Способ определения характеристик осколочного поля снаряда и устройство для его осуществления



Способ определения характеристик осколочного поля снаряда и устройство для его осуществления
Способ определения характеристик осколочного поля снаряда и устройство для его осуществления
Способ определения характеристик осколочного поля снаряда и устройство для его осуществления
Способ определения характеристик осколочного поля снаряда и устройство для его осуществления
Способ определения характеристик осколочного поля снаряда и устройство для его осуществления
Способ определения характеристик осколочного поля снаряда и устройство для его осуществления
Способ определения характеристик осколочного поля снаряда и устройство для его осуществления

 


Владельцы патента RU 2482440:

Мужичек Сергей Михайлович (RU)
Шутов Петр Владимирович (RU)
Ефанов Василий Васильевич (RU)

Изобретения относятся к способу и устройству для полигонных испытаний боеприпасов. Осуществляют подрыв снаряда на траектории движения и формируют осколочное поле снаряда, определяют количество осколков снаряда на основе анализа количества последовательно сработавших чувствительных элементов линеек фотоприемников, определяют координаты движения осколков снаряда на основе информации о пространственных положениях сработавших чувствительных элементов линеек фотоприемников, определяют скорость движения осколков снаряда, определяют геометрические размеры осколков снаряда, определяют массу осколков, определяют углы подхода осколков к мишени, определяют параметры ударной волны в непосредственной близости от мишени, осуществляют запись полученных данных в блок памяти и передачу данных по линии неконтактной связи на микроЭВМ. Способ реализуется при помощи устройства, содержащего разнесенные датчики и измерительные блоки с множеством логических элементов ИЛИ и И, при помощи которых обрабатывается информация о проведенном испытании и передается на микроЭВМ. Повышается информативность испытаний. 2 н. и 2 з.п. ф-лы, 7 ил.

 

Изобретение относится к полигонным испытаниям боеприпасов и может быть использовано, в частности, для измерения характеристик осколочного поля снаряда.

Известен способ измерения скорости метаемого тела, заключающийся в размещении двух датчиков на заданном расстоянии между собой, выполнении конструкции датчика в виде двух перпендикулярно расположенных линеек излучающих диодов и линеек фотоприемников, измерении временного интервала пролета метаемого тела относительно двух датчиков, определении скорости метаемого тела на основе измеренного временного интервала, определении комбинации сработавших чувствительных элементов линеек фотоприемников первого и второго датчиков в процессе движения метаемого тела, определении координат движения метаемого тела на основе информации о комбинации сработавших чувствительных элементов линеек фотоприемников, выдачи информации о скорости и координатах движения метаемого тела в блок индикации (Ефанов В.В., Мужичек С.М., патент РФ на изобретение №2285267 от 10.10.2006 г.).

Известно устройство для измерения скорости метаемого тела, которое содержит два разнесенных датчика, первый и второй измерительные приборы, связанные с выходами датчиков, первый, второй, третий, четвертый элементы ИЛИ, первый и второй блоки логики, каждый из датчиков выполнен в виде двух перпендикулярно расположенных линеек излучающих диодов и линеек фотоприемников, причем выходы горизонтально расположенной линейки фотоприемников первого датчика соединены одновременно с входами первого элемента ИЛИ и первыми входами первого блока логики, выходы вертикально расположенной линейки фотоприемников первого датчика соединены одновременно с входами второго элемента ИЛИ и вторыми входами первого блока логики, выходы горизонтально расположенной линейки фотоприемников второго датчика соединены одновременно с входами третьего элемента ИЛИ и первыми входами второго блока логики, выходы вертикально расположенной линейки фотоприемников второго датчика соединены одновременно с входами четвертого элемента ИЛИ и вторыми входами второго блока логики, выход первого и второго элементов ИЛИ соединены соответственно с первыми входами первого и второго измерительных приборов, выходы третьего и четвертого элементов ИЛИ соединены соответственно со вторыми входами первого и второго измерительных приборов, выход источника питания соединен с линейками излучающих диодов, блок логики состоит из матрицы элементов И, из матрицы триггеров, блока индикации, причем первые входы матрицы элементов И соединены с первыми входами блока логики, а вторые входы соединены со вторыми входами блока логики, а выходы элементов И соединены со входами триггеров, выходы которых соединены с блоком индикации (Ефанов В.В., Мужичек С.М., патент РФ на изобретение №2285267 от 10.10.2006 г.).

Недостатком данных способа и устройства является невозможность определения характеристик осколочного поля снаряда, таких как количество осколков, скоростей их полета, углов подхода осколков к мишени, геометрических размеров осколков, массы осколков, давления на фронте ударной волны осколочного поля снаряда.

Технической задачей изобретения является повышения информативности за счет определения характеристик осколочного поля снаряда относительно мишени.

