Способ испытаний осколочных боеприпасов и стенд для его реализации

Изобретения относятся к полигонным испытаниям боеприпасов. При проведении испытаний применяют два неконтактных датчика, определяют координаты движения осколков снаряда на основе информации о пространственном положении сработавших чувствительных элементов линеек фотоприемников, определяют скорость движения осколков, определяют геометрические размеры осколков снаряда, определяют массу осколков, фиксируют изменения координат движения осколков относительно первого и второго датчиков и на основе полученных данных определяют координаты векторов движения осколков снаряда. Повышается оперативность обработки экспериментальных данных. 2 н. и 1 з.п. ф-лы, 7 ил.

 

Изобретение относится к способам испытания боеприпасов, а более конкретно к способам испытания осколочных боеприпасов естественного дробления с круговыми полями.

Для расчета эффективности действия осколочных боеприпасов по различным целям необходимо знать распределение чисел осколков и их начальных скоростей по угловым секторам разлета, а внутри угловых секторов - распределение осколков по массе.

Известен способ испытания осколочного боеприпаса с круговым полем разлета осколков, заключающийся в установке боеприпаса в центре щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, размещении боеприпаса в горизонтальном положении на стойке с высотой, равной половине высоты стенки, совмещении оси боеприпаса с прямой, соединяющей вертикальные торцы стенки, нанесении на внутренней поверхности обшивки контуров проекции части сферы, ограниченной двумя меридиональными сечениями с углом между ними, а также линии границ угловых секторов с шагом, регистрации пробоин после подрыва в каждом секторе обшивки, измерении размеров и площадей пробоин, осуществлении их пересчета на массу осколка, определении распределения осколков по углам ("Авиационные боеприпасы" под ред. В.А.Кузнецова изд. ВВИА им. Жуковского, 1968 г., стр.303).

Известен стенд испытания осколочного боеприпаса с круговым полем разлета осколков, состоящий из щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, обшитую листовым материалом, при пробитии которого осколком образуется пробоина с четкими очертаниями ("Авиационные боеприпасы" под ред. В.А.Кузнецова изд. ВВИА им. Жуковского, 1968 г., стр.303).

Недостатком данного способа и устройства является низкая оперативность.

Технической задачей изобретения является повышение оперативности.

Достижения технической задачи достигаются тем, что в способе испытания осколочного боеприпаса, заключающимся в установке боеприпаса в центре щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, размещении боеприпаса в горизонтальном положении на стойке с высотой, равной половине высоты стенки, совмещении оси боеприпаса с прямой, соединяющей вертикальные торцы стенки, нанесении на внутренней поверхности обшивки контуров проекции части сферы, ограниченной двумя меридиональными сечениями с углом между ними, а также линии границ угловых секторов с шагом, регистрации пробоин после подрыва в каждом секторе обшивки, измерении размеров и площадей пробоин, осуществлении их пересчета на массу осколка, определении распределения осколков по углам, дополнительно вводят два неконтактных датчика, которые размещают на заданном расстоянии между собой и выполняют в виде полуцилиндрических вертикальных стенок, состоящих из N-секторов, выполненных в виде перпендикулярно размещенных линеек фотоприемников и излучателей, определяют скорости движения осколков в каждом угловом секторе, за счет фиксации моментов времени и количеств последовательных срабатываний элементов фотоприемников первого и второго датчиков в процессе движения осколков снаряда к мишени, определяют количество эшелонов осколков на основе анализа количества последовательных срабатываний чувствительных элементов линеек фотоприемников, определяют временные интервалы движения осколков относительно первого и второго датчиков, фиксируют пространственные положения сработавших чувствительных элементов линеек фотоприемников в трех плоскостях, осуществляют запись полученных данных в блок памяти, осуществляют передачу данных по линии неконтактной связи на микроЭВМ, осуществляют оперативное определение координат движения осколков на основе информации о пространственных положениях сработавших чувствительных элементов линеек фотоприемников, осуществляют оперативное определение скорости движения осколков в виде выражения , где dni - расстояние между осколками относительно первого и второго датчиков , Δti - время движения осколков относительно первого и второго датчиков, x2i, x1i, , y1i, z2i, z1i - координаты осколков относительно первого и второго датчиков в трех плоскостях, осуществляют оперативное определение геометрических размеров осколков в виде выражений lxi=ini, lyi=jnj, lzi=knk, где ni, nj, nz - количества одновременно сработавших элементов в трех плоскостях, i, j, k - линейные размеры чувствительных элементов линеек фотоприемников в трех плоскостях, осуществляют оперативное определение массы осколков в виде выражения mi=ρ*(ini*jnj*knk), где ρ - плотность материала корпуса боевой части, осуществляют оперативное определение изменений координат движения осколков относительно первого и второго датчиков и на основе полученных данных определяют координаты Xi,Yi,Zi векторов движения осколков боевой части в виде выражения Xi=x1i-x2i, Yi=y1i-y2i, Zi=z1i-z2i, осуществляют оперативное определение углов подхода осколков к мишени в виде выражений , , осуществляют оперативное построение гистограмм и дифференциального закона распределения осколков по направлениям разлета, осуществляют оперативное определение распределения осколков по геометрическим размерам, массе и скорости.

