Изобретение относится к области биохимии
Изобретение относится к биотехнологии и представляет собой питательную среду для укоренения побегов яблони и груши in vitro

Изобретение относится к области сельского хозяйства, в частности к пчеловодству

Изобретение относится к области биохимии, в частности к маслу из семян элитного сорта подсолнечника, имеющему профиль жирных кислот, включающий 3% или меньше общего содержания взятых вместе пальмитиновой кислоты (16:0) и стеариновой кислоты (18:0)
Изобретение относится к области сельского хозяйства, в частности к селекции

Изобретение относится к области биохимии, в частности к способу оценки степени пленчатости зерна генотипа ячменя по сравнению со степенью пленчатости других генотипов ячменя одного года репродукции, включающий взятие навески сухого зерна каждого генотипа, помещение ее в жидкость, выдерживание навески зерна в этой жидкости в течение определенного времени, извлечение навески и повторное взвешивание. В качестве жидкости применяют воду, для повторного взвешивания используют всю навеску зерна каждого генотипа и вычисляют относительное поглощение воды зерном каждого генотипа, при этом, чем ниже относительное поглощение воды, тем меньше пленчатость зерна генотипа. Изобретение позволяет эффективно оценивать степень пленчатости зерна генотипа ячменя по сравнению со степенью пленчатости других генотипов ячменя одного года репродукции. 2 з.п. ф-лы, 3 ил., 5 табл., 5 пр.

Изобретение относится к области сельского хозяйства, в частности к селекции растений. Способ включает отбор более устойчивых к растрескиванию стручков образцов путем анализа высоты плотной перегородки в области гинофора в фазу зеленого стручка. Затем на отобранных растениях с большей высотой обрывают сформировавшиеся стручки и распустившиеся цветки, проводят скрещивания и самоопыление на боковых побегах. Способ позволяет повысить эффективность селекционного процесса при отборе селекционного материала рапса. 1 ил., 1 табл., 1 пр.

Группа изобретений относится к области белковой инженерии, молекулярной биологии растений и борьбы с вредителями и касается гибридного инсектицидного белка и его применений. Описанный гибридный инсектицидный белок включает от N-конца до С-конца N-концевой участок белка Cry3A, слитого с С-концевым участком белка Cry1Ab, причем позиция кроссинговера белка Cry3A и белка Cry1Ab расположена в консервативном блоке 2, в консервативном блоке 3 или в консервативном блоке 4 и обладает активностью против западного кукурузного корневого жука. Также представлены молекулы нуклеиновых кислот, кодирующие новые белки, способы получения белков, способы их применения, а также трансгенные растения и их семена, содержащие такие белки. Группа изобретений позволяет получить экономически выгодные средства для борьбы с жуками рода Diabrotica. 13 н. и 26 з.п. ф-лы, 8 ил., 9 табл., 46 пр.
Наверх