Инжектирование воздуха в тракт компрессора газотурбинного двигателя



Инжектирование воздуха в тракт компрессора газотурбинного двигателя
Инжектирование воздуха в тракт компрессора газотурбинного двигателя
Инжектирование воздуха в тракт компрессора газотурбинного двигателя
Инжектирование воздуха в тракт компрессора газотурбинного двигателя
Инжектирование воздуха в тракт компрессора газотурбинного двигателя
Инжектирование воздуха в тракт компрессора газотурбинного двигателя
Инжектирование воздуха в тракт компрессора газотурбинного двигателя
Инжектирование воздуха в тракт компрессора газотурбинного двигателя
Инжектирование воздуха в тракт компрессора газотурбинного двигателя

 


Владельцы патента RU 2482339:

СНЕКМА (FR)

Компрессор газотурбинного двигателя содержит кольцевой картер (14) и кольцевой ряд лопаток спрямляющего аппарата с регулируемым углом установки. Каждая лопатка содержит перо (16), один конец которого соединен посредством пластины (17) с круглым контуром с цилиндрической радиальной цапфой (18), направляемой во вращение в соответствующем отверстии картера (14). Каждая лопатка при вращении перемещается вокруг оси, определенной цапфой лопатки, между первым и вторым положением. Каждая из пластин, по меньшей мере, некоторых лопаток содержит канал (40) подачи воздуха в проход (46), который сформирован в картере. Один конец прохода открывается в тракт компрессора для инжектирования воздуха в этот тракт на входе лопатки. Канал подачи, образованный в пластине, имеет конец, предназначенный для сообщения с соответствующим проходом картера, когда лопатка находится в своем первом положении, и перекрываемый картером, когда лопатка расположена в своем втором положении так, что расход инжектирования воздуха зависит от угла наклона лопаток. Улучшаются характеристики двигателя при низких или промежуточных режимах работы за счет совместного регулирования расхода инжектируемого воздуха и углового положения лопаток. 3 н. и 11 з.п. ф-лы, 9 ил.

 

Настоящее изобретение относится к компрессору газотурбинного двигателя, такого как турбореактивный или турбовинтовой двигатели, содержащему, по меньшей мере, один ряд спрямляющего аппарата с лопатками с изменяемым углом установки.

Лопатки с изменяемым углом установки расположены на наружном картере компрессора, причем каждая лопатка содержит перо, радиально наружный конец которого соединен посредством пластины по существу, с круглым контуром с радиальной цилиндрической цапфой, которая образует ось вращения лопатки и которая в целом центрируется и направляется во вращение в соответствующем отверстии наружного картера. Радиально внутренний конец лопатки обычно содержит вторую цилиндрическую цапфу, проходящую вдоль оси вращения лопатки, и приводится во вращении в отверстии внутреннего картера компрессора. Наружная цапфа лопатки соединена шатуном с кольцом управления, смещенным при вращении вокруг наружного картера силовым цилиндром или аналогичным образом. Вращение кольца управления, передаваемое шатуном, заставляет лопатки вращаться вокруг своей оси.

Угловая регулировка лопаток статора в газотурбинном двигателе предназначена для адаптации геометрии компрессора к месту его функционирования и, в частности, для оптимизации производительности и диапазона работы насоса этого газотурбинного двигателя, а также для сокращения потребления горючего при различных режимах полета.

Каждая из этих лопаток является перемещаемой при вращении вокруг своей оси между положением «открытия» и «полного открытия», в котором каждая лопатка проходит, по существу, параллельно продольной оси газотурбинного двигателя, и положением «закрытия» или «почти закрытия», в котором лопатки наклонены относительно оси газотурбинного двигателя и, таким образом, сокращают проходное сечение воздуха по направлению к ряду лопаток. Когда лопатки находятся в положении открытия, расход воздуха, циркулирующего в компрессоре, имеет максимальную величину, а когда лопатки находятся в положении закрытия, расход воздуха, циркулирующего в компрессоре, имеет минимальную величину (для заданного режима функционирования). Лопатки могут занимать промежуточные положения между этими двумя крайними положениями с целью изменения расхода воздуха, циркулирующего в компрессоре.

Когда газотурбинный двигатель функционирует при пониженном режиме или замедленном режиме, лопатки с регулируемым углом установки приводятся в положение закрытия, а в случае его функционирования в режиме полного хода (при взлете, например) лопатки приводятся в положение открытия.