Реализация предлагаемого способа осуществляется на основе стенда испытания осколочного боеприпаса с круговым полем разлета осколков, состоящим из щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, обшитую листовым материалом, при пробитии которого осколком образуется пробоина с четкими очертаниями, в который дополнительно введены первый и второй неконтактные датчики, которые размещают на заданном расстоянии между собой и выполняют в виде полуцилиндрических вертикальных стенок, состоящих из N-секторов, выполненных в виде перпендикулярно размещенных линеек фотоприемников и излучателей, N-1 блоков измерений, аналого-цифровой преобразователь, блок памяти, передающее устройство, приемное устройство, устройство сопряжения, микроЭВМ, при этом первый и второй датчики выполнены в виде трех перпендикулярно расположенных линеек излучающих диодов и линеек фотоприемников, блок измерений содержит первый и второй блок логики, первый, второй, третий, четвертый, пятый и шестой элементы ИЛИ, первый, второй и третий устройства измерений, выходы каждого из N-1 секторов первого и второго датчика соединены соответственно с первыми, вторыми, третьими, четвертыми, пятыми и шестыми входами блоков измерений, седьмой вход которого соединен с выходом кнопки «Пуск», первая, вторая, третья группа входов блока измерений являются соответственно первыми, вторыми, третьим группами входов первого блока логики и входами первого, второго и третьего элементов ИЛИ, четвертая, пятая, шестая, группа входов блока измерений являются соответственно первыми, вторыми, третьим группами входов второго блока логики и входами четвертого, пятого и шестого элементов ИЛИ, седьмой вход блока измерений является четвертым входом первого и второго блоков логики, выходы первого, второго и третьего элементов ИЛИ соединены с первыми входами первого, второго и третьего измерительных устройств, вторые входы которых соединены соответственно с выходами четвертого, пятого и шестого элементов ИЛИ, выходы первого, второго и третьего измерительных устройств, первого и второго блоков логики являются соответственно первым, вторым, третьим, n-четвертыми и n-пятыми выходами блока измерений, выходы которого соединены с входами аналого-цифрового преобразователя, выход которого соединен с входом блока памяти, выход которого через передающее устройство, приемное устройство, согласующее устройство соединен с входом микроЭВМ.

Кроме того, блоки логики состоят из квадратной матрицы n-порядка элементов И, из квадратной матрицы n-порядка триггеров, первого и второго элементов ИЛИ, дифференцирующей цепи, причем первые, вторые и третьи входы блока логики являются соответственно первыми, вторыми и третьими входами квадратной матрицы n-порядка элементов И, выходы которых соединены соответственно с первыми входами триггеров, вторые входы которых соединены с выходом дифференцирующей цепи, вход которой соединен с выходом второго элемента ИЛИ, второй вход которого является выходом первого элемента ИЛИ, входы которого соединены с выходами триггеров, четвертый вход блока логики является первым входом второго элемента ИЛИ, выходы триггеров являются выходами блока логики.

Изобретение поясняется чертежами.

На фиг.1 приведена схема стенда испытания осколочного боеприпаса, на фиг.2 - структурная схема измерения характеристик осколочного боеприпаса в одном из секторов первого и второго датчика, на фиг.3 - структурная схема одного из блоков измерений, на фиг.4 - структурная схема блока логики, на фиг.5 - гистограмма и кривая распределения осколков по направлениям разлета, на фиг.6 приведена таблица распределения осколков по скоростям, на фиг.7 приведена таблица распределения осколков по массе.