Решение технической задачи достигается тем, что в способе определения характеристик осколочного поля снаряда, заключающемся в размещении двух датчиков на заданном расстоянии между собой, выполнении конструкции датчика в виде двух перпендикулярно расположенных линеек излучающих диодов и фотоприемников, измерении временного интервала пролета метаемого тела относительно двух датчиков, определении скорости снаряда на основе измеренного временного интервала, определении комбинации сработавших чувствительных элементов линеек фотоприемников первого и второго датчиков в процессе движения снаряда, определении координат движения метаемого тела на основе информации о комбинации сработавших чувствительных элементов линеек фотоприемников, выдачи информации о скорости и координатах движения снаряда в блок индикации, дополнительно размещают два датчика на заданном расстоянии между собой, выполняют конструкцию датчиков в виде трех перпендикулярно расположенных линеек излучающих диодов и фотоприемников, размещают датчик давления в виде матрицы n чувствительных элементов в непосредственной близости от мишени, осуществляют подрыв снаряда на траектории движения и формируют осколочное поле снаряда, фиксируют моменты времени и количество последовательных срабатываний элементов фотоприемников третьего и четвертого датчиков в процессе движения осколков снаряда к мишени, определяют количество эшелонированных групп осколков снаряда на основе количества последовательных срабатываний чувствительных элементов линеек фотоприемников, определяют временные интервалы движения эшелонированных групп осколков снаряда относительно третьего и четвертого датчиков, фиксируют комбинацию сработавших чувствительных элементов линеек фотоприемников в трех плоскостях, определяют координаты сработавших чувствительных элементов линеек фотоприемников на основе информации о комбинации сработавших чувствительных элементов линеек фотопремников, определяют скорость движения осколков снаряда в виде выражения , где dni - расстояние между эшелонированными группами осколков относительно третьего и четвертого датчиков Δti - время которое определяет дискретность срабатываний чувствительных элементов линеек фотоприемников, x2i, x1i, y2i, y1i z2i, z1i - координаты эшелонированных групп осколков относительно третьего и четвертого датчиков в трех плоскостях, фиксируют количества одновременно сработавших чувствительных элементов линеек фотоприемников в трех плоскостях и на основе полученных данных определяют геометрические размеры осколков снаряда в виде выражений lx=ni, ly=nj, lz=nk, где n - количества одновременно сработавших элементов, i, j, k - линейные размеры чувствительных элементов линеек фотоприемников в трех плоскостях, мм, определяют массу осколков в виде выражения mi=ρ*(ni*nj*nk), где ρ - плотность материала корпуса снаряда, фиксируют изменение координат движения осколков относительно третьего и четвертого датчиков и на основе полученных данных определяют координаты Xi, Yi, Zi векторов движения осколков снаряда в виде выражения Xi=x1i-x2i, Yi=y1i-y2i, Zi=z1i-z2i определяют углы подхода осколков к мишени в виде выражений , , определяют параметры ударной волны в момент образования осколочного поля снаряда непосредственно перед мишенью, осуществляют запись полученных данных в блок памяти, осуществляют передачу данных по линии неконтактной связи на микроЭВМ.

Решение технической задачи достигается тем, что в устройство определения характеристик поля поражения снаряда, состоящее из двух разнесенных датчиков и первого измерительного блока, который содержит первый и второй измерительные приборы, связанные с выходами датчиков, первый, второй, третий, четвертый элементы ИЛИ, первый и второй блоки логики, каждый из датчиков выполнен в виде двух перпендикулярно расположенных линеек излучающих диодов и линеек фотоприемников, причем выходы горизонтально расположенной линейки фотоприемников первого датчика соединены одновременно с входами первого элемента ИЛИ и первыми входами первого блока логики, выходы вертикально расположенной линейки фотоприемников первого датчика соединены одновременно с входами второго элемента ИЛИ и вторыми входами первого блока логики, выходы горизонтально расположенной линейки фотоприемников второго датчика соединены одновременно с входами третьего элемента ИЛИ и первыми входами второго блока логики, выходы вертикально расположенной линейки фотоприемников второго датчика соединены одновременно с входами четвертого элемента ИЛИ и вторыми входами второго блока логики, третьи входы первого и второго блоков логики соединены с выходом команды «Пуск», выход первого и второго элементов ИЛИ соединены соответственно с первыми входами первого и второго измерительных приборов, выходы третьего и четвертого элементов ИЛИ соединены соответственно со вторыми входами первого и второго измерительных приборов, выход источника питания соединен с линейками излучающих диодов, блок логики состоит из матрицы элементов И, из матрицы триггеров, блока индикации, дифференцирующей цепи, причем вход дифференцирующей цепи соединен с выходом команды «Пуск», а выход со вторыми входами триггеров, первые и вторые входы матрицы элементов И соединены с первыми и вторыми входами блока логики, а выходы элементов И соединены с первыми входами триггеров, выходы которых соединены с блоком индикации, дополнительно введены третий, четвертый датчики, мишень, устройство для метания снаряда, устройство для срабатывания взрывателя снаряда, второй блок измерений, вычислитель определения характеристик осколочного поля снаряда, блок памяти, передающее устройство, приемное устройство, устройство согласования, микроЭВМ, при этом третий и четвертый датчики выполнены в виде трех перпендикулярно расположенных линеек излучающих диодов и линеек фотоприемников, второй блок измерений содержит первый и второй блоки регистрации параметров перемещения осколков, первый и второй блок логики, причем первая, вторая, третья группа и четвертый выходы третьего и четвертого датчиков соединены соответственно с первой, второй, третьей группой и четвертым, пятой, шестой, седьмой группами и восьмым входами второго измерительного блока, входы которого являются соответственно первыми, вторыми, третьим группами и четвертым входами первого и второго блоков регистрации параметров перемещения осколков, первая, вторая, третья группа выходов которых соединены с первой, второй и третьей группой входов соответственно первого и второго блоков логики, четвертые входы которых соединены с выходом команды «Пуск», первая и вторая группы выходов блоков логики являются соответственно первой и второй группой выходов второго блока измерений, выходы которых соединены соответственно с первой и второй группой входов вычислителя определения характеристик осколочного поля снаряда, группа выходов которого соединена с первым входом блока памяти, второй вход которого соединен с выходом первого блока измерений, выход блока памяти соединен с входом передающего устройства, выход которого через бесконтактную линию связи соединен с входом приемного устройства, выход которого через устройство сопряжения соединен с входом микроЭВМ.