При пониженном режиме, несмотря на закрытое положение лопаток статора угол падения между направлением течения воздуха в тракте компрессора и профилем лопаток может достигать высоких значений, которые вызывают расслоение воздуха, еще более сокращая проходное сечение для воздуха в направлении ряда лопаток. Эти зоны расслоения в основном локализуются на уровне радиально внутренних и наружных концов лопаток и исчезают, когда падение текучей среды на лопатки достигает более низких значений.

Известно ограничение этих расслоений путем инжектирования или нагнетания воздуха в соответствующие зоны. Однако геометрия такого инжектирования или нагнетания является в основном фиксированной и, если это впрыскивание или нагнетание предпочтительно при заданном режиме функционирования компрессора, то его постоянное присутствие, в том числе и при тех режимах, когда оно не является необходимым, может воздействовать на характеристики двигателя (уменьшая производительность и, таким образом, потребление). Кроме того, фиксированная геометрия инжектирования или нагнетания ограничивает способность оптимизировать диапазон работы насоса компрессора.

Задачей изобретения является устранение вышеуказанных недостатков простым, эффективным и экономичным образом.

Для решения этой задачи в изобретении предлагается компрессор газотурбинного двигателя, содержащий кольцевой картер и, по меньшей мере, один ряд спрямляющего аппарата, образованный кольцевым рядом лопаток с регулируемым углом установки, каждая из которых содержит перо, соединенное, по меньшей мере, одним концом посредством пластины, по существу, с круглым контуром, с цилиндрической радиальной цапфой, направляемой во вращение в соответствующем отверстии картера, причем каждая лопатка при вращении перемещается вокруг оси лопатки, определенной цапфой, между первым и вторым положением, отличающийся тем, что каждая из пластин, по меньшей мере, некоторых лопаток содержит канал подачи воздуха в проход, который сформирован в картере, и один конец которого открывается в тракт компрессора для инжектирования в этот тракт воздуха на вход лопатки, причем один конец канала подачи, образованного в пластине, предназначен для сообщения с соответствующим проходом картера, когда лопатка находится в своем первом положении, и перекрывается картером, когда лопатка расположена в своем втором положении так, что расход при инжектировании воздуха зависит от угла наклона лопаток.

Предпочтительно, чтобы лопатки перемещались между положением открытия и положением закрытия, а каналы подачи лопаток были предназначены для сообщения с проходами картера, когда лопатки находятся в положении закрытия или в промежуточном положении, и для перекрытия картером, когда лопатки находятся в положении открытия.

В последнем случае, когда лопатки находятся в положении открытия, каналы пластин перекрыты картером, и воздух не инжектируется в тракт. На производительность газотурбинного двигателя, таким образом, не влияет инжектирование воздуха, которое не является необходимым при повышенных режимах, при которых лопатки находятся в положении открытия. Когда лопатки находятся в положении закрытия или в промежуточном положении, каналы пластин сообщаются с проходами, образованными в картере, и воздух инжектируется на входе в тракт компрессора для уменьшения вышеупомянутых расслоений воздуха (расслоения могут встречаться на лопатках статора или на лопатках подвижного колеса, расположенного на выходе), что улучшает характеристики газотурбинного двигателя при низких или промежуточных режимах работы.

Иначе говоря, регулировка углового положения лопаток статора позволяет регулировать расход воздуха, инжектируемого в тракт компрессора, этот расход является нулевым при режиме полного хода для того, чтобы не создавать неблагоприятных условий и не искажать характерного потребления двигателя, и имеет значение, определенное при низком режиме или при промежуточном режиме, для уменьшения расслоения воздуха на лопатках спрямляющего аппарата. Максимальный расход инжектируемого воздуха является, например, менее 5% расхода воздуха, циркулирующего по тракту компрессора. Этот расход изменяется в зависимости от угла установки лопаток и может достигать средних значений, когда лопатки находятся в промежуточном положении. Расход инжектируемого воздуха может быть точно настроен путем контролирования сечения каналов, образованных в пластине и картере.

Предпочтительно, чтобы проходы, сформированные в картере, открывались в тракт компрессора, на входе ряда спрямляющего аппарата или на входе подвижного колеса или ступени спрямляющего аппарата, расположенной перед компрессором. Вход прохода в картер открывается предпочтительно в цилиндрическую стенку выемки гнезда пластины лопатки. Согласно другому признаку изобретения выход канала каждой пластины может быть расположен по периферийному краю этой пластины.

Выход канала каждой пластины может иметь по существу круглую, треугольную, продолговатую, прямоугольную или трапециевидную форму.