Стенд испытаний осколочного боеприпаса содержит пульт 1 управления подрывом, стойку (штатив) 2 для установки подрываемого боеприпаса 3 с электродетонатором 4, первый 5 и второй 6 датчики, полуцилиндрическую стенку 7, n-блоков 8 измерений, аналого-цифровой преобразователь 9, блок 10 памяти, передающее устройство 11, приемное устройство 12, согласующее устройство 13, микроЭВМ 14.

Первый 5 и второй 6 датчики выполнены в виде трех перпендикулярно расположенных линеек излучающих диодов 15 и линеек фотоприемников 16, источника 17 питания.

Блок 8 измерений содержит первый 18 и второй 19 блок логики, первый 20, второй 21, третий 22, четвертый 23, пятый 24, шестой 25 элементы ИЛИ, первый 26, второй 27 и третий 28 измерительные устройства. Блоки (18, 19) логики состоят из матрицы элементов И 29, из матрицы триггеров 30, первого 31 и второго 32 элементов ИЛИ, дифференцирующей цепи 33.

Описание работы устройства

Осуществляют подрыв боевой части (БЧ) в специальной мишенной обстановке, представляющей собой полуцилиндр, улавливающий часть осколков, летящих в направлении, определяемом двугранным углом Δθ. Щиты полуцилиндра устанавливаются на одинаковом расстоянии R от центра БЧ (фиг.1). Угол φ разбивается на угловые секторы шириной Δφjjj-1 (j=1, 2, …, n), границы которых на щитах обозначены вертикальными линиями. Линии пересечения полуцилиндра плоскостями двугранного угла вместе с вертикальными линиями образуют площадки, улавливающие осколки, летящие в направлениях, ограниченных углами Δθ и Δφj. При взрыве БЧ в щитах образуются пробоины, число Δnj которых подсчитывается в каждой площадке. Число Δnj увеличивается в раз и тем самым определяется количество осколков ΔNj, летящих в угловом секторе Δφj, примыкающем к углу φj.

В момент выдачи команды «Пуск» на детонатор 4 боеприпаса, происходит подрыв осколочного боеприпаса и, кроме того, сигнал поступает на пятые входы блоков 8 измерений, для обнуления триггеров (30) блоков логики (18, 19).

При пролете осколочного поля боеприпаса относительно первого 5 датчика происходит срабатывание чувствительных элементов линеек фотоприемников (16), расположенных в трех плоскостях, и сигналы выдаются на первые, вторые и третьи входы одного из блоков 8 измерений.

При пролете осколочного поля боеприпаса относительно второго 6 датчика происходит срабатывание чувствительных элементов линеек фотоприемников (16), расположенных в трех плоскостях, и сигналы выдаются на четвертые, пятые и шестые входы одного из блоков 8 измерений.

Блоки 8 измерений определяют скорость движения осколков и координаты его движения на основе информации о временном интервале между моментами срабатывания датчиков (5, 6) и комбинации сработавших чувствительных элементов фотоприемников (16) (фиг.3).

Это происходит следующим образом.

В момент пролета осколков относительно первого 5 датчика происходит срабатывание определенной комбинации чувствительных элементов (16) линеек фотоприемника в соответствии с координатами пролета осколков в пространстве.

Сигналы с выходов датчика 5 поступают на первые, вторые и третьи входы первого 18 блока логики, входы первого 20, второго 21 и третьего 22 элементов ИЛИ, с выходов которых поступают на первые входы первого 18, второго 19 и третьего измерительных устройств (фиг.3).

В момент пролета осколков относительно второго 6 датчика происходит срабатывание определенной комбинации чувствительных элементов 16 датчика, соответствующих координатам пролета осколков в пространстве. Сигналы с выходов второго 6 датчика на первые, вторые и третьи входы второго 19 блока логики, входы четвертого 23, пятого 24 и шестого 25 элементов ИЛИ, с выходов которых поступают на вторые входы первого 26, второго 27 и третьего 28 измерительных устройств (фиг.3).

