Способ предотвращения образования и роста углеродистых отложений на стенках теплообменных каналов

Изобретение относится к области энергетики, в частности к способам предотвращения отложений на стенках теплообменных каналов, и может быть применено в энергоустановках многоразового использования на жидких углеводородных горючих. Технический результат заключается в предотвращении отложений на стенках теплообменных каналов. Для этого предложен способ, включающий применение двух теплоносителей с разными температурами, с регулированием их расходов, причем один из теплоносителей выполняют в виде жидкого углеводородного горючего (охладителя), на поверхности стенок теплообменных каналов, контактирующих с жидким углеводородным горючим (охладителем), устанавливают термопары, при помощи которых определяют текущую температуру данной поверхности и поддерживают температуру до заданной, не превышающей ста градусов по шкале Цельсия, являющейся температурой начала осадкообразования, причем в этот момент для снижения температуры поверхности стенок теплообменных каналов регулирование расхода одного из теплоносителей, выполненного в виде углеводородного горючего (охладителя), производят путем увеличения скорости его прокачки при любых давлениях внутри теплообменного аппарата. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области энергетики, в частности к способам предотвращения отложений на стенках теплообменных каналов теплообменных аппаратов, и может быть применено в энергоустановках многоразового использования на жидких углеводородных горючих (УВГ) и охладителях (УВО) различного назначения и базирования.

Известно, что теплообменные аппараты (ТА) используются с целью охлаждения или нагрева теплоносителей: «Теплообменные аппараты с интенсифицированным теплообменом» авторов Гортышов Ю.Ф., Олимпиев В.В. Казань: Изд-во Казан, гос. техн. ун-та, 1999. 176 с. [1].

Недостатком данных аппаратов является подверженность при повышенных температурах осадкообразованию на стенках ТА при применении жидких УВГ и УВО в качестве одного из теплоносителей.

На осадкообразование влияют разные факторы: температура УВГ (УВО) и стенки топливоподающего (охлаждающего) канала, степень шероховатости канала, вид материала стенки канала, состав УВГ (УВО) и др. Одним из главных факторов возникновения твердого углеродистого осадка является температура 100°С и более. Осадкообразование ведет к засорению, к теплоизоляции и перегреву каналов ТА, т.е. данный процесс может привести к преждевременному выходу из строя топливоподающей и охлаждающей аппаратуры [2-6].

Известен «Способ предупреждения образования отложений в межтрубном пространстве кожухотрубного теплообменника» авторов Михайлов Г.М., Захаров В.В., Тябин Н.В., Хворостухин В.А., Авторское свидетельство на изобретение СССР №408598; кл. F28F 19/00; Бюл. №47 от 23.12.84. [7], в котором с целью повышения экономичности псевдоожижение мелкозернистого материала, помещенного в межтрубное пространство, осуществляют с помощью жидкого теплоносителя в процессе теплообмена.

Наиболее близким по технической сущности к заявляемому изобретению является «Способ предотвращения отложений на стенках теплообменных каналов» авторов Юрков О.И., Змушко B.C., Авторское свидетельство на изобретение СССР №754195, кл. F28F 19/00; Бюл. №29 от 07.08.80. [8], в котором путем заполнения теплообменных каналов частицами мелкозернистого материала, псевдоожижаемыми с помощью циркулирующих по каналам теплообменивающихся сред, предусмотрено предотвращение обледенения стенок каналов при использовании в качестве теплообменивающихся сред приточного и вытяжного воздуха, при этом циркуляцию вытяжного воздуха осуществляют со скоростью в 1,25-1,4 раза превышающей скорость циркуляции приточного воздуха.

Недостатком аналога [7] и прототипа [8] заявляемого изобретения является отсутствие средств и методов борьбы с углеродистыми отложениями на нагретых стенках каналов ТА, контактирующих с жидким УВГ (УВО).

Решаемой задачей заявляемого изобретения является повышение эффективности борьбы с осадкообразованием и ростом углеродистых отложений на стенках теплообменных каналов при использовании в виде одного из теплоносителей жидкого УВГ (УВО).

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в обеспечении эффективного способа предотвращения осадкообразования и роста углеродистых отложений на стенках теплообменных каналов, охлаждаемых жидким УВГ (УВО), являющимся одним из теплоносителей.

