Система регулирования дебита скважины

Изобретение относится к системам регулирования дебита скважины и может быть применено для одновременно-раздельной эксплуатации пластов одной скважиной. Система содержит несколько трубчатых элементов, расположенных один в другом с каналами направления потоков флюидов из разных пластов скважины в разные каналы трубчатых элементов, закрепленных в обсадной трубе посредством пакеров. Каналы снабжены золотниковыми затворами с электроприводами управления, обеспечивающими раздельное перемещение потоков флюидов из разных пластов через разные каналы с помощью процессора и датчика измерения параметра флюида, установленного в каждом канале и функционально связанного с процессором автоматического управления клапаном в соответствии с информацией, полученной от датчика, и дальнейшее избирательное смешивание потоков в полости обсадной трубы. Трубчатые элементы закреплены в обсадной трубе верхним пакером, а входами соединены с муфтой направления раздельных потоков по разным каналам из разных пластов, которая центральным каналом соединена посредством хвостовика с заборщиком продукта из нижнего пласта скважины, закрепленным в обсадной трубе нижним пакером. Блок раздельной подачи и учета соединен патрубком с электроприводом погружного центробежного насоса, в котором помещен кабель связи для управления клапанами от кабеля электропитания и управления, связывающей электропривод насоса с пунктом электропитания и управления скважины. Технический результат заключается в повышении эффективности эксплуатации пластов скважины. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к нефтедобывающей промышленности, в частности к системам регулирования дебита скважины, и может быть использовано для одновременно-раздельной эксплуатации, по меньшей мере, двух пластов одной скважиной.

Известна система регулирования дебита скважины, содержащая несколько трубчатых элементов, расположенных один в другом с образованием, по меньшей мере, одного центрального канала и, по меньшей мере, двух кольцевых каналов с возможностью направления потоков из разных пластов в соответствующие им концентричные каналы, а также клапаны, выполненные с возможностью управления потоком в каждом из каналов. Клапаны размещены в кожухе ствола скважины с обеспечением возможности раздельного перемещения потоков через концентричные каналы и дальнейшего избирательного смешивания потоков из всех каналов в колонне насосно-компрессорных труб. Каждый канал связан с клапаном, имеющим привод. В центральном канале непосредственно над клапаном установлена пробка, блокирующая перемещение потока непосредственно из центрального канала в колонну насосно-компрессорных труб скважины. Система может дополнительно содержать, по меньшей мере, один контроллер с датчиком для измерения, по меньшей мере, одного параметра добываемого продукта, функционально связанные между собой, с возможностью автоматического управления, по меньшей мере, одним клапаном в соответствии с информацией, полученной от датчика. Измеряемый параметр может быть выбран из группы, включающей давление, температуру, химический состав, содержание воды, pH, содержание твердых частиц, склонность к образованию твердого осадка и удельное сопротивление. Система обеспечивает эффективное селективное регулирование дебита из большого числа пластов до смешивания внутри скважины посредством клапанов, установленных внутри скважины, без существенного усложнения и увеличения наземной и подземной компоновок (Патент RU №2320850 С2. Интеллектуальная внутрискважинная клапанная система управления извлечением флюидов из нескольких интервалов скважины и способ управления таким извлечением флюидов. - МПК E21B 34/06, E21B 43/14. - Опубл. 27.03.2008). Данная система принята за прототип.

Недостатком известной системы регулирования дебита скважины, принятой за прототип, является сложность конструкции, снижающей эффективность управления одновременно-раздельной эксплуатацией скважины.

Основной задачей, на решение которой направлено заявляемое изобретение, является обеспечение возможности в режиме реального времени менять режим эксплуатации каждого пласта в скважине и отслеживать фактические изменения параметров флюида скважинного продукта, включающий давление, температуру, химический состав, содержание воды, рН, содержание твердых частиц, склонность к образованию твердого осадка и удельное сопротивление.

Техническим результатом является повышение эффективности одновременно-раздельной эксплуатации скважины при надежном и оптимальном регулировании фазового состава флюида в режиме реального времени.

