Огнеупорная масса для футеровки желобов доменных печей


 


Владельцы патента RU 2482097:

Открытое акционерное общество "Первоуральский динасовый завод" (ОАО "ДИНУР") (RU)

Изобретение относится к черной металлургии и может быть использовано для футеровки желобов доменных печей. Техническим результатом изобретения является повышение морозостойкости огнеупорной массы. Огнеупорная масса для футеровки желобов доменных печей, содержащая бокситовый заполнитель фракции 0-7 мм, карбид кремния, глину огнеупорную, лигносульфонат и бокситовую вяжущую суспензию, алкандиол и углеродный концентрат, при следующем соотношении компонентов, мас.%: карбид кремния 14-30; глина огнеупорная 3-6; бокситовая вяжущая суспензия (по сухому) 27-30; лигносульфонат 1,5-2,0; алкандиол 0,5-0,8; углеродный концентрат 3-6; бокситовый заполнитель фракции 0-7 мм - остальное. При этом кажущаяся плотность образцов, сформованных из массы после выдержки при отрицательной температуре, составляет не менее 2,65 г/см3. 1 пр.

 

Изобретение относится к черной металлургии и может быть использовано для футеровки желобов доменных печей методом набивки (пневмотрамбования).

Известны огнеупорные массы для футеровки желобов доменных печей (далее огнеупорные массы) на основе алюмосодержащего огнеупорного заполнителя с карбидом кремния, огнеупорной глиной и каменноугольным пеком, например, огнеупорные массы по патентам RU 2189955 С2, С04В 35/528, С04В 35/66, 2002 [1]; RU 2135428 C1, С04В 33/22, С04В 35/66, 1999 [2]. Известные огнеупорные массы не обеспечивают эксплуатационных свойств желобов по стойкости из-за невысоких термомеханических свойств пековой связки.

Известны огнеупорные массы на основе алюмосодержащего огнеупорного заполнителя с карбидом кремния, огнеупорной глиной, графитом и вяжущей суспензией из плавленого кварца, например, по патентам US 5064787 А, С04В 35/18, С04В 35/63, С04В 35/66, 1991 [3] и US 5147834 A, С04В 28/24, С04В 35/63, С04В 35/66, 1992 [4]. Известные огнеупорные массы имеют повышенную прочность благодаря хорошим термомеханическим свойствам вяжущей системы, но вследствие полиморфизма SiO2 футеровки из этих масс имеют недостаточную термостойкость.

По совокупности общих существенных признаков наиболее близкой к патентуемой является набивная огнеупорная масса для монолитных футеровок по патенту RU 2153480 С2, С04В 35/101, С04 В 35/66, 2000 [5]. Она содержит (по сухому), мас.%: 48-67 бокситовый заполнитель полифракционный, 0-18 карбид кремния полидисперсный, 33-40 бокситовую вяжущую суспензию, включающую 1-4 огнеупорной глины, которая вводится в виде предварительно подготовленной суспензии, и 0,5-1,0 лигносульфонат (сверх 100% по влажному). Известная огнеупорная масса для выполнения набивной футеровки имеет влажность в пределах 4,7-5,3%. Положительными свойствами известной огнеупорной массы являются высокие служебные свойства (механическая прочность при спекании, температура деформации под нагрузкой, шлакоустойчивость, термостойкость, объемопостоянство).

Недостатки известной массы - снижение формовочных свойств в течение времени вследствие потери влаги из-за впитывания заполнителем (пористость боксита составляет 7-11%), а также смерзание зимой в твердый монолит при транспортировке и хранении на холодном складе. Перед применением смерзшуюся массу размораживают в специальных камерах - тепляках, что ведет к дополнительным затратам и при этом возможно ухудшение формовочных свойств из-за локальных перегревов массы. Для контроля формовочных свойств массы у потребителя используют показатель формовочной плотности сырой массы. Кажущаяся плотность сырой массы, уложенной методом пневмотрамбования, должна быть не менее 2,65 г/см3.

Целью настоящего изобретения является повышение «живучести» и морозостойкости огнеупорной массы с сохранением положительных служебных свойств прототипа.