Коды сигналов, поступающих на первые, вторые и третьи входы блока логики (18, 19), соответствуют координатам движения осколков и обеспечивают срабатывание определенной комбинации матрицы элементов И 29, сигналы с выхода которых обеспечивают срабатывание комбинации матрицы триггеров 30, сигналы с выхода которых поступают на входы первого 31 элемента ИЛИ, с выхода которого поступают на второй вход второго 32 элемента ИЛИ, с выхода которого поступают на вход дифференцирующей цепи 33, с выхода которой поступают на входы обнуления матрицы триггеров 31 (фиг.4).

Дифференцирующая цепь 33 обеспечивает обнуления триггеров в момент подачи команды «Пуск» и в момент прохода эшелона осколков.

Сигналы с выходов блока логики 18 (19) соответствуют координатам пролета осколков и являются одновременно n-четвертыми и n-пятыми выходами блока 8 измерений. Сигналы с первого, второго, третьего, n-четвертых и n-пятых выходов блока 8 измерений поступают на входы аналого-цифрового преобразователя 9 (фиг.1).

Сигналы с выхода аналого-цифрового преобразователя 9 поступают на вход блока 10 памяти, с выхода которого через передающее устройство 11, приемное устройство 12, согласующее устройство 13 поступают на вход микроЭВМ 14.

Координаты движения осколков снаряда определяются на основе информации о пространственных положениях сработавших чувствительных элементов линеек фотоприемников.

Скорость движения осколков снаряда определяется в виде выражения , где dni - расстояние между осколками относительно первого и второго датчиков , Δti - время движения осколков снаряда относительно первого и второго датчиков, x2i, x1i, , y1i, z2i, z1i - координаты осколков относительно первого и второго датчиков в трех плоскостях.

Геометрические размеры осколков снаряда определяются в виде выражений lxi=ini, lyi=jnj, lzi=knk, где ni, nj, nz - количества одновременно сработавших элементов в трех плоскостях, i, j, k - линейные размеры чувствительных элементов линеек фотоприемников в трех плоскостях.

Масса осколков определяется в виде выражения mi=ρ*(ini*jnj*knk), где ρ - плотность материала корпуса снаряда. Определяют углы подхода осколков к мишени путем фиксации изменений координат движения осколков относительно первого и второго датчиков и в виде выражений ,

где Xi, Yi - координаты векторов движения осколков снаряда, равные отношениям Xi=x1i-x2i, Yi=y1i-y2i.

МикроЭВМ на основе алгоритмов определяет дифференциальный закон распределения осколков по направлениям разлета, распределения осколков по скорости, геометрическим размерам и массе.

Алгоритм определения гистограммы и дифференциального закона распределения осколков по направлениям разлета заключается в том, что в направлении разлета осколков выбираются угловые сектора шириной Δφjjj-1 (j=1, 2, …, n), определяется количество осколков Δnj в каждом угловом секторе неконтактных датчиков в момент взрыва боевой части, определяется общее число осколков в секторах, находится относительное число осколков и рассчитывается соответствующая высота столбца гистограммы в соответствии с выражением:

, j=1, 2, …, n.

Примерный вид гистограммы, а также сглаживающая кривая приведены на фиг.5.

Начальная скорость разлета осколков V0 является важнейшей характеристикой, позволяющей определить абсолютную начальную скорость движения осколков V01 в условиях реального взрыва и тем самым решать целый ряд задач по определению поражающего действия боевых частей или оценки безопасности их применения. Экспериментально скорость V0 находится путем подрыва авиационного боеприпаса и регистрации времени пролета осколков Δτ некоторой базы ΔL. Время измеряется различными хронометрами (в данном случае неконтактными датчиками). Средняя скорость движения осколка затем приводится к начальной скорости осколка V0 с помощью уравнения движения его центра массы.

Затем начальные скорости заносятся в таблицу по угловым секторам Δφ (фиг.6).

Закон распределения осколков по массе определяется экспериментально с помощью стенда углового улавливания. Результаты эксперимента позволяют построить двумерную матрицу Nij, где Nij - число осколков i-й массовой группы в j-й угловой зоне. Ширина угловой зоны Δφ обычно принимается в пределах 2…5° (фиг.7).

Таким образом, предлагаемый способ испытаний осколочных боеприпасов и стенд для его реализации позволяют обеспечить оперативную обработку экспериментальных данных.