Указанный технический результат достигается тем, что в известной системе регулирования дебита скважины, содержащей несколько трубчатых элементов, расположенных один в другом с образованием центрального и кольцевых каналов направления потоков флюидов из разных пластов в разные каналы трубчатых элементов, последние закреплены в обсадной трубе скважины посредством пакеров, при этом каналы снабжены клапанами управления потоком флюида из каждого канала, имеющими отдельные приводы, соединенные с линией управления, обеспечивающими раздельное перемещение потоков флюидов из разных пластов через разные каналы с помощью, по меньшей мере, одного процессора и, по меньшей мере, одного датчика измерения параметра пластового флюида, функционально связанного с процессором автоматического управления, по меньшей мере, одним клапаном в соответствии с информацией, полученной от, по меньшей мере, одного датчика, и дальнейшее избирательное смешивание потоков флюидов из всех каналов согласно предложенному техническому решению, трубчатые элементы центрального и кольцевых каналов закреплены в обсадной трубе верхним пакером и входами соединены с муфтой направления раздельных потоков по разным каналам из разных пластов, для чего муфта центральным каналом соединена посредством хвостовика с заборщиком продукта из нижнего пласта скважины, закрепленным в обсадной трубе нижним пакером, на выходе трубчатые элементы центрального и кольцевых каналов выполнены с раструбом и герметично сопряжены с блоком раздельной подачи и учета флюида в каждом из каналов посредством стыковочного узла с адекватными входными каналами, в корпусе блока раздельной подачи и учета флюида в каждом из каналов установлены регулируемые клапаны с электроприводами, размещенные в обособленных каналах, сообщающихся с центральным и кольцевыми каналами трубчатых элементов через запорные седла регулируемых клапанов и каналы муфты перекрестного течения и стыковочного узла, при этом в стенке каждого обособленного канала выполнены окна для сообщения их с полостью обсадной трубы для дальнейшего избирательного смешивания потоков флюидов из всех каналов, а процессор автоматического управления регулируемыми клапанами размещен в блоке раздельной подачи и учета, последний, в свою очередь, соединен патрубком с электроприводом погружного центробежного насоса, в котором помещен кабель связи для управления процессором от кабеля электропитания и управления, связывающей электропривод насоса с пунктом электропитания и управления скважины;

она дополнительно содержит блок телеметрии, размещенный в патрубке между электроприводом насоса и блоком раздельной подачи и учета флюида в каждом из каналов, соединенный с кабелем электропитания и управления скважины и кабелем связи с процессором автоматического управления регулируемыми клапанами;

в качестве регулируемых клапанов в обособленных каналах блока раздельной подачи и учета флюида в каждом из каналов установлены золотниковые затворы с электроприводами.

Приведенный заявителем анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностями признаков, тождественными всем признакам заявленной системы регулирования дебита скважины, отсутствуют. Следовательно, заявляемое техническое решение соответствует условию патентоспособности «новизна».

Результаты поиска известных решений в данной области техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявляемого технического решения, показали, что они не следуют явным образом из уровня техники. Из определенного заявителем уровня техники не выявлена известность влияния предусматриваемых существенными признаками заявляемого технического решения преобразований на достижение указанного технического результата. Следовательно, заявляемое техническое решение соответствует условию патентоспособности «изобретательский уровень».

На приведенной фигуре представлена компоновка системы регулирования дебита скважины, состоящей из двух пластов.