Поставленная цель достигается тем, что в огнеупорную массу, содержащую бокситовый заполнитель, карбид кремния, глину огнеупорную, лигносульфонат и бокситовую вяжущую суспензию, вводятся дополнительно алкандиол и углеродный концентрат при следующем соотношении компонентов, мас.%: карбид кремния 14-30, глина огнеупорная 3-6, бокситовая вяжущая суспензия (по сухому) 27-30, лигносульфонат 1,5-2,0, алкандиол 0,5-0,8, углеродный концентрат 3-6, бокситовый заполнитель фр. 0-7 мм - остальное.

Из ряда алкандиолов (гликолей) предпочтительно применение 1,2-этандиола НОСН2СН2ОН - (этиленгликоль). Водный раствор этиленгликоля при одной и той же концентрации имеет самые низкие температуру замерзания и вязкость по сравнению с водными растворами на основе других гликолей. Введенный в огнеупорную массу в заявленных пределах этиленгликоль, соединяясь с влагой массы, образует незамерзающую пленку на поверхности зерен компонентов, предотвращающую смерзание массы в зимний период.

Кроме этого, этиленгликоль, обладая свойством хорошо смачивать углерод, при перемешивании массы с углеродным концентратом повышает пластичность и способствует образованию в массе равномерного углеродного «каркаса», обеспечивающего шлакоустойчивость. Благодаря низкой упругости паров и гигроскопичности этиленгликоль почти не испаряется и активно поглощает воду из окружающей среды, поддерживая «живучесть» массы. Введение в огнеупорную массу алкандиола менее 0,5% не обеспечивает положительного эффекта, а введение его более 0,8% снижает механическую прочность обожженной массы.

При введении в массу в заявленных пределах углеродного концентрата, содержащего в своем составе карбид кремния, углерод и кремнезем (мас.%: до 15 SiC, до 60 С и до 10 SiO2) повышаются такие свойства обожженной массы, как шлакоустойчивость и механическая прочность. Углеродный концентрат применяется тонкомолотым.

Для компенсации дилатансии суспензии боксита (снижения подвижности при увеличении механического воздействия на дисперсную систему), в результате которой масса плохо уплотняется при трамбовании, в массу вводится огнеупорная глина в количестве 3-6 мас.%. Глина пластифицирует огнеупорную массу, улучшая ее формовочные свойства, а также участвует при обжиге в процессе образования муллита, повышающего температуру деформации под нагрузкой. Для упрощения технологического процесса глину огнеупорную вводят в массу в сухом состоянии. Предпочтительно использование тонкодисперсных фракций глины с электрофильтров, либо после дополнительного помола до полного прохода через сито 0,1 мм.

Повышению пластичности и «живучести» массы в условиях ее невысокой влажности (5-6%) способствует также введение в количестве 1,5-2,0% лигносульфоната, служащего поверхностно-активным веществом и временной связкой на стадии укладки массы в желоб.

Изобретение поясняется примером получения огнеупорной массы для футеровки желобов доменных печей.

Применяемые материалы: карбид кремния (ГОСТ 26327-84), глина огнеупорная (ТУ 14-8-336-80), лигносульфонат (ТУ 2455-028-00279580-2004), углеродный концентрат тонкомолотый (ТУ 1914-109-72-2000), этиленгликоль (ГОСТ 19710-83), боксит китайский обожженный марки MID D фракции 0-7 мм, предварительно приготовленная путем мокрого помола боксита в шаровой мельнице вяжущая суспензия плотностью не менее 2,70 г/см3.

Для получения огнеупорной массы используют указанные компоненты в количествах, приведенных в формуле изобретения.

В смеситель интенсивного перемешивания вначале загружают боксит, карбид кремния, глину огнеупорную, углеродный концентрат и смешивают их в сухом состоянии в течение 1-2 минут. Затем добавляют бокситовую вяжущую суспензию, и компоненты вновь перемешивают. Далее вливают лигносульфонат и на последнем этапе этиленгликоль с окончательным перемешиванием массы в течение 2-3 минут. Готовую массу затаривают в мягкие контейнеры типа МКР.