Вход канала подачи каждой пластины может открываться в тракт компрессора, например, со стороны спинки пера лопатки для забора воздуха в этот тракт. Таким образом, создается рециркуляция воздуха в спрямляющем аппарате с выхода на вход. Забор воздуха со стороны спинки пера лопатки позволяет ограничить вышеупомянутое расслоение воздуха. И в действительности, именно на уровне спинки пера лопаток воздух, циркулирующий в тракте, подвержен явлению повторного сжатия, что благоприятствует созданию зон расслоения вблизи задней кромки лопатки.

В качестве варианта, канал каждой пластины может быть соединен на входе с, по существу, радиальным каналом, образованным в цапфе лопатки и на выходе соединенным с каналом забора воздуха, исходящим, например, из тракта компрессора.

Инжектирование воздуха может осуществляться на уровне радиально наружных концов или на уровне радиально внутренних концов лопаток спрямляющего аппарата, и даже на обоих концах. Инжектирование воздуха на уровне одного из концов лопатки позволяет избежать расслоения воздуха на лопатке, в частности в зонах, близких к картеру (радиально наружные или радиально внутренние концы), и оказывать положительное влияние на все его радиальное пространство.

Изобретение относится также к газотурбинному двигателю, такому как турбореактивный, турбовинтовой самолетный двигатель, турбодвигатель вертолета или промышленная машина, отличающемуся тем, что содержит компрессор вышеописанного типа.

И, наконец, изобретение относится к лопатке спрямляющего аппарата с регулируемым углом установки для компрессора вышеописанного типа, отличающейся тем, что она содержит перо, соединенное на одном конце посредством пластины по существу с круглым контуром с цилиндрической цапфой, определяющей ось вращения лопатки, причем пластина содержит канал, один конец которого открывается на ее периферийной кромке.

Другой конец канала может быть соединен с, по существу, радиальным каналом, образованным в цилиндрической цапфе. Как вариант, другой конец канала открывается на поверхность пластины, расположенной со стороны пера лопатки.

Другие признаки и преимущества изобретения будут более понятны из нижеследующего описания, при этом описание приведено в рамках иллюстративного, не носящего ограничительный характер, примера, со ссылкой на прилагаемые чертежи, на которых:

Фиг.1 показывает частичный схематичный вид половины по осевому разрезу спрямляющего аппарата компрессора газотурбинного двигателя;

Фиг.2 показывает схематичный частичный вид сверху лопатки с регулируемым углом установки в положении закрытия или почти закрытия;

Фиг.3 показывает вид в разрезе по линии III-III' на Фиг.2;

Фиг.4 показывает вид, соответствующий виду, проиллюстрированному на Фиг.2 и представляющему лопатку с регулируемым углом установки в положении открытия или полного открытия;

Фиг.5 показывает вид в разрезе по линии V-V' на Фиг.4;

Фиг.6 показывает схематичный частичный вид сверху варианта осуществления лопатки с регулируемым углом установки в положении закрытия;

Фиг.7 показывает вид в разрезе по линии VII- VII' на Фиг.6;

Фиг.8 показывает вид, соответствующий виду, проиллюстрированному на Фиг.6 и представляющему лопатку с регулируемым углом установки в положении открытия;

Фиг.9 показывает вид в разрезе по линии IX- IX' на Фиг.8.

Обратимся сначала к Фиг.1, на которой представлен ряд спрямляющего аппарата лопаток 10 с регулируемым углом установки компрессора высокого давления газотурбинного двигателя, эти лопатки 10 равномерно распределены вокруг продольной оси А газотурбинного двигателя и проходят, по существу, радиально между внутренним картером 12 и наружным картером 14 компрессора.

Каждая лопатка 10 содержит перо 16 лопатки, соединенное своим радиально наружным концом посредством пластины 17 с радиальной цилиндрической цапфой 18, а посредством второй пластины 19 своим радиально внутренним концом с радиальной цилиндрической цапфой 20, внутренняя цапфа 20 и наружная цапфа 18 определяют ось 22 вращения лопатки.

Наружная цилиндрическая цапфа 18 вводится в цилиндрический канал 24 наружного картера 14 и направляется во вращение в этом канале цилиндрическими кольцами 26. Внутренняя цилиндрическая цапфа 20 введена в цилиндрическое гнездо внутреннего картера 12 и при помощи цилиндрической втулки 28 центруется и направляется во вращение в этом гнезде.