Кроме того, блоки регистрации параметров перемещения осколков снаряда состоят из первой, второй и третьей групп элементов И, дифференцирующей цепи, генератора импульсов, сдвигового регистра, первого и второго элементов ИЛИ, при этом n-первые, n-вторые, n-третьи и четвертый входы блока регистрации параметров перемещения эшелонированных групп осколков снаряда являются соответственно первыми входами n-первой, n-второй, n-третьей групп элементов И и входами дифференцирующей цепи, вторые входы n-первой и n-второй групп элементов И соединены соответственно с выходами первого и второго элементов ИЛИ, выход дифференцирующей цепи соединен с третьим входом сдвигового регистра, второй и третий входы которого соединены соответственно с выходом генератора импульсов и первым входом одного из n-третьих элементов И, каждый из выходов сдвигового регистра соединен с одним из вторых входов n-третьего элемента И, выходы которых соединены со входами первого и второго элемента ИЛИ, выходы n-первой, n-второй и n-третьей групп элементов И, являются соответственно n-первыми, n-вторыми и n-третьими группами выходов блока регистрации параметров перемещения осколков.

Кроме того, блоки логики состоят из квадратной матрицы n-порядка элементов И, из квадратной матрицы n-порядка триггеров, блока индикации, дифференцирующей цепи, причем вход дифференцирующей цепи соединен с командой «Пуск», а выход со вторыми входами триггеров, первые, вторые и третьи входы квадратной матрицы n-порядка элементов И соединены соответственно с первыми, вторыми и третьими входами блока логики, выходы квадратной матрицы n-порядка элементов И соединены с первыми входами триггеров, выходы которых соединены с входами блока индикации.

На фиг.1 приведена схема измерения параметров движения осколков снаряда, на фиг.2 приведена структурная схема первого блока измерения, на фиг.3 - блоков логики первого блока измерений, на фиг.4 - структурная схема второго блока измерений, на фиг.5 - структурная схема блока регистрации параметров перемещения осколков снаряда, на фиг.6 - структурная схема блоков логики второго блока измерений, на фиг.7 - структурная схема третьего блока измерений.

Устройство для измерения параметров поля поражения снаряда содержит первый 1, второй 2, третий 3, четвертый 4 и пятый 5 датчики, которые разнесены в пространстве, мишень 6, устройство 7 для метания снаряда, устройство 8 для срабатывания взрывателя снаряда, первый 9, второй 10 и третий 11 блоки измерений, вычислитель 12 характеристик осколочного поля снаряда, вычислитель 13 параметров ударной волны, блок 14 памяти, передающее устройство 15, приемное устройство 16, устройство 17 согласования, микроЭВМ 18, при этом первый 1 и второй 2 датчики выполнены в виде двух перпендикулярно расположенных линеек излучающих диодов 19 и линеек фотоприемников 20, третий 3 и четвертый 4 датчики выполнены в виде трех перпендикулярно расположенных линеек излучающих диодов 38 и линеек фотоприемников 39, пятый 5 датчик давления в виде матрицы чувствительных элементов.

Первый 9 блок измерений содержит первый 22 и второй 23 измерительные приборы, первый 24, второй 25, третий 26 и четвертый 27 элементы ИЛИ, первый 28 и второй 29 блок логики.

Блоки (28, 29) логики состоят из матрицы элементов И 27, из матрицы триггеров 28, блока 29 индикации, дифференцирующей цепи 30.

Второй 10 блок измерений содержит первый 34 и второй 35 блоки регистрации параметров перемещения осколков, первый 36 и второй 37 блоки логики.

Блоки (34, 35) регистрации параметров перемещения осколков снаряда состоят из первой 41, второй 42 и третьей 43 групп элементов И, дифференцирующей цепи 44, генератора 45 импульсов, сдвигового регистра 46, первого 47 и второго 48 элементов ИЛИ.

Блоки (36, 37) логики состоят из квадратной матрицы n-порядка элементов И 49, из квадратной матрицы n-порядка триггеров 50, блока 51 индикации, дифференцирующей цепи 52.