Образцы из предложенной огнеупорной массы после обжига при температуре 1300°С имеют открытую пористость в пределах 20-23% и механическую прочность при сжатии в пределах 85-100 МПА. Масса сохраняет «живучесть» и формуемость при длительном хранении и отрицательной температуре.

Формовочные свойства (кажущуюся плотность образцов из уплотненной массы) определяли по ГОСТ Р 52541-2006 после хранения массы на холодном складе в течение месяца при температуре до минус 20°С. Образцы из заявляемой массы, сформованные методом пневмотрамбования без предварительного разогрева массы, имели кажущуюся плотность в пределах 2,65-2,75 г/см3, а у массы по прототипу отсутствовали формовочные свойства из-за смерзания ее в монолит.

Таким образом, создана набивная огнеупорная масса для футеровки желобов доменных печей, сохраняющая формовочные свойства в условиях длительного хранения и воздействия низких температур и отвечающая требованиям по показателям качества.

Источники информации

1. Патент RU 2189955 С04В 35/528, С04В 35/66, 2002.

2. Патент RU 2135428 С04В 33/22, С04В 35/66, 1999.

3. US 5064787 A, С04 В 35/18, С04В 35/63, С04В 35/66, 1991.

4. US 5147834 A, С04В 28/24, С04В 35/63, С04В 35/66,1992.

5. RU 2153480 C2, С04В 35/101, С04В 35/66, 2000.

Огнеупорная масса для футеровки желобов доменных печей, содержащая бокситовый заполнитель фракции 0-7 мм, карбид кремния, глину огнеупорную, лигносульфонат и бокситовую вяжущую суспензию, отличающаяся тем, что она дополнительно содержит алкандиол и углеродный концентрат при следующем соотношении компонентов, мас.%:

карбид кремния 14-30
глина огнеупорная 3-6
бокситовая вяжущая суспензия (по сухому) 27-30
лигносульфонат 1,5-2,0
алкандиол 0,5-0,8
углеродный концентрат 3-6
бокситовый заполнитель фракции 0-7 мм остальное,

при этом кажущаяся плотность образцов, сформованных из массы после выдержки при отрицательной температуре, составляет не менее 2,65 г/см3.



 

Похожие патенты:
Изобретение относится к способу изготовления корундовых огнеупоров методом виброформования, которые могут быть использованы в различных тепловых установках, устойчивых к воздействию высоких температур и агрессивных сред.
Изобретение относится к огнеупорной промышленности и может быть использовано при изготовлении футеровки тепловых агрегатов в металлургии, котлов, горелочных камней и др.
Изобретение относится к керамическому материаловедению на базе оксида алюминия с использованием керамических наночастиц и может быть использовано в процессах изготовления изделий с повышенными физико-механическими и термическими характеристиками.
Изобретение относится к изготовлению огнеупорных изделий для футеровки тепловых агрегатов с температурой службы не менее 1600°С. .

Изобретение относится к огнеупорной промышленности, в частности к производству огнеупорных изделий для воздухонагревателей, воздухопроводов горячего дутья доменных печей и прочих тепловых агрегатов.
Изобретение относится к способам получения пенокерамических фильтрующих материалов, применяемых в металлургической промышленности для фильтрации расплавов металлов.
Изобретение относится к технике производства огнеупорных материалов, которые могут быть использованы как защитные покрытия от коррозионных сред при технологических нагревах и в процессе изготовления деталей и полуфабрикатов.