Перо 16 каждой лопатки 10 содержит нижнюю поверхность 30 и спинку 32, соединенные между собой передней кромкой на входе и задней кромкой на выходе газа, циркулирующего в тракте компрессора. Внутренняя пластина 19 и наружная пластина 17 имеют по существу круглый контур и расположены в выемках, имеющих форму, дополняющую форму внутреннего картера 12 и наружного картера 14 соответственно.

Лопатки 10 перемещается при вращении вокруг своих осей 22 между положением «закрытия» или «почти закрытия», представленным на Фиг.2, и положением «открытия» и «полного открытия», представленным на Фиг.4.

В положении закрытия, представленном на Фиг.2, перья 16 лопаток наклонены относительно оси газотурбинного двигателя и образуют между собой минимальное проходное сечение воздуха по тракту. Лопатки 10 приводятся в это положение, когда газотурбинный двигатель работает на низком или замедленном режиме работы, таким образом, расход воздуха, циркулирующего в компрессоре, принимает минимальное значение.

В положении открытия, представленном на Фиг.4, перья 16 лопаток проходят, по существу, параллельно продольной оси А газотурбинного двигателя так, что проходное сечение для прохода воздуха между лопатками максимально. Лопатки 10 приводятся в это положение при работе газотурбинного двигателя на полном ходу, и расход воздуха, циркулирующего в компрессоре, имеет максимальную величину.

В положении закрытия течение воздуха на перьях 16 лопаток имеет сильный наклон, что вызывает расслоение воздуха на перьях 16 лопаток, эти расслоения исчезают, когда лопатки 10 близки к своим номинальным условиям функционирования.

Изобретение позволяет по возможности исключить эти недостатки благодаря инжектированию воздуха на вход лопаток 10 на уровне радиально внутренних и/или внешних концов перьев лопаток, при этом расход инжектируемого воздуха является максимальным, когда лопатки находятся в положении закрытия во избежание возникновения указанного расслоения воздуха, и нулевым, когда лопатки находятся в положении полного открытия во избежание негативного влияния на характеристики газотурбинного двигателя, работающие на повышенных режимах. С этой целью расход инжектируемого воздуха зависит от угла установки лопаток 10.

Согласно настоящему изобретению воздух, предназначенный для инжектирования в тракт, подводится по каналам, образованным во внутренней пластине и/или наружной пластине, по меньшей мере, некоторых лопаток ряда компрессора, при этом эти каналы сообщаются с соответствующими проходами в картере компрессора для подвода воздуха вплоть до тракта.

Когда внутренняя пластина 19 содержит такие воздушные каналы, проходы для воздуха образованы во внутреннем картере 12, а когда наружная пластина 17 содержит такие воздушные каналы, проходы воздуха образованы в наружном картере 14.

Для большей ясности, описанные ниже примеры осуществления изобретения относятся только к воздушным каналам, образованным в наружных пластинах 17 лопаток и предназначенным для сообщения с соответствующими проходами в наружном картере 14. Тем не менее, эти примеры могут быть применены к внутренним пластинам 19 лопаток и внутреннему картеру 12.

Согласно варианту осуществления изобретения, представленному на Фиг.2-5, канал 40 подачи воздуха образован в пластине 17 каждой лопатки 10. Этот канал 40 по существу является прямоугольным и проходит по существу радиально относительно оси 22 вращения лопатки. Он открывается с одного конца на периферийную кромку пластины 17, а его противоположный конец соединен с другим радиально внутренним каналом 42, который проходит, по существу, радиально относительно оси цапфы 18 лопатки. Радиально наружный конец этого канала 42 соединен подходящими средствами со средствами забора воздуха в компрессор на выходе. Выход 44 канала 40, расположенный на периферии пластины, имеет по существу круглую, треугольную, продолговатую, прямоугольную или трапециевидную форму и предназначен для сообщения с проходом 46, образованным в картере 14, когда лопатки находятся в положении закрытия (Фиг.2 и 3), и перекрывается картером, когда лопатки находятся в положении открытия (Фиг.4 и 5).

Проход 46 картера имеет по существу L-образную форму и открывается с одного конца на цилиндрическую стенку 48 выемки 17, в которой расположена пластина 17, его другой конец открывается в тракт компрессора для инжектирования воздуха в этот тракт (стрелка 50). Выход 52 прохода 46, открывающийся на стенку 48, может иметь любую форму. Особенные геометрические формы выходов 44 каналов 40 позволяют изменять расход воздуха, проходящего через эти каналы, линейным или не линейным образом при перемещении вращением лопаток вокруг своих осей.