В нижней части обсадной трубы 1 скважины расположены два разных продуктивных пласта А и В, которые снабжены фильтрами 2 и 3 и разобщены пакерами 4 и 5. Внутри обсадной трубы 1 размещена система регулирования дебита скважины, содержащая трубчатые элементы 6 и 7, расположенные один в другом с образованием центрального канала 8 и кольцевого канала 9, закрепленные в обсадной трубе 1 посредством верхнего пакера 5. Входы центрального канала 8 и кольцевого канала 9 трубчатых элементов 6 и 7 соединены с центральным каналом 10 и кольцевым каналом 11 муфты 12 для направления раздельных потоков флюидов из пластов А и В в сообщающие каналы 8 и 9 трубчатых элементов 6 и 7. Муфта 12 расположена в обсадной трубе 1 выше уровня верхнего пласта В скважины и соединена хвостовиком 13 с заборщиком 14 флюида из нижнего пласта А скважины, закрепленным в нижнем пакере 4, сообщающимся через полость хвостовика 13 с центральным каналом 10 муфты 12. Для регулирования дебитом скважины, в обсадной трубе 1 установлен блок 15 раздельной подачи и учета пластового флюида в каждом из каналов, который герметично сопряжен с раструбами трубчатых элементов 6 и 7 посредством стыковочного узла 16, выполненного с адекватными входными элементами с уплотнениями. В корпусе 17 блока 15 раздельной подачи и учета пластового флюида установлены датчики 18 и 19 измерения параметра пластового флюида и золотниковые затворы 20 и 21 с электроприводами 22 и 23 соответственно, которые размещены в обособленных каналах 24 и 25, сообщающихся с центральным и кольцевыми каналами 8 и 9 через запорные седла 26 и 27, каналы муфты 28 перекрестного течения флюидов и стыковочного узла 16. Для каждого золотникового затвора 20 и 21 в стенке каждого обособленного канала 24 и 25 выполнены окна 29 и 30 для сообщения каждого обособленного канала 24 и 25 с полостью 31 в обсадной трубе 1 для дальнейшего избирательного смешивания потоков флюидов из пластов А и В. В обсадной трубе 1 размещен погружной центробежный насос 32 с электроприводом 33, который соединен с колонной насосно-компрессорных труб 34. Электроприводы 22 и 23 золотниковых затворов 20 и 21 соединены с процессором 35 управления электроприводами 22 и 23 золотниковых затворов 20 и 21, размещенным в блоке 15 раздельной подачи и учета флюида, последний, в свою очередь, соединен патрубком 36 с электроприводом 33 погружного центробежного насоса 32, в котором помещен блок телеметрии 37, соединенный с процессором 35 управления электроприводами 22 и 23 золотниковых затворов 20 и 21 посредством кабеля связи 38, соединенной с кабелем 39 электропитания и управления, последней электропривод 33 погружного центробежного насоса 32 соединен с пунктом электропитания и управления системы регулирования дебита скважины, расположенным на поверхности земли.

Система регулирования дебита скважины с двумя пластами работает следующим образом.

При такой конструкции система регулирования дебита скважины устанавливается в обсадную трубу 1 скважины в два приема. Сначала устанавливается пакерная система, состоящая из трубчатых элементов 6 и 7, расположенных один в другом с образованием центрального канала 8 и кольцевого канала 9, закрепленных в верхнем механическом пакере 5, соединенных с муфтой 12, последняя соединена с хвостовиком 13 и заборщиком 14 продукта из нижнего пласта А скважины, закрепленным в нижнем механическом пакере 2, которая устанавливается в обсадную трубу 1 за один спуск колонны. После монтажа пакерной системы производят сборку и спуск компоновки, состоящей из блока 15 раздельной подачи и учета, соединенного патрубком 36 с электроприводом 33 и погружным центробежным насосом 32, соединенных с кабелем электропитания и управления 39. В патрубке 36 помещен блок телеметрии 37, соединенный с процессором 35 управления золотниковыми затворами 20 и 21, размещенными в блоке 15 раздельной подачи и учета пластовых флюидов кабелем связи 38, которые, в свою очередь, соединены с кабелем электропитания и управления 39. Спуск компоновки производится вместе с кабелем электропитания и управления 39 в обсадную трубу 1 завершается ее монтажом и герметичной посадкой в раструбы трубчатых элементов 6 и 7 стыковочного узла 16 с уплотнениями на ответных элементах блока 15 раздельной подачи и учета флюида в каждом из каналов. Электропривод 33 погружного центробежного насоса 32 соединяется кабелем электропитания и управления 39 с пунктом электропитания и управления системы регулирования дебита скважины, расположенным на поверхности земли.