1. Способ испытания осколочного боеприпаса, заключающийся в установке боеприпаса в центре щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, размещении боеприпаса в горизонтальном положении на стойке с высотой, равной половине высоты стенки, совмещении оси боеприпаса с прямой, соединяющей вертикальные торцы стенки, нанесении на внутренней поверхности обшивки контуров проекции части сферы, ограниченной двумя меридиональными сечениями с углом между ними, а также линии границ угловых секторов с шагом, регистрации пробоин после подрыва в каждом секторе обшивки, измерении размеров и площадей пробоин, осуществлении их пересчета на массу осколка, определении распределения осколков по углам, отличающийся тем, что дополнительно вводят два неконтактных датчика, которые размещают на заданном расстоянии между собой и выполняют в виде полуцилиндрических вертикальных стенок, состоящих из N-секторов, выполненных в виде трех перпендикулярно размещенных линеек фотоприемников и излучателей, определяют скорости движения осколков в каждом угловом секторе за счет фиксации моментов времени и количеств последовательных срабатываний элементов фотоприемников первого и второго датчиков в процессе движения осколков, определяют эшелоны осколков на основе анализа количества последовательных срабатываний чувствительных элементов линеек фотоприемников, определяют временные интервалы движения осколков относительно первого и второго датчиков, фиксируют пространственные положения сработавших чувствительных элементов линеек фотоприемников в трех плоскостях, осуществляют запись полученных данных в блок памяти, осуществляют передачу данных по линии неконтактной связи на микроЭВМ, осуществляют оперативное определение координат движения осколков на основе информации о пространственных положениях сработавших чувствительных элементов линеек фотоприемников, осуществляют оперативное определение скорости движения осколков в виде выражения

где dni - расстояние между осколками относительно первого и второго датчиков Δti - время движения осколков относительно первого и второго датчиков, x2i, x1i, y2i, y1i, z2i, z1i -
координаты осколков относительно первого и второго датчиков в трех плоскостях, осуществляют оперативное определение геометрических размеров осколков в виде выражений lxi=ini, lyi=jnj, lzi=knk где ni, nj, nk - количества одновременно сработавших элементов в трех плоскостях, i, j, k - линейные размеры чувствительных элементов линеек фотоприемников в трех плоскостях, осуществляют оперативное определение массы осколков в виде выражения mi=ρ·(ini·jnj·knk), где ρ - плотность материала корпуса боевой части, осуществляют оперативное определение изменений координат движения осколков относительно первого и второго датчиков и на основе полученных данных определяют координаты Xi, Yi, Zi; векторов движения осколков боевой части в виде выражения Xi=x1i-x2i, Yi=y1i-y2i, Zi=z1i-z2i, осуществляют оперативное определение углов подхода осколков к мишени в виде выражений , ,
осуществляют оперативное построение гистограмм и дифференциального закона распределения осколков по направлениям разлета, осуществляют оперативное определение распределения осколков по геометрическим размерам, массе и скорости.

2. Стенд испытания осколочного боеприпаса, содержащий щитовую мишенную обстановку, выполненную в виде полуцилиндрической вертикальной стенки, обшитую листовым материалом, отличающийся тем, что дополнительно введены первый и второй неконтактные датчики, N-1 блоки измерений, аналого-цифровой преобразователь, блок памяти, передающее устройство, приемное устройство, устройство сопряжения, микроЭВМ, при этом первый и второй датчики размещены на заданном расстоянии между собой и выполнены в виде полуцилиндрических вертикальных стенок, состоящих из N-секторов, которые выполнены в виде трех перпендикулярно размещенных линеек фотоприемников и излучателей, блок измерений содержит первый и второй блоки логики, первый, второй, третий, четвертый, пятый и шестой элементы ИЛИ, первый, второй и третий устройства измерений, выходы каждого из N-1 секторов первого и второго датчиков соединены соответственно с первыми, вторыми, третьими, четвертыми, пятыми и шестыми входами блоков измерений, седьмой вход которого соединен с выходом кнопки «Пуск», первая, вторая, третья группы входов блока измерений являются соответственно первыми, вторыми, третьими группами входов первого блока логики и входами первого, второго и третьего элементов ИЛИ, четвертая, пятая, шестая группы входов блока измерений являются соответственно первыми, вторыми, третьими группами входов второго блока логики и входами четвертого, пятого и шестого элементов ИЛИ, седьмой вход блока измерений является четвертым входом первого и второго блоков логики, выходы первого, второго и третьего элементов ИЛИ соединены с первыми входами первого, второго и третьего измерительных устройств, вторые входы которых соединены соответственно с выходами четвертого, пятого и шестого элементов ИЛИ, выходы первого, второго и третьего измерительных устройств, первого и второго блоков логики являются соответственно первым, вторым, третьим, n-четвертыми и n-пятыми выходами блока измерений, выходы которого соединены с входами аналого-цифрового преобразователя, выход которого соединен с входом блока памяти, выход которого через передающее устройство, приемное устройство, согласующее устройство соединен с входом микроЭВМ.