Когда лопатки 10 находятся в положении закрытия (Фиг.2 и 3), каналы 40 пластин расположены на одной линии с проходами 46 картера. И, таким образом, воздух циркулирует в каналах 42 цапф, в каналы 40 платформы, и затем в проходах 46 картера, и после воздух инжектируется в тракт компрессора (стрелка 50) для противодействия расслоению воздуха на перьях 16 лопаток 10. Расход инжектируемого воздуха в тракт имеет в этом случае максимальное значение.

Когда лопатки 10 находятся в положении открытия (Фиг.4 и 5), каналы 40 пластины не сообщаются с проходами 46 картера, и, таким образом, инжектирование воздуха в тракт компрессора не происходит. В этом положении выходы 44 каналов пластин перекрываются стенкой 48 выемки 14 картера, а входы прохода в 46 картера перекрываются периферийными кромками пластины 17.

Точная калибровка расхода инжектируемого воздуха в тракте может быть произведена путем контроля сечения каналов и проходов, образованных в пластине и картере.

Лопатки 10 могут занимать одно или несколько промежуточных положений между положениями, представленными на Фиг.2 и 4, при этом расход инжектируемого воздуха зависит от проходного сечения для воздуха в каналах 40 пластины и проходов 46 картера.

В варианте осуществления, представленном на Фиг.6-9, проходы 46 картера идентичны проходам, представленным на Фиг.2-5.

Каналы 54 пластины 17 проходят по части поперечного размера пластин и имеют по существу L-образную форму. Они содержат выход 56, открывающийся на периферийную кромку пластины 17, и вход, открывающийся на поверхность пластины, расположенный со стороны пера 16 лопатки. Этот вход канала 54 открывается со стороны спинки пера 16 лопатки, где воздух слегка разряжен. Выходы 56 каналов 54, расположенные на периферийных кромках пластины, имеют в представленном примере по существу овальную или продолговатую форму.

На Фиг.6 и 7 представлена лопатка 10 в положении закрытия, при котором канал 54 соответствующей пластины сообщается с проходом картера 14. Таким образом, часть расхода воздуха, циркулирующего по тракту компрессора, отбирается (стрелка 58) в каналы 54 пластины, эта часть протекает в этих каналах в направлении с выхода на вход, а затем протекает по проходу 46 картера для повторного инжектирования на вход лопатки.

Когда лопатки 10 находятся в положении открытия, на Фиг.8 и 9, проходы 46 и каналы 54 не сообщаются друг с другом.

Проходы 46, образованные в картере 14, могут открываться в тракт компрессора непосредственно на входе ряда лопаток 10. Как вариант, эти проходы могут простираться по заданному размеру в картере и в заданном направлении и открываться в тракт на входе подвижного колеса компрессора или на входе другого ряда спрямляющего аппарата компрессора.

1. Компрессор газотурбинного двигателя, содержащий кольцевой картер (14) и, по меньшей мере, один ряд спрямляющего аппарата, образованный кольцевым рядом лопаток (10) с регулируемым углом установки, каждая из которых содержит перо (16), один конец которого соединен посредством пластины (17), по существу, с круглым контуром, с цилиндрической радиальной цапфой (18), направляемой во вращение в соответствующем отверстии картера (14), причем каждая лопатка при вращении перемещается вокруг оси, определенной цапфой лопатки, между первым и вторым положением, отличающийся тем, что каждая из пластин, по меньшей мере, некоторых лопаток содержит канал (40, 54) подачи воздуха в проход (46), который сформирован в картере, и один конец которого открывается в тракт компрессора для инжектирования воздуха в этот тракт на входе лопатки, причем канал подачи, образованный в пластине, имеет конец (44, 56), предназначенный для сообщения с соответствующим проходом картера, когда лопатка находится в своем первом положении, и перекрываемый картером, когда лопатка расположена в своем втором положении так, что расход инжектирования воздуха зависит от угла наклона лопаток.

2. Компрессор по п.1, отличающийся тем, что лопатки (10) перемещаются между положением открытия и положением закрытия, при этом каналы подачи лопаток сообщаются с проходами (46) картера (14), когда лопатки находятся в положении закрытия или в промежуточном положении, и перекрываются картером, когда лопатки находятся в положении открытия.

3. Компрессор по п.1, отличающийся тем, что каналы подачи (40, 54) образованы в радиально наружных пластинах (17) лопаток и предназначены для сообщения с проходами (46), образованными в наружном картере (14), окружающем лопатки.