Технический результат достигается тем, что в способе предотвращения образования и роста углеродистых отложений на стенках теплообменных каналов путем применения двух теплоносителей с разными температурами, с регулированием их расходов, один из теплоносителей выполняют в виде жидкого углеводородного горючего (охладителя), при этом на поверхности стенок теплообменных каналов, контактирующих с жидким углеводородным горючим (охладителем), устанавливают термопары, при помощи которых определяют текущую температуру данной поверхности и поддерживают температуру до заданной, не превышающей ста градусов по шкале Цельсия, являющейся температурой начала осадкообразования, причем в этот момент для снижения температуры поверхности стенок теплообменных каналов регулирование расхода одного из теплоносителей, выполненного в виде углеводородного горючего (охладителя), производят путем увеличения скорости его прокачки при любых давлениях внутри теплообменного аппарата.

Для обеспечения интенсификации теплообмена внутри теплообменного аппарата поддерживают зону критических давлений жидкого углеводородного горючего (охладителя).

В заявляемом изобретении рассматривается способ предотвращения осадкообразования на нагретых стенках теплообменных каналов, погруженных в среду жидкого УВГ (УВО) в условиях вынужденной конвекции. Экспериментально установлено [6], что негативный процесс осадкообразования на нагретой поверхности можно предотвратить если обеспечить понижение температуры стенки до 100°С и ниже. Этого можно достичь путем регулирования массовой скорости прокачки жидкого УВГ (УВО) через ТА, а также путем создания и поддержания зоны критических давлений УВГ (УВО). Например, для жидкого УВГ (УВО) марки ТС-1 зона критических давлений находится в пределах от (1,6-2,2) МПа, а для РГ-1-(1,8-2,4) МПа. В этой зоне коэффициент теплоотдачи увеличивается в 2-3 раза за счет повышения коэффициента теплофизических свойств (ТФС) «В» [4]. Этот эффект можно использовать не только для интенсификации теплоотдачи к жидким УВГ (УВО), но и для обеспечения охлаждения нагретых стенок до необходимых температур, при которых не происходит процесс осадкообразования. Кроме того, понижается необходимость в регулировании скорости прокачки горячего теплоносителя внутри труб ТА.

Для пояснения технической сущности изобретения рассмотрим фиг.1.

На фиг.1 изображен рекуперативный кожухотрубный ТА, где

1 - кожух с размещенными внутри трубами 2; 2 - трубы; 3 - входной патрубок; 4 - трубная решетка; 5 - входной патрубок подвода жидкого УВГ (УВО); 6 - термопары; 7 - трубная решетка; 8 - выходной патрубок; 9 - выходной патрубок отвода жидкого УВГ (УВО).

Предлагаемый способ осуществляется следующим образом:

При подаче жидкого УВГ (УВО) через входной патрубок 5 жидкое УВГ (УВО) омывает внешнюю поверхность труб 2 и выходит через выходной патрубок 9. Другой теплоноситель подается через входной патрубок 3, проходит внутри труб 2 и выходит через выходной патрубок 8. Термопары 6 установлены на внешней поверхности труб 2.

При приближении температуры внешней поверхности труб 2 к заданной температуре 100°С (по показаниям термопар), являющейся температурой начала осадкообразования, увеличивают расход охлаждающего теплоносителя (например, УВГ (УВО) через патрубки 5, 9) с целью поддержания температуры внешней поверхности труб 2 ниже, чем 100°С. Для интенсификации теплообмена поддерживают зону критических давлений жидкого УВГ (УВО) внутри ТА. Таким образом можно предотвратить осадкообразование и дальнейший рост углеродистых отложений на нагретых поверхностях труб 2. Создание и поддержание зоны критических давлений жидкого УВГ (УВО) и регулирование его скорости прокачки снаружи труб 2 позволяет исключить необходимость регулирования скорости прокачки горячего теплоносителя внутри труб 2, т.е. практически при любом нагреве наружной поверхности стенок труб 2 в ТА они гарантированно охлаждаются до температуры ниже 100°С.

Научной новизной данного изобретения является:

поддержание температуры наружной поверхности теплообменных каналов ТА, контактирующей с жидким УВГ (УВО), не выше ста градусов по шкале Цельсия для предотвращения образования и роста углеродистых отложений на стенках теплообменных каналов, регулируя расход одного из теплоносителей в виде жидкого УВГ (УВО) при любых давлениях без необходимости регулирования расхода другого теплоносителя (внутри теплообменных каналов ТА);

поддержание зоны критических давлений жидкого углеводородного горючего (охладителя) внутри теплообменного аппарата для дополнительной интенсификации теплообмена и гарантированного охлаждения стенок теплообменных каналов до температуры не выше ста градусов по шкале Цельсия.