3. Стенд испытания осколочного боеприпаса по п.2, отличающийся тем, что блоки логики состоят из квадратной матрицы n-порядка элементов И, из квадратной матрицы n-порядка триггеров, первого и второго элементов ИЛИ, дифференцирующей цепи, причем первые, вторые и третьи входы блока логики являются соответственно первыми, вторыми и третьими входами квадратной матрицы n-порядка элементов И, выходы которых соединены соответственно с первыми входами триггеров, вторые входы которых соединены с выходом дифференцирующей цепи, вход которой соединен с выходом второго элемента ИЛИ, второй вход которого является выходом первого элемента ИЛИ, входы которого соединены с выходами триггеров, четвертый вход блока логики является первым входом второго элемента ИЛИ, выходы триггеров являются выходами блока логики.



 

Похожие патенты:

Изобретение относится к оборонной технике и, в частности, к комплексным средствам контроля электрических параметров управляемых зенитных ракет и пусковых устройств.

Изобретение относится к полигонным испытаниям боеприпасов и может быть использовано, в частности, для измерения характеристик осколочного поля снаряда. .

Изобретение относится к области испытаний боеприпасов и может быть использовано для определения характеристик осколочного действия боеприпасов. .

Изобретение относится к области исследования быстропротекающих процессов, а конкретно к испытаниям боеприпасов. .

Изобретение относится к области испытания боеприпасов и может быть использовано при оценке пробивного действия снарядов. .

Изобретение относится к области машиностроения и может быть использовано для оперативной оценки эффективности поражающего действия боеприпасов. .

Изобретение относится к области испытания боеприпасов и может быть использовано при определении инициирующей способности различных поражающих элементов, а также при определении стойкости боеприпасов к воздействию этих элементов.

Изобретение относится к области испытания боеприпасов и может быть использовано при определении инициирующей способности снарядов, содержащих заряд взрывчатого вещества (ВВ), при их поверхностном подрыве.

Изобретение относится к способам контроля качества взрывных параметров взрывного источника звука с линейным зарядом, который используется в авиационных системах поиска подводных лодок.
Изобретение относится к взрывным работам и может быть использовано в горнодобывающей промышленности. .

Изобретение относится к способам испытания боеприпасов, а более конкретно к способам испытания осколочных боеприпасов естественного дробления с круговыми полями

Изобретение относится к полигонным испытаниям боеприпасов и может быть использовано, в частности, для измерения характеристик осколочного поля снаряда

Изобретение относится к области испытаний боеприпасов и может быть использовано для определения характеристик явления аэроудара, возникающего в отсеках конструкции объектов техники в результате действия полей поражения боеприпасов

Изобретение относится к области испытания боеприпасов и может быть использовано при определении инициирующей способности боевых частей дистанционных боеприпасов

Изобретение относится к области испытания боеприпасов и может быть использовано при оценке пробивного действия полей поражения дистанционных боеприпасов

Группа изобретений относится к области испытаний осколочного боеприпаса с осесимметричным полем разлета осколков. Способ включает подрыв боеприпаса, установленного в заданное положение в центре профилированной мишенной стенки, размеченной на зоны, соответствующие направлениям разлета осколков в принятой системе координат, регистрацию попаданий, улавливание и подсчет числа осколков, попадающих в каждую зону, измерение размеров и площади пробоин. Оценку качественных и количественных характеристик осколочного поля по массам, скоростям, форме и размерам осколков осуществляют посредством регистрации, записи и последующей обработки сигналов с электретных датчиков, размещенных по соответствующим зонам мишенной стенки и равным им по размерам. Стенд для реализации способа содержит профилированную мишенную стенку, выполненную с возможностью регулировки радиуса кривизны. Обшивка стенки выполнена в виде набора электретных датчиков, по отдельности электрически связанных с компьютеризованной системой регистрации и записи. Электроды датчика выполнены из механически слабосвязанных мелкодисперсных металлических частиц. Повышается точность измерений. 2 н. и 8 з.п. ф-лы, 15 ил.