Вычислитель 12 характеристик осколочного поля снаряда и вычислитель 13 параметров ударной волны можно изготовить, например, на основе микроконтроллера.

Третий измеритель состоит из квадратной матрицы n-ного порядка программируемых усилителей 53 заряда.

Описание работы устройства.

В момент выдачи команды «Пуск» на устройство для метания снаряда происходит выстрел снаряда, и, кроме того, сигнал поступает на третьи входы первого 8 и второго 9 блоков измерений, для обнуление триггеров (28, 47) блоков логики (25, 26, 33, 34).

При пролете снаряда относительно первых двух датчиков (1, 2) происходит их срабатывание, и сигналы выдаются на входы первого 8 блока измерений.

Первый 8 блок измерений определяет скорость движения снаряда и координаты его движения на основе информации о временном интервале между моментами срабатывания датчиков (1, 2) и комбинации сработавших чувствительных элементов фотоприемников 17.

Это происходит следующим образом.

В момент пролета снаряда относительно первого 1 датчика происходит срабатывание определенной комбинации чувствительных элементов 17 датчика, соответствующих координатам пролета снаряда в двух плоскостях.

Сигналы с выходов датчика 1 через первые 21 и вторые 22 элементы ИЛИ поступают одновременно на запуск первого 19 и второго 20 измерительных приборов и на первые и вторые входы первого 25 блока логики (фиг.2).

В момент пролета снаряда относительно второго 2 датчика происходит срабатывания определенной комбинации чувствительных элементов 17 датчика, соответствующих координатам пролета снаряда в двух плоскостях.

Сигналы с выходов датчика 2 через третий 23 и четвертый 24 элементы ИЛИ поступают одновременно на остановку первого 19 и второго 20 измерительных приборов и на первые и вторые входы второго блока логики (фиг.2).

Коды сигналов, поступающих на первые и вторые входы первого 25 блока логики, соответствуют координатам движения снаряда и обеспечивают срабатывания определенной комбинации матрицы элементов И 27, сигналы с выхода которых обеспечивают срабатывания комбинации матрицы триггеров 28, сигналы с выхода которых обеспечивают индикацию координат снаряда блоком 29 индикации (фиг.3).

Аналогично работает и второй 26 блок логики.

В момент встречи снаряда с устройством 7 срабатывания взрывателя снаряда происходит подрыв снаряда.

Устройство 7 срабатывания взрывателя снаряда может быть выполнено, например, в виде листа фанеры толщиной 10 мм.

При этом корпус снаряда дробится на большое число осколков различного веса. Под воздействием газообразных продуктов детонации осколки получают большую начальную скорость, достигающую 500-1500 м/с, и разлетаются по определенным направлениям от точки взрыва. В зависимости от скорости и массы осколков формируются эшелонированные группы осколков снаряда.

С момента подрыва снаряда на траектории движения начинается этап определения характеристик осколочного поля снаряда (фиг.1, 4).

На данном этапе определяют количество эшелонированных групп осколков снаряда, скорость их движения, геометрические размеры осколков снаряда, массу осколков, углы подхода эшелонированных групп осколков снаряда к мишени.

В момент пролета эшелонированных групп осколков снаряда относительно третьего 3 датчика происходит последовательное срабатывание комбинации чувствительных элементов 36 датчика, и сигналы с выходов третьего 3 датчика поступают на первые, вторые, третьи и четвертый входы первого 31 блока регистрации параметров перемещений осколков.

Сигналы с третьих выходов третьего 3 датчика последовательно поступают на первые входы соответствующих элементов И из n-третьей 40 группы элементов И и на первый вход сдвигового регистра 43, обеспечивая тем самым последовательное поступление импульсов с выходов сдвигового регистра 43 через первый 44 и второй 45 элемент ИЛИ, на вторые входы n-первых 38 и n-вторых 39 групп элементов И, на первые входы которых поступают сигналы с выходов датчиков, с выходов первых, вторых и третьих n-групп элементов И, сигналы поступают на входы первого 33 логики, определяя тем самым координаты пролета осколков снаряда (фиг.5).

В момент пролета осколков снаряда относительно четвертого 4 датчика происходит последовательное срабатывание комбинации чувствительных элементов 36 датчика, и сигналы с выходов четвертого 4 датчика поступают на первые, вторые, третьи и четвертый входы второго 32 блока регистрации параметров перемещений осколков.

Второй 32 блок регистрации параметров перемещения осколков работает аналогично, как и первый 31 блок регистрации параметров перемещения осколков.

Коды сигналов, поступающих на первые, вторые и третьи входы блока 33 логики, соответствуют координатам движения эшелонированных групп осколков и обеспечивают срабатывания определенной комбинации квадратной матрицы элементов И 46, сигналы с выхода которых обеспечивают срабатывания комбинации квадратной матрицы триггеров 47, сигналы с выхода которых обеспечивают индикацию координат эшелонированных групп осколков блоком 48 индикации (фиг.6).

Аналогично работает и второй 34 блок логики, входящий в состав второго 9 измерительного блока.