Применение данного изобретения позволит повысить эффективность способа предотвращения и роста отложений в различных теплообменных аппаратах на жидких УВГ (УВО) в земных и космических условиях.

Источники информации

1. Гортышов Ю.Ф., Олимпиев В.В. Теплообменные аппараты с интенсифицированным теплообменом. Казань: Изд-во Казан, гос. техн. ун-та, 1999. 176 с.

2. Яновский Л.С., Иванов В.Ф., Галимов Ф.М., Сапгир Г.Б. Коксоотложения в авиационных и ракетных двигателях. Казань: Абак, 1999. 284 с.

3. Большаков Г.Ф. Физико-химические основы образования осадков в реактивных топливах. Л.: Химия, 1972. 232 с.

4. Алтунин В.А. Исследование особенностей теплоотдачи к углеводородным горючим и охладителям в энергетических установках многоразового использования. Книга первая. Казань: Изд-во Казан. гос. ун-та им. В.И. Ульянова-Ленина, 2005. 272 с.

5. Алтунин К.В, Гортышов Ю.Ф., Галимов Ф.М., Дресвянников Ф.Н., Алтунин В.А. Проблемы осадкообразования в энергоустановках на жидких углеводородных горючих и охладителях // Энергетика Татарстана. №2. 2010. С.10-17.

6. Алтунин К.В., Гортышов Ю.Ф., Галимов Ф.М., Дресвянников Ф.Н., Алтунин В.А. Способы борьбы с осадкообразованием в энергоустановках на жидких углеводородных горючих и охладителях. // Энергетика Татарстана. №3. 2010. С.43-51.

7. Михайлов Г.М., Захаров В.В., Тябин Н.В., Хворостухин В.А. Способ предупреждения образования отложений в межтрубном пространстве кожухотрубного теплообменника. Авторское свидетельство на изобретение СССР №408598; кл. F28F 19/00; Бюл. №47 от 23.12.84.

8. Юрков О.И., Змушко B.C. Способ предотвращения отложений на стенках теплообменных каналов. Авторское свидетельство на изобретение СССР №754195, кл. F28F 19/00; Бюл. №29 от 07.08.80.

1. Способ предотвращения образования и роста углеродистых отложений на стенках теплообменных каналов путем применения двух теплоносителей с разными температурами, с регулированием их расходов, отличающийся тем, что один из теплоносителей выполняют в виде жидкого углеводородного горючего (охладителя), при этом на поверхности стенок теплообменных каналов, контактирующих с жидким углеводородным горючим (охладителем), устанавливают термопары, при помощи которых определяют текущую температуру данной поверхности и поддерживают температуру до заданной, не превышающей ста градусов по шкале Цельсия, являющейся температурой начала осадкообразования, причем в этот момент для снижения температуры поверхности стенок теплообменных каналов регулирование расхода одного из теплоносителей, выполненного в виде углеводородного горючего (охладителя), производят путем увеличения скорости его прокачки при любых давлениях внутри теплообменного аппарата.

2. Способ по п.1, отличающийся тем, что для обеспечения интенсификации теплообмена внутри теплообменного аппарата поддерживают зону критических давлений жидкого углеводородного горючего (охладителя).



 

Похожие патенты:

Изобретение относится к области теплотехники и может быть применено в радиаторах отопительных и охлаждающих установок. .

Изобретение относится к области защиты систем теплоснабжения от коррозии и накопления отложений. .
Изобретение относится к теплотехнике, в частности к теплообменнику отработавших газов, и способу его изготовления. .

Изобретение относится к устойчивым к коррозии, проводящим жидкий поток частям оборудования и оборудованию, включающему в себя одну или более таких частей. .

Изобретение относится к аппаратам, предназначенным для работы с обладающими высокой коррозионной активностью химическими веществами, которые требуют специальной, эффективной и долговечной защиты аппарата от возможной коррозии.

Изобретение относится к области очистки труб теплообменников чистящими телами в виде шаров. .

Изобретение относится к теплообменной аппаратуре и может быть использовано в химической, нефтехимической, энергетической и других отраслях промышленности, где осуществляется нагрев или охлаждение технологических жидкостей и растворов.