После монтажа системы регулирования дебита скважины в обсадной трубе 1 в последней образуются разные каналы для отвода извлекаемых продуктов из разных пластов скважины. С включением в работу погружного центробежного насоса 32 скважинный флюид начинает раздельно поступать в обсадную трубу 1. При комбинации положений золотниковых затворов 20 и 21, когда проход из пласта В закрыт золотниковым затвором 21, пластовый продукт, поступающий из пласта А через фильтр 2, поднимается вверх по заборщику 14, минуя пакер 4, хвостовику 13, центральному каналу 10 муфты 12 и центральному каналу 8 трубчатого элемента 6, минуя пакер 5, затем по центральному каналу стыковочного узла 16, запорное седло 26 золотникового затвора 20 и полость обособленного канала 24, далее через соответствующее окно 29 в полость 31 обсадной трубы 1. Из полости 31 поток пластового флюида всасывается погружным центробежным насосом 32, последним флюид перекачивается на поверхность земли по колонне насосно-компрессорных труб 34. И при комбинации положений золотниковых затворов 20 и 21, когда проход из пласта А закрыт золотниковым затвором 20, пластовый флюид, поступающий из пласта В через фильтр 3, поднимается вверх по кольцевому каналу 11 муфты 12 и кольцевому каналу 9, образованному между трубчатыми элементами 6 и 7, минуя пакер 5, по кольцевому каналу стыковочного узла 16, запорное седло 27 золотникового затвора 21 и полость обособленного канала 25, далее через соответствующее окно 27 также в полость 31 обсадной трубы 1. Из полости 31 поток пластового флюида всасывается погружным центробежным насосом 32, последним продукт перекачивается на поверхность земли по колонне насосно-компрессорных труб 34. Таким образом происходит отбор скважинного флюида сначала из пласта А изолированно от пласта В или из пласта В изолированно от пласта А при полной изоляции пластов друг от друга независимо от давлений в пластах А и В. Возможность системы работать в таких режимах позволяет исследовать каждый пласт по отдельности, т.е. определить дебит, содержание воды и т.д., а также организовать периодическую откачку пластового флюида из каждого пласта с разными параметрами и с разной цикличностью, не останавливая работу всей скважины. В ходе комбинированного положения золотниковых затворов 20 и 21, когда проходы из пластов А и В дозированно открыты золотниковыми затворами 20 и 21, пластовые флюиды из пластов А и В поступают раздельно через разные каналы в полной изоляции пластов друг от друга независимо от пластовых давлений в полость 31 обсадной трубы 1 для дальнейшего избирательного смешивания в ней потоков флюидов из всех каналов. Из полости 31 смешанный поток всасывается погружным центробежным насосом 32, последним продукт перекачивается на поверхность земли по колонне насосно-компрессорных труб 34. По кабелю связи 38 подается питание на датчики 18 и 19 и управляющие сигналы на приводы 22 и 23 золотниковых затворов 20 и 21 блока 15 раздельной подачи и учета флюида в каждом из каналов. Также по нему в обратном направлении передается информация с блока телеметрии 37 и информация о степени открытия золотниковых затворов 20 и 21.

Измеряемые параметры скважинных флюидов могут контролироваться наземным обслуживающим персоналом скважины или, по меньшей мере, телеметрической системой, осуществляющим изменение рабочего состояния золотниковых затворов 20 и 21 для установления требуемого дебита скважины. Следует также отметить, что регулирование дебита скважины посредством электроприводов 22 и 23 для каждого из золотниковых затворов 20 и 21 позволяет создавать разность давлений между пластами и тем самым поддерживать дебит скважины на оптимальном уровне. Заложив в процессор управления золотниковыми затворами 20 и 21 блока 15 раздельной подачи и учета пластовых флюидов соответствующую программу, данный процесс можно автоматизировать. Измеряемый параметр продукта может быть выбран из группы, включающей давление, температуру, химический состав, содержание воды, pH, содержание твердых частиц, склонность к образованию твердого осадка и удельное сопротивление.

Использование предложенной системы регулирования дебита скважины позволит производить отбор скважинного флюида из каждого пласта оптимально, что значительно повысит эффективность одновременно-раздельной эксплуатации скважины.