Информация о координатах осколков поступает с первого 33 и второго 34 блоков логики на первые и вторые входы вычислителя 12 определения характеристик осколочного поля снаряда. Скорость осколков определяется в вычислителе 12 в соответствии с выражением выражения , где dni - расстояние между эшелонами осколков относительно первого и второго датчиков , Δt - время которое определяет дискретность измерения скоростей осколков снаряда (фиг.1).

Углы подхода осколков снаряда к мишени определяются в вычислителе 12 в соответствии с выражением , , где координаты Xi, Yi, векторов скоростей ϑni эшелонов осколков снаряда определяются в виде выражения Xi=x1i-x2i, Yi=y1i-y2i, Zi=z1i-z2i (фиг.1).

Геометрические размеры осколков снаряда определяются в вычислителе 12 в виде выражений lx=ni, ly=nj, lz=nk, где n - количества одновременно сработавших элементов, i, j, k - линейные размеры чувствительных элементов линеек фотоприемников в трех плоскостях.

Масса осколков определяется в вычислителе 12 в виде выражения mi=ρ*(ni*nj*nk), где ρ - плотность материала корпуса снаряда.

Во время воздействие ударной волны на квадратную матрицу n-ного порядка пьезоэлектрических датчиков 5, с выходов данных датчиков сигналы с поступают на вход квадратной матрицы n-ного порядка программируемых усилителей 53 заряда, после усиления поступают на вход вычислителя 13 параметров ударной волны.

Вычислитель 13 параметров ударной волны определяет массовую скорость (u1), температуру ударной волны (T1) и удельный импульс ударной волны (J1).

Затем эти данные и данные о скорости движения снаряда и его координатах поступают на первый и второй входы блока 14 памяти, с выхода которого через передающее 15 и приемное 16 устройства, устройство 17 сопряжения поступают на входы микроЭВМ 18.

Таким образом, предлагаемое изобретение обеспечивает определение характеристик осколочного поля снаряда и параметров ударной волны.

1. Способ определения характеристик осколочного поля снаряда, заключающийся в размещении двух датчиков на заданном расстоянии между собой, выполнении конструкции датчика в виде двух перпендикулярно расположенных линеек излучающих диодов и фотоприемников, измерении временного интервала срабатывания между первым и вторым датчиками в процессе движения снаряда, определении скорости снаряда на основе измеренного временного интервала, определении пространственных положений сработавших элементов фотоприемников первого и второго датчиков в процессе движения снаряда, определении координат движения снаряда на основе информации о пространственных положениях сработавших элементов фотоприемников, выдаче информации о скорости и координатах движения снаряда в блок индикации, отличающийся тем, что дополнительно размещают два датчика на заданном расстоянии между собой, размещают датчик давления в непосредственной близости от мишени, осуществляют подрыв снаряда на траектории движения и формируют осколочное поле снаряда, фиксируют моменты времени и количество последовательных срабатываний элементов фотоприемников третьего и четвертого датчиков в процессе движения осколков снаряда к мишени, определяют количество осколков снаряда на основе анализа количества последовательных срабатываний чувствительных элементов линеек фотоприемников, определяют временные интервалы движения осколков снаряда относительно третьего и четвертого датчиков, фиксируют пространственные положения сработавших чувствительных элементов линеек фотоприемников в трех плоскостях, определяют координаты движения осколков снаряда на основе информации о пространственных положениях сработавших чувствительных элементов линеек фотоприемников, определяют скорость движения осколков снаряда в виде выражения
,
где dni - расстояние между осколками относительно третьего и четвертого датчиков Δti - время движения осколков снаряда относительно третьего и четвертого датчиков, x2i, x1i, y2i, y1i, z2i, z1i - координаты осколков относительно третьего и четвертого датчиков в трех плоскостях, фиксируют количество одновременно сработавших чувствительных элементов линеек фотоприемников в трех плоскостях, определяют геометрические размеры осколков снаряда в виде выражений lxi=ini, lyi=jnj, lzi=knk, где ni, nj, nk - количество одновременно сработавших элементов в трех плоскостях, i, j, k - линейные размеры чувствительных элементов линеек фотоприемников в трех плоскостях, определяют массу осколков в виде выражения mi=ρ·(ini·jnj·knk), где ρ - плотность материала корпуса снаряда, фиксируют изменение координат движения осколков относительно третьего и четвертого датчиков и на основе полученных данных определяют координаты Xi, Yi, Zi векторов движения осколков снаряда в виде выражения Xi=x1i-x2i, Yi=y1i-y2i, Zi=z1i-z2i, определяют углы подхода осколков к мишени в виде выражений , ,
определяют параметры ударной волны в непосредственной близости от мишени, осуществляют запись полученных данных в блок памяти, осуществляют передачу данных по линии неконтактной связи на микроЭВМ.