Изобретение относится к области теплотехники и может быть использовано при изготовлении теплообменников, работающих при высоких давлениях и температурах в условиях высокой агрессивности технологических текучих сред. Оборудование, включающее пучок труб, для процессов теплообмена, включающее титановую облицовку и ряд труб, состоящих из по меньшей мере одного слоя циркония, размещенного в контакте с указанными текучими средами, причем трубная решетка, в которую вставлены указанные трубы, включает внешний слой из циркония или его сплава и нижележащий слой из титана, приваренный к облицовке оборудования. Указанное оборудование применяют, в частности, в качестве теплообменника, например в качестве стриппинг-колонны в цикле высокого давления процессов синтеза мочевины. Технический результат - снижение количества антикоррозионного материала, применяемого для облицовки, упрощение технологии изготовления, а также повышение долговечности и безопасности оборудования. 3 н. и 22 з.п. ф-лы, 3 ил.

Изобретение относится к холодильному контуру. Сущность изобретения: холодильный контур (3) для бытовой техники, в частности бытовой техники для охлаждения, такой как холодильники и морозильники, включает первый теплообменник (5), выполненный с возможностью гидравлического сообщения с компрессором (4), обеспечивающий охлаждение проходящей через него охлаждающей текучей среды и ее переход по существу в жидкую фазу. Также он включает второй теплообменник (7), гидравлически сообщающийся с указанным первым теплообменником (5) и действующий в пространстве (2), подлежащем охлаждению. Второй теплообменник (7) обеспечивает частичный переход охлаждающей текучей среды в газообразную фазу с поглощением тепла, посредством чего охлаждается указанное пространство (2). Охлаждающая текучая среда циркулирует от первого теплообменника (5) ко второму теплообменнику (7) и, таким образом, поступает в компрессор (4) для следующего цикла. Капиллярное устройство (6), расположенное между первым теплообменником (5) и вторым (7) теплообменником, для расширения указанной охлаждающей текучей среды. Один из указанных первого теплообменника (5) и второго теплообменника (7) включает гибкую трубу (9), причем участок указанной трубы (9) имеет такой гофрированный профиль, который придает ей гибкость, и указанная труба (9) в сечении включает слой (100) из пластмассы и слой (101), включающий металлический материал. Металлический слой (101) соединен со слоем пластмассы, а указанный металлический материал выполнен с возможностью образования барьера против влаги. Указанный слой (100) из пластмассы представляет собой слой, конструкционное назначение которого состоит в сохранении формы трубы (9), и предпочтительно изготовлен из термопластичного материала. Металлический слой (101) является гибким, не выполняет функции опорной конструкции и включает однослойную металлическую пленку или многослойную пленку, включающую одну или несколько металлических пленок, соединенных или не соединенных со слоем материала, выполненного с возможностью сохранения формы. Техническим результатом изобретения является повышение эффективности теплообмена и обеспечение водонепроницаемости. 3 н. и 13 з.п. ф-лы, 27 ил., 1 табл.
Изобретение относится к технологии защиты и консервации металла внутренних поверхностей оборудования закрытых систем теплоснабжения. Способ осуществляется введением в теплоноситель реагента, который представляет собой смесь твердого и жидкого парафинов. В диапазоне температур теплоносителя от 26 до 300°C под действием рабочих условий происходит диспергация реагента в теплоносителе до размера коллоидных частиц. При содержании в теплоносителе до 0,5% объема водной части теплоносителя реагент способен предотвратить взаимодействие водной части теплоносителя с поверхностями металла и шламовых частиц за счет формирования жидкофазного слоя, исключающего любые виды коррозии, образование коррозионно-накипных и шламовых отложений. Преимуществами реагента являются незначительный расход, низкая стоимость, отсутствие токсичности, экологическая безопасность, простота хранения, приготовления, применения и аналитического контроля. Технический результат - повышение надежности и качества теплоснабжения, повышение эффективности защиты металла внутренних поверхностей оборудования, а также снижение затрат на эксплуатацию и ремонт.

Изобретение относится к теплотехнике и может использоваться при изготовлении пластинчатых теплообменников. Пластинчатый теплообменник блочного типа содержит пакет (30) теплообменных пластин, которые включают первую теплообменную пластину (51) и вторую теплообменную пластину (52). По меньшей мере часть каждой из первой теплообменной пластины (51) и второй теплообменной пластины (52) содержит покрытие, которое: i) имеет толщину слоя 1-30 мкм, ii) приготовлено с применением золь-гель технологии, iii) содержит оксид кремния (SiOx), имеющий атомное соотношение O/Si>1, и iv) содержит ≥5 или ≥10 атомных процентов углерода (С). Технический результат - сохранение покрытия на областях, на которые оно нанесено, в течение длительного времени работы теплообменника. 11 з.п. ф-лы, 6 ил., 3 табл.
Наверх