1. Система регулирования дебита скважины, содержащая несколько трубчатых элементов, расположенных один в другом с образованием центрального и кольцевых каналов направления потоков флюидов из разных пластов в разные каналы трубчатых элементов, последние закреплены в обсадной трубе скважины посредством пакеров, при этом каналы снабжены клапанами управления потоком флюида из каждого канала, имеющими отдельные приводы, соединенные с линией управления, обеспечивающими раздельное перемещение потоков флюидов из разных пластов через разные каналы с помощью, по меньшей мере, одного процессора и, по меньшей мере, одного датчика измерения параметра пластового флюида, функционально связанного с процессором автоматического управления, по меньшей мере, одним клапаном в соответствии с информацией, полученной от, по меньшей мере, одного датчика, и дальнейшее избирательное смешивание потоков флюидов из всех каналов, отличающаяся тем, что трубчатые элементы центрального и кольцевых каналов закреплены в обсадной трубе верхним пакером и входами соединены с муфтой направления раздельных потоков по разным каналам из разных пластов, для чего муфта центральным каналом соединена посредством хвостовика с заборщиком продукта из нижнего пласта скважины, закрепленным в обсадной трубе нижним пакером, на выходе трубчатые элементы центрального и кольцевых каналов выполнены с раструбом и герметично сопряжены с блоком раздельной подачи и учета флюида в каждом из каналов посредством стыковочного узла с адекватными входными каналами, а в корпусе блока раздельной подачи и учета флюида в каждом из каналов установлены регулируемые клапаны с электроприводами, размещенные в обособленных каналах, сообщающихся с центральным и кольцевыми каналами трубчатых элементов через запорные седла регулируемых клапанов и каналы муфты перекрестного течения и стыковочного узла, при этом в стенке каждого обособленного канала выполнены окна для сообщения их с полостью обсадной трубы для дальнейшего избирательного смешивания потоков флюидов из всех каналов, а процессор автоматического управления регулируемыми клапанами размещен в блоке раздельной подачи и учета, последний, в свою очередь, соединен патрубком с электроприводом погружного центробежного насоса, в котором помещен кабель связи для управления процессором от кабеля электропитания и управления, связывающей электропривод насоса с пунктом электропитания и управления скважины.

2. Система по п.1, отличающаяся тем, что она дополнительно содержит блок телеметрии, размещенный в патрубке между электроприводом насоса и блоком раздельной подачи и учета флюида в каждом из каналов, соединенный с кабелем электропитания и управления скважины и кабелем связи с процессором автоматического управления регулируемыми клапанами.

3. Система по п.1, отличающаяся тем, что в качестве регулируемых клапанов в обособленных каналах блока раздельной подачи и учета флюида в каждом из каналов установлены золотниковые затворы с электроприводами.



 

Похожие патенты:

Изобретение относится к газодобывающей промышленности, в частности к глушению газовых скважин при проведении капитальных ремонтов в условиях катастрофических поглощений.

Изобретение относится к нефтегазодобывающей промышленности, в частности к конструкции пологих и горизонтальных скважин. .

Изобретение относится к нефтяной промышленности и может найти применение при разработке месторождения высоковязкой и битумной нефти. .
Изобретение относится к области добычи природного газа и может быть использовано в процессе освоения метаноугольных скважин. .

Изобретение относится к скважинной добыче нефти, газа, газоконденсата и других полезных ископаемых. .

Изобретение относится к нефтегазовой промышленности, в частности к способам глушения скважин. .

Изобретение относится к газодобывающей промышленности, в частности к добыче газа газлифтным способом, и может быть использовано для регулирования режима работы газовой скважины, эксплуатация которой осложнена наличием жидкости в потоке добываемого газа.

Изобретение относится к нефтедобывающей промышленности, в частности к системе заканчивания скважины. .

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке месторождений с применением газлифтных способов эксплуатации скважин

Изобретение относится к нефтегазодобывающей промышленности, а именно к разработке и эксплуатации нефтяных пластов с зонами различной проницаемости, в том числе с помощью боковых и боковых горизонтальных стволов из эксплуатационных колонн

Изобретение относится к области добычи полезных ископаемых, а именно к области добычи жидких текучих сред из буровых скважин

Изобретение относится к нефтяной промышленности и, в частности, к эксплуатации нефтедобывающей скважины с разделением пластовой продукции в скважине или эксплуатации водозаборной скважины, в добываемой пластовой жидкости которой имеется нефть

Изобретение относится к нефтегазодобывающей промышленности. Предложен способ оптимизации добычи в скважине, в котором управляют системой искусственного подъема в стволе скважины, отслеживают множество параметров добычи на поверхности и в стволе скважины. Строят модель скважины с вычисленными параметрами данных. Затем сравнивают измеренные данные на забое и поверхности скважины с данными модели и проверяют достоверность измеренных данных. Далее диагностируют расхождение между измеренными данными и смоделированными, по результатам которого осуществляют регулировку работы механизма искусственного подъема. Способ направлен на обеспечение расширения объема анализа скважины и компонентов системы добычи для эффективной оптимизации добычи в целом. 2 н. и 5 з.п. ф-лы, 16 ил.