2. Устройство определения характеристик осколочного поля снаряда, состоящее из первого и второго разнесенных датчиков и первого измерительного блока, первые и вторые выходы первого и второго датчиков соединены соответственно с первыми, вторыми, третьими и четвертыми входами первого измерительного блока, пятый вход которого соединен с кнопкой «Пуск», первый измерительный блок содержит первый и второй измерительные приборы, первый, второй, третий, и четвертый элементы ИЛИ, первый и второй блоки логики, каждый из датчиков выполнен в виде двух перпендикулярно расположенных линеек излучающих диодов и линеек фотоприемников, причем первые выходы горизонтально расположенной линейки фотоприемников первого датчика соединены одновременно с входами первого элемента ИЛИ и первыми входами первого блока логики, вторые выходы вертикально расположенной линейки фотоприемников первого датчика соединены одновременно с входами второго элемента ИЛИ и вторыми входами первого блока логики, первые выходы горизонтально расположенной линейки фотоприемников второго датчика соединены одновременно с входами третьего элемента ИЛИ и первыми входами второго блока логики, вторые выходы вертикально расположенной линейки фотоприемников второго датчика соединены одновременно с входами четвертого элемента ИЛИ и вторыми входами второго блока логики, третьи входы первого и второго блоков логики являются пятым входом первого блока измерений, выходы первого и второго элементов ИЛИ соединены соответственно с первыми входами первого и второго измерительных приборов, выходы третьего и четвертого элементов ИЛИ соединены соответственно со вторыми входами первого и второго измерительных приборов, выход источника питания соединен с линейками излучающих диодов, блок логики состоит из матрицы элементов И, из матрицы триггеров, блока индикации, дифференцирующей цепи, причем первые и вторые входы матрицы элементов И соединены с первыми и вторыми входами блока логики, а выходы элементов И соединены с первыми входами триггеров, вторые входы которых соединены с выходом дифференцирующей цепи, вход которой является четвертым входом блока логики, выходы триггеров соединены с входами блока индикации, выход которого является выходом блока логики, выходы первого, второго измерительных устройств и выходы первого, второго блоков логики являются соответственно первым, четвертым, вторым и третьим выходами первого блока измерений, отличающееся тем, что дополнительно введены третий, четвертый и пятый датчики, мишень, устройство для метания снаряда, устройство для срабатывания взрывателя снаряда, второй и третий блоки измерений, вычислитель характеристик осколочного поля, вычислитель параметров ударной волны, блок памяти, передающее устройство, приемное устройство, устройство сопряжения, микроЭВМ, при этом третий и четвертый датчики выполнены в виде трех перпендикулярно расположенных линеек излучающих диодов и линеек фотоприемников, пятый датчик выполнен в виде матрицы чувствительных элементов, второй блок измерений содержит первый и второй блоки регистрации параметров перемещения осколков, первый и второй блоки логики, причем первая, вторая, третья группы и четвертый выходы третьего и четвертого датчиков соединены соответственно с первой, второй, третьей, четвертой, пятой, шестой, седьмой группами и восьмым входом второго измерительного блока, девятый вход которого соединен с кнопкой «Пуск», первая, вторая, третья группы входов и четвертый вход второго блока измерений являются соответственно первыми, вторыми, третьими группами и четвертым входом первого блока регистрации параметров перемещения осколков, пятая, шестая, седьмая группы входов и восьмой вход второго блока измерений являются соответственно первыми, вторыми, третьими группами и четвертым входом второго блока регистрации параметров перемещения осколков, первая, вторая, третья группы выходов первого и второго блоков регистрации перемещений соединены с первой, второй и третьей группам входов соответственно первого и второго блоков логики, четвертые входы которых являются девятым входом второго блока измерений, группа выходов первого и второго блоков логики являются соответственно первой и второй группами выходов второго блока измерений и соединены соответственно с первой и второй группами входов вычислителя характеристик осколочного поля, выход которого соединен со вторым входом блока памяти, первый и второй входы которого соединены соответственно с выходами первого блока измерений и выходом вычислителя параметров ударной волны, вход которого соединен с выходом третьего блока измерений, входы которого соединены с выходами пятого датчика давлений, третий блок измерений содержит матрицу усилителей, входы третьего блока измерений являются входами матрицы усилителей, а выходы являются выходами третьего блока измерений, выход блока памяти соединен с входом передающего устройства, выход которого по неконтактной линии связи соединен через приемное устройство и устройство сопряжения с микроЭВМ.

3. Устройство для определения характеристик осколочного поля снаряда по п.2, отличающееся тем, что первый и второй блоки регистрации параметров перемещения осколков снаряда состоят из первой, второй и третьей групп элементов И, дифференцирующей цепи, генератора импульсов, сдвигового регистра, первого и второго элементов ИЛИ, при этом n-первые, n-вторые, n-третьи и четвертый входы блока регистрации параметров перемещения эшелонированных групп осколков снаряда являются соответственно первыми входами n-первой, n-второй, n-третьей групп элементов И и входами дифференцирующей цепи, вторые входы n-первой и n-второй групп элементов И соединены соответственно с выходами первого и второго элементов ИЛИ, выход дифференцирующей цепи соединен с третьим входом сдвигового регистра, второй и третий входы которого соединены соответственно с выходом генератора импульсов и первым входом одного из n-третьих элементов И, каждый из выходов сдвигового регистра соединен с одним из вторых входов n-третьего элемента И, выходы которых соединены со входами первого и второго элементов ИЛИ, выходы n-первой, n-второй и n-третьей групп элементов И являются соответственно n-первыми, n-вторыми и n-третьими группами выходов блока регистрации параметров перемещения осколков.