Изобретение относится к металлургической промышленности, в частности к изготовлению муллитокорундовых тиглей для плавки стали и жаропрочных сплавов, охлаждаемых лопаток авиационных двигателей, а также огнеупорных капселей.
Изобретение относится к огнеупорной промышленности, в частности к производству огнеупорных высокопрочных неэлектропроводных изделий из корундовых и карбидокремниевых бетонов на алюмофосфатной связке
Изобретение относится к металлургии цветных металлов и может быть использовано для изготовления футерованных керамикой тиглей для выплавки лигатур, содержащих ванадий и/или молибден. Технический результат изобретения - создание тиглей с гарантированной стойкостью футеровки при эксплуатации. Способ включает формирование тигля из огнеупорной массы, которую готовят смешиванием 5-15%-ного водного раствора соды кальцинированной со шлаком - побочным продуктом алюмотермического производства выплавляемых лигатур, из расчета 0,07-0,15 л водного раствора кальцинированной соды на 1 кг шлака, выдержку, сушку и охлаждение тигля. Сушку тигля осуществляют выдержкой при температуре от 100 до 150°С в течение 1,0-1,5 часов, после чего температуру сушки увеличивают до 600-800°С и выдерживают в течение 9,5-11 часов. Изготовленный тигель имеет открытую пористость футеровки порядка 38-40%, водопоглощение порядка 13-18%, механическую прочность порядка 3-10 МПа.
Изобретение относится к металлургии цветных металлов и может быть использовано для изготовления футерованных керамикой тиглей для алюмотермической выплавки лигатур редких тугоплавких металлов. Способ изготовления керамических тиглей включает формирование тигля из огнеупорной массы, выдержку, сушку и охлаждение тигля. Огнеупорную массу готовят смешиванием измельченного шлака - побочного продукта алюмотермического производства выплавляемых лигатур, содержащих ванадий и/или молибден, суперпластификатора СП-1 и высокоглиноземистого цемента. Смешивают шлак с пластификатором из расчета 0,8-1,2 кг пластификатора на 200 кг шлака, полученную смесь разбавляют водой из расчета 1 дм3 на 14-15 кг шлака, смешивают до полного увлажнения смеси, затем вводят высокоглиноземистый цемент из расчета 0,5-1,5 кг на 12-14 кг шлака и перемешивают до однородной массы. Сушку тигля осуществляют выдержкой при температуре от 100 до 150°C в течение 2±0,5 часов, после чего температуру сушки увеличивают до 650°C и выдерживают в течение 10±0,5 часов. Технический результат изобретения заключается в получении высокопрочного огнеупорного керамического монолитнонабивного тигля с низкой теплопроводностью при малой энергоемкости способа его изготовления. 1 з.п. ф-лы, 1 табл.

Настоящее изобретение относится к огнеупорному составу, включающему в себя от 70% по массе до 98% по массе сыпучего огнеупорного материала и от 2% по массе до 30% по массе связующей фазы, включающей активный наполнитель и связующий агент, причем упомянутая связующая фаза по существу включает в себя исключительно реактивный андалузит, имеющий средний размер частиц d50 между 0,2 мкм и 2,0 мкм и узкое распределение частиц по размеру, имеющее ширину по размерам частиц в диапазоне меньше чем 2,5 мкм, в качестве активного наполнителя. 6 н. и 9 з.п. ф-лы, 5 ил., 3 табл., 2 пр.

Изобретение относится к огнеупорному изделию, применяемому при формовании стеклоизделия из стекломассы на основе системы Al-Si-Mg. Огнеупорное изделие содержит Al2O3 в количестве, составляющем по меньшей мере 90 вес.%, и легирующую добавку, содержащую оксид редкоземельного элемента, Ta, Nb, Hf или любую их комбинацию. Средний размер зерен в процессе спекания изделия не увеличивается более чем на 300%, соотношение геометрических размеров зёрен менее 4,0, скорость ползучести менее чем приблизительно 1,0×10-5 мкм/(мкм×ч). Огнеупорное изделие может быть изготовлено в виде огнеупорного блока или в виде стекольной формы с перепускным лотком, которая может использоваться при формовании листа стекла. При этом в процессе течения потока стекломассы на основе системы Al-Si-Mg вдоль области контакта стекольной формы со стекломассой образуется слой, включающий оксид Mg-Al. Технический результат изобретения - снижение эрозии стекольной формы и увеличение срока её службы в контакте с расплавом стекла. 2 н. и 7 з.п. ф-лы, 6 табл., 7 ил.

Изобретение относится к огнеупорному изделию. Технический результат изобретения заключается в повышении стойкости огнеупора к коррозии. Огнеупорное изделие содержит по меньшей мере 90 масс. % Al2O3; менее 3 масс. % SiO2 и первую легирующую добавку, содержащую оксид Та, Nb или их любое сочетание. 2 н. и 12 з.п. ф-лы, 10 ил.
Наверх