Изобретение относится к растворам для глушения скважин. Способ обработки подземного пласта включает: закачивание в обсаженный, перфорированный ствол скважины, который рассекает пласт, раствора обращенной эмульсии для глушения скважины, содержащего: маслянистую непрерывную фазу, немаслянистую дисперсную фазу, эмульгирующий агент, по меньшей мере один разлагаемый материал и по меньшей мере один закупоривающий агент; контакт пласта с раствором для глушения скважины и предоставление возможности разлагаемому материалу, по меньшей мере, частично разложиться. Способ включает: получение раствора обращенной эмульсии для глушения скважины, содержащего: маслянистую непрерывную фазу, немаслянистую дисперсную фазу, эмульгирующий агент, по меньшей мере один разлагаемый материал и по меньшей мере один закупоривающий агент; закачивание этого раствора в обсаженный, перфорированный ствол скважины; формирование фильтрационной корки; и разрушение фильтрационной корки, позволяя разлагаемому материалу разрушаться. Способ включает: получение раствора обращенной эмульсии для глушения скважины, содержащего: маслянистую непрерывную фазу, немаслянистую дисперсную фазу, эмульгирующий агент, по меньшей мере один разлагаемый материал и по меньшей мере один закупоривающий агент; помещение раствора для глушения скважины в обсаженный, перфорированный ствол скважины; формирование фильтрационной корки; и разрушение фильтрационной корки, в котором гидролиз разлагаемого материала разрушает фильтрационную корку. Технический результат - снижение эффективности поступления и истечения флюидов между пластом и стволом скважины и минимизация повреждения пласта. 3 н. и 22 з.п. ф-лы, 2 табл., 5 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при разработке нефтяных залежей, представленных слоисто-неоднородными коллекторами, в том числе пластами с высокой расчлененностью и аномально низким пластовым давлением. Обеспечивает повышение нефтеизвлечения из пластов с высокой расчлененностью и аномально низким пластовым давлением за счет увеличения зоны дренирования пласта и активизации стока пластовой жидкости путем усиления сил, способствующих вытеснению пластовой жидкости. Сущность изобретения: способ предусматривает отбор пластовой жидкости с помощью глубинного насоса из вертикальных добывающих скважин, пробуренных с образованием зумпфа. В каждой вертикальной добывающей скважине создают каверну в нижней части продуктивного пласта, заполняют каверну наполнителем. Бурят дополнительно пологонаправленные добывающие скважины, соединяя забой каждой пологонаправленной скважины с каверной соответствующей добывающей вертикальной скважиной, а устья пологонаправленных добывающих скважин сообщают с атмосферой. Диаметр вертикальных добывающих скважин больше диаметра пологонаправленных скважин. Устья пологонаправленных скважин располагают, например, вблизи устьев соседних вертикальных добывающих скважин. Создание каверны осуществляют, например, путем гидромониторного размыва породы с помощью специального переводника с боковой гидромониторной насадкой, а заполнение каверны наполнителем осуществляют, например, намывом гравия. 3 з.п. ф-лы, 3 табл., 1 пр., 3 ил.
Изобретение предназначено для использования при газлифтной эксплуатации скважин. Обеспечивает повышение эффективности работы газлифтной скважины путем снижения вязкости водонефтяной эмульсии, получения не застывающего потока как в скважине, так и в подводном трубопроводе за счет использования высокой температуры на забое и рационального применения реагентов в зависимости от температуры на забое. Сущность изобретения: способ включает использование деэмульгатора и депрессорной присадки. Согласно изобретению при температуре на забое скважины до 80°С оба реагента подают совместно в нагнетательный рабочий агент - газ. При температуре на забое скважины выше 80°С депрессорную присадку подают в нагнетательный рабочий агент, а деэмульгатор вводят в продукцию на устье скважины. При этом для обводненной продукции до 40% используют водорастворимый деэмульгатор, а при обводненности продукции свыше 60% используют нефтерастворимый деэмульгатор. В интервале обводненности 40-60% используют любой из названных типов реагентов. 2 пр.
Наверх