4. Устройство для определения характеристик осколочного поля снаряда по п.2, отличающееся тем, что блоки логики состоят из квадратной матрицы n-порядка элементов И, из квадратной матрицы n-порядка триггеров, блока индикации, причем первые, вторые и третьи входы квадратной матрицы n-порядка элементов И соединены соответственно с первыми, вторыми и третьими входами блока логики, выходы квадратной матрицы n-порядка элементов И соединены с первыми входами триггеров, вторые входы которых соединены с выходом дифференцирующей цепи, выходы триггеров соединены с входами блока индикации, выход которого является выходом блока логики.



 

Похожие патенты:

Изобретение относится к способам испытания боеприпасов, а более конкретно к способам испытания осколочных боеприпасов естественного дробления с круговыми полями.

Изобретение относится к способам испытания боеприпасов, а более конкретно к способам испытания осколочных боеприпасов естественного дробления с круговыми полями.

Изобретение относится к оборонной технике и, в частности, к комплексным средствам контроля электрических параметров управляемых зенитных ракет и пусковых устройств.

Изобретение относится к полигонным испытаниям боеприпасов и может быть использовано, в частности, для измерения характеристик осколочного поля снаряда. .

Изобретение относится к области испытаний боеприпасов и может быть использовано для определения характеристик осколочного действия боеприпасов. .

Изобретение относится к области исследования быстропротекающих процессов, а конкретно к испытаниям боеприпасов. .

Изобретение относится к области испытания боеприпасов и может быть использовано при оценке пробивного действия снарядов. .

Изобретение относится к области машиностроения и может быть использовано для оперативной оценки эффективности поражающего действия боеприпасов. .

Изобретение относится к области испытания боеприпасов и может быть использовано при определении инициирующей способности различных поражающих элементов, а также при определении стойкости боеприпасов к воздействию этих элементов.

Изобретение относится к области испытания боеприпасов и может быть использовано при определении инициирующей способности снарядов, содержащих заряд взрывчатого вещества (ВВ), при их поверхностном подрыве.

Изобретение относится к области испытаний боеприпасов и может быть использовано для определения характеристик явления аэроудара, возникающего в отсеках конструкции объектов техники в результате действия полей поражения боеприпасов

Изобретение относится к области испытания боеприпасов и может быть использовано при определении инициирующей способности боевых частей дистанционных боеприпасов

Изобретение относится к области испытания боеприпасов и может быть использовано при оценке пробивного действия полей поражения дистанционных боеприпасов

Группа изобретений относится к области испытаний осколочного боеприпаса с осесимметричным полем разлета осколков. Способ включает подрыв боеприпаса, установленного в заданное положение в центре профилированной мишенной стенки, размеченной на зоны, соответствующие направлениям разлета осколков в принятой системе координат, регистрацию попаданий, улавливание и подсчет числа осколков, попадающих в каждую зону, измерение размеров и площади пробоин. Оценку качественных и количественных характеристик осколочного поля по массам, скоростям, форме и размерам осколков осуществляют посредством регистрации, записи и последующей обработки сигналов с электретных датчиков, размещенных по соответствующим зонам мишенной стенки и равным им по размерам. Стенд для реализации способа содержит профилированную мишенную стенку, выполненную с возможностью регулировки радиуса кривизны. Обшивка стенки выполнена в виде набора электретных датчиков, по отдельности электрически связанных с компьютеризованной системой регистрации и записи. Электроды датчика выполнены из механически слабосвязанных мелкодисперсных металлических частиц. Повышается точность измерений. 2 н. и 8 з.п. ф-лы, 15 ил.

Изобретения относятся к испытательному оборудованию. Способ определения характеристик срабатывания пиротехнических изделий состоит в том, что на элемент накаливания пиротехнического изделия подают электрический ток от источника постоянного тока, фиксируют момент t1 подачи тока и значение величины поданного тока I. Фиксируют момент воспламенения заряда пиротехнического изделия t2 по моменту появления вибрации на корпусе пиротехнического изделия, определяют время инициирования пиротехнического изделия Т и для получения зависимости времени инициирования Т от различных значений величины подаваемого тока I повторяют вышеперечисленные операции при различных значениях величины токов. Устройство для определения характеристик срабатывания пиротехнических изделий состоит из цепи подрыва с источником питания, подключенной к элементу накаливания пиротехнического изделия. В него введены устройство для обнаружения вибраций, установленное на пиротехническом изделии, и блок определения времени инициирования. Цепь подрыва состоит из последовательно соединенных источника питания, ключа для замыкания цепи, элемента накаливания пиротехнического изделия, устройства измерения силы тока в цепи подрыва. Выходы устройства для обнаружения вибраций и устройства измерения силы тока электрически подключены к входам блока определения времени инициирования. Повышается достоверность испытаний. 2 н.п. ф-лы, 1 ил.