4. Компрессор по п.1, отличающийся тем, что каналы подачи (40, 54) образованы в радиально внутренних пластинах (19) лопаток и предназначены для сообщения с проходами (46), образованными во внутреннем картере (14), окруженном лопатками.

5. Компрессор по п.1, отличающийся тем, что конец (44, 56) канала подачи пластины, перекрываемый картером, находится на периферийной кромки этой пластины.

6. Компрессор по п.1, отличающийся тем, что канал (54) подачи пластины (17) открывается на своем втором конце в тракт компрессора на выходе лопаток для забора воздуха в этот тракт.

7. Компрессор по п.1, отличающийся тем, что канал (40) подачи пластины (17) соединен с, по существу, радиальным каналом (42), образованном в цапфе (18) лопатки и соединенном на своем радиально наружном конце с каналом забора воздуха в тракт компрессора на выходе ряда спрямляющего аппарата.

8. Компрессор по п.1, отличающийся тем, что перекрываемый конец (44, 56) канала пластины (17) имеет, по существу, круглую, треугольную, продолговатую, прямоугольную или трапециевидную форму.

9. Компрессор по п.1, отличающийся тем, что канал (46) картера открывается в тракт компрессора на входе предшествующей ступени спрямляющего аппарата или колеса компрессора.

10. Компрессор по п.1, отличающийся тем, что канал (46) картера проходит вверх от выемки гнезда пластины (17) лопатки.

11. Газотурбинный двигатель, в частности турбореактивный, турбовинтовой самолетный двигатель, турбодвигатель или промышленная установка, отличающийся тем, что содержит компрессор по п.1.

12. Лопатка спрямляющего аппарата с регулируемым углом установки для компрессора по п.1, отличающаяся тем, что она содержит перо (16), по меньшей мере, один конец которого соединен посредством пластины (17), по существу, с круглым контуром, с цилиндрической цапфой (18), определяющей ось (22) вращения лопатки, причем пластина содержит канал (40, 54), один конец которого открывается на ее периферийной кромке.

13. Лопатка по п.12, отличающаяся тем, что второй конец канала (40) соединен с другим каналом (42), образованным в цилиндрической цапфе (18).

14. Лопатка по п.12, отличающаяся тем, что второй конец канала (40) открывается на поверхность пластины, расположенной со стороны пера лопатки.



 

Похожие патенты:

Изобретение относится к лопастным турбомашинам и касается способа передачи потенциальной и кинетической энергии жидкой или газообразной среде. .

Изобретение относится к компрессоростроению и насосостроению. .

Изобретение относится к области машиностроения, энергетики, нефтепереработки, в частности к способам и устройствам для снижения уровня кавитации в гидравлических машинах, трубопроводах, системах переработки жидкостей.

Изобретение относится к области насосостроения, в частности к многоступенчатым центробежным насосам. .

Изобретение относится к компрессоростроению, а именно к центробежным и диагональным компрессорам. .

Изобретение относится к машиностроению, в частности к лопастным машинам для нагнетания воздуха, а также к лопастям (Л) движителей. .

Изобретение относится к области компрессоростроения, в частности к осевым компрессорам, и позволяет повысить КПД компрессора путем уменьшения воздействия вихревого течения на основной поток рабочего тела.

Изобретение относится к вентиляторным установкам регулируемой производительности. .

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД.

Изобретение относится к способу распознавания неисправности «rotating stall» (вращательный отрыв потока) в компрессоре, который приводится в действие с помощью питаемого полупроводниковым преобразователем трехфазного электродвигателя.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД.

Изобретение относится к вентиляторостроению, может быть использовано в рабочих колесах осевых вентиляторов и обеспечивает при его использовании повышение ремонтопригодности и эксплуатационной экономичности осевых вентиляторов.

Изобретение относится к управлению компрессорными установками, эксплуатируемыми в различных отраслях народного хозяйства, особенно для шахтных предприятий горной промышленности.

Изобретение относится к области электротехники и может быть использовано для принудительного воздушного охлаждения блоков пуско-тормозных резисторов (БПТР) электровоза с коллекторными тяговыми электродвигателями (ТЭД), работающими от высоковольтной контактной сети постоянного тока с напряжением 3000 В.

Изобретение относится к способу бесперебойной работы установки сжижения газа. .

Изобретение относится к области компрессоростроения, в частности к системам защиты от помпажа турбокомпрессоров, и может быть использовано в различных отраслях промышленности.
Наверх