Изобретения относятся к испытательному оборудованию. Способ определения характеристик срабатывания пиротехнических изделий состоит в том, что на элемент накаливания пиротехнического изделия подают электрический ток от источника постоянного тока, фиксируют момент t1 подачи тока и значение величины поданного тока I. Фиксируют момент воспламенения заряда пиротехнического изделия t2 по моменту появления вибрации на корпусе пиротехнического изделия, определяют время инициирования пиротехнического изделия Т и для получения зависимости времени инициирования Т от различных значений величины подаваемого тока I повторяют вышеперечисленные операции при различных значениях величины токов. Устройство для определения характеристик срабатывания пиротехнических изделий состоит из цепи подрыва с источником питания, подключенной к элементу накаливания пиротехнического изделия. В него введены устройство для обнаружения вибраций, установленное на пиротехническом изделии, и блок определения времени инициирования. Цепь подрыва состоит из последовательно соединенных источника питания, ключа для замыкания цепи, элемента накаливания пиротехнического изделия, устройства измерения силы тока в цепи подрыва. Выходы устройства для обнаружения вибраций и устройства измерения силы тока электрически подключены к входам блока определения времени инициирования. Повышается достоверность испытаний. 2 н.п. ф-лы, 1 ил.

Изобретения относятся к испытательному оборудованию. Способ определения характеристик срабатывания пиротехнических изделий состоит в том, что на элемент накаливания пиротехнического изделия подают электрический ток от источника постоянного напряжения, фиксируют момент t1 подачи тока и значение величины поданного тока I. Фиксируют момент воспламенения заряда пиротехнического изделия t2 по моменту появления скачка тока на элементе накаливания пиротехнического изделия и определяют время инициирования пиротехнического изделия Т как разницу между моментом воспламенения заряда пиротехнического изделия t2 и моментом подачи постоянного электрического тока t1. Устройство для определения характеристик срабатывания пиротехнических изделий состоит из цепи подрыва с источником питания, подключенной к элементу накаливания пиротехнического изделия. В устройство введен блок определения времени инициирования. Цепь подрыва состоит из последовательно соединенных источника питания, ключа для замыкания цепи, элемента накаливания пиротехнического изделия, устройства измерения силы тока в цепи подрыва и регулируемого сопротивления. Выход устройства измерения силы тока электрически подключен к входу блока определения времени инициирования. Источник питания выполнен в виде источника постоянного напряжения. Повышается достоверность испытаний. 2 н. и 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к области полигонных испытаний боеприпасов. Предусмотрено дополнительное размещение двух датчиков на заданном расстоянии между собой, выполнение конструкции датчиков в виде трех перпендикулярно расположенных линеек излучающих диодов и фотоприемников, осуществление подрыва снаряда на траектории движения и формирование поля поражения снаряда. При этом фиксируются моменты времени и количество последовательных срабатываний элементов фотоприемников дополнительных датчиков в процессе движения эшелонированных групп осколков снаряда к мишени, определяются временные интервалы между эшелонированными группами осколков снаряда на основе фиксации последовательностей моментов срабатывания датчиков. Далее производятся фиксирование комбинации сработавших элементов фотоприемников в трех плоскостях, определение координаты сработавших элементов фотоприемников на основе информации о комбинации сработавших элементов фотоприемников. На основе данных о координатах и временных интервалах сработавших элементов фотоприемников дополнительных датчиков определяются скорости движения эшелонированных групп осколков снаряда. Определяются также три координаты векторов движения эшелонированных групп осколков снаряда и углы подхода эшелонированных групп осколков снаряда к мишени. Выполняется индикация величин скоростей движения эшелонированных групп осколков снаряда, геометрических размеров эшелонированных групп осколков снаряда в трех плоскостях, углов подхода эшелонированных групп осколков снаряда к мишени. Группа изобретений позволяет повысить информативность испытаний боеприпасов. 2 н. и 3 з.п. ф-лы, 7 ил.
Наверх