Изобретения относятся к испытательному оборудованию. Способ определения характеристик срабатывания пиротехнических изделий состоит в том, что на элемент накаливания пиротехнического изделия подают электрический ток от источника постоянного напряжения, фиксируют момент t1 подачи тока и значение величины поданного тока I. Фиксируют момент воспламенения заряда пиротехнического изделия t2 по моменту появления скачка тока на элементе накаливания пиротехнического изделия и определяют время инициирования пиротехнического изделия Т как разницу между моментом воспламенения заряда пиротехнического изделия t2 и моментом подачи постоянного электрического тока t1. Устройство для определения характеристик срабатывания пиротехнических изделий состоит из цепи подрыва с источником питания, подключенной к элементу накаливания пиротехнического изделия. В устройство введен блок определения времени инициирования. Цепь подрыва состоит из последовательно соединенных источника питания, ключа для замыкания цепи, элемента накаливания пиротехнического изделия, устройства измерения силы тока в цепи подрыва и регулируемого сопротивления. Выход устройства измерения силы тока электрически подключен к входу блока определения времени инициирования. Источник питания выполнен в виде источника постоянного напряжения. Повышается достоверность испытаний. 2 н. и 1 з.п. ф-лы, 1 ил.

Группа изобретений относится к области полигонных испытаний боеприпасов. Предусмотрено дополнительное размещение двух датчиков на заданном расстоянии между собой, выполнение конструкции датчиков в виде трех перпендикулярно расположенных линеек излучающих диодов и фотоприемников, осуществление подрыва снаряда на траектории движения и формирование поля поражения снаряда. При этом фиксируются моменты времени и количество последовательных срабатываний элементов фотоприемников дополнительных датчиков в процессе движения эшелонированных групп осколков снаряда к мишени, определяются временные интервалы между эшелонированными группами осколков снаряда на основе фиксации последовательностей моментов срабатывания датчиков. Далее производятся фиксирование комбинации сработавших элементов фотоприемников в трех плоскостях, определение координаты сработавших элементов фотоприемников на основе информации о комбинации сработавших элементов фотоприемников. На основе данных о координатах и временных интервалах сработавших элементов фотоприемников дополнительных датчиков определяются скорости движения эшелонированных групп осколков снаряда. Определяются также три координаты векторов движения эшелонированных групп осколков снаряда и углы подхода эшелонированных групп осколков снаряда к мишени. Выполняется индикация величин скоростей движения эшелонированных групп осколков снаряда, геометрических размеров эшелонированных групп осколков снаряда в трех плоскостях, углов подхода эшелонированных групп осколков снаряда к мишени. Группа изобретений позволяет повысить информативность испытаний боеприпасов. 2 н. и 3 з.п. ф-лы, 7 ил.

Группа изобретений относится к области испытания боеприпасов. Способ заключается в размещении полуцилиндрической мишени, выполненной в виде N секторов неконтактных датчиков и определении дифференциального закона распределения осколков по направлениям разлета в каждом эшелоне осколочного поля боеприпаса на основании фиксации координат сработавших чувствительных элементов линейки фотоприемников в картинной плоскости. Затем определяют массу осколков. После чего определяют закон распределения осколков по массе в каждом эшелоне осколочного поля боеприпаса. Затем определяют среднюю массу осколка на основе закона распределения осколков по их массам. Определяют плотность потока осколков. После чего определяют математическое ожидание числа поражающих осколков, попадающих в цель. Устройство содержит взрывную камеру, устройство инициирования и боеприпас, ПЭВМ, радиолокационный измеритель скорости и полуцилиндрическую мишень, выполненную в виде бесконтактных датчиков с N секторами, N блоков первичной обработки информации. Взрывная камера имеет щель, ширина и длина которой позволяют улавливать часть осколочного поля боеприпаса. Радиолокационный измеритель состоит из последовательно соединенных антенны, генератора высокой частоты, блока широкополосных усилителей, n фильтров, первых входов n ключей, причем вторые входы n ключей соединены с выходом устройства инициирования. Выходы n ключей соединены n входами ПЭВМ. Достигается повышение информативности испытаний. 2 н. и 3 з.п. ф-лы, 11 ил.

Группа изобретений относится к области испытания боеприпасов. Способ заключается в том, что подрыв боеприпаса осуществляют во взрывной камере, получают временную зависимость фильтрованных частот Доплера сигналов, отраженных от части осколочного поля относительно момента подрыва боеприпаса. Устанавливают радиолокационный измеритель скорости так, что ось диаграммы направленности антенны составляет с плоскостью, проходящей через продольную ось боеприпаса и продольную ось щели взрывной камеры, острый угол α. Частоты Доплера сигналов, отраженных от части осколочного поля, фильтруют при нахождении поля в пределах диаграммы направленности радиолокационного измерителя скорости. Скорости лидирующих и замыкающих осколков, среднюю скорость и глубину осколочного поля определяют по временной зависимости фильтрованных частот Доплера сигналов, отраженных от части осколочного поля относительно момента подрыва боеприпаса. Затем определяют количество эшелонов осколочного поля. Устройство содержит взрывную камеру, полуцилиндрическую мишень, боеприпас, устройство инициирования, радиолокационный измеритель скорости. Достигается повышение информативности испытаний. 2 н.п. ф-лы, 2 ил.
Наверх