Трехэлектродный датчик

Изобретение относится к области измерения электрофизических параметров жидкостей, а именно измерения электропроводности, диэлектрической проницаемости и тангенса угла потерь жидкостей, преимущественно электролитов в связи с изучением и контролем их состава и строения. Трехэлектродный датчик, содержащий два потенциальных электрода, один из которых снабжен заземленным охранным электродом, первый из потенциальных электродов имеет малую площадь и является основным образующим рабочий объем датчика и его геометрическую постоянную в совокупности с межэлектродным расстоянием, а второй съемный потенциальный электрод является основным в формировании однородности электромагнитного поля в рабочем объеме датчика в испытанных пределах активной удельной электропроводности жидкости от 10-1 См/м до 10-6 См/м. Изобретение обеспечивает повышение эксплуатационных качеств датчика, достижение возможности определения характеристической частоты колебаний жидкости; характеристической активной электропроводности жидкости, характеристической удельной электропроводности, относительной диэлектрической проницаемости жидкости при различных частотах колебаний поля и температурах, повышение надежности и оперативности анализа и определения рода (и вида) жидкостей, с отбором и без отбора проб, дистанционно, путем погружения датчика в продукт в процессе производства, транспортировки и хранения. 1 ил.

 

Изобретение относится к области измерения электрофизических параметров жидкостей, а именно измерения электропроводности, диэлектрической проницаемости и тангенса угла потерь жидкостей, преимущественно электролитов в связи с изучением и контролем их состава и строения.

Трехэлектродные датчики, состоящие из двух потенциальных и охранных электродов, вошли в практику анализа и контроля этих параметров жидкостей.

Наиболее близким по своему техническому решению является трехэлектродный датчик ДП (Патент РФ №578603, 30.10. 1977, Бюллетень №40). В нем используются потенциальные электроды с развитыми поверхностями и сравнительно небольшими расстояниями между ними, что делает его пригодным для определения совокупности удельных параметров диэлектрических жидкостей, с проводимостью от 10-6 См/м до 10-12 См/м (ограниченной разрешающей способностью измерительного прибора по проводимости).

Датчик не может использоваться для жидкостей (электролитов) с проводимостью более 10-5 См/м, что не позволяет определять в соответствии с патентом РФ №2383010, 27.02.10 «Способ определения рода жидкостей» характеристические электрофизические параметры органических и неорганических жидкостей, (преимущественно жидких электролитов) в электромагнитном поле с частотой колебаний от 25 Гц до 10 МГц.

Техническим результатом при использовании заявленного устройства является повышение эксплуатационных качеств датчика, достижение возможности определения характеристической частоты колебаний жидкости Fx (Гц); характеристической активной электропроводности жидкости Gfx (См/м), характеристической удельной электропроводности (См/м), относительной диэлектрической проницаемости жидкости ε при различных частотах колебаний поля и температурах, повышение надежности и оперативности анализа и определения рода (и вида) жидкостей, с отбором и без отбора проб, дистанционно, путем погружения датчика в продукт в процессе производства, транспортировки и хранения.

Технический результат достигается тем, что в трехэлектродном датчике, содержащем два потенциальных электрода, экранированных третьим электродом, первый из потенциальных электродов имеет малую площадь и является основным, образующим рабочий объем датчика и его геометрическую постоянную в совокупности с межэлектродным расстоянием, а второй съемный потенциальный электрод является основным для организации однородности электромагнитного поля в рабочем объеме датчика в испытанных пределах активной удельной электропроводности жидкости от 10-1 См/м до 10-6 См/м.

Проведенный анализ позволил установить, что аналоги, тождественные признакам заявленного устройства, отсутствуют, что указывает на соответствие заявленного устройства условию патентоспособности «новизна». «Промышленная применимость» заявленного устройства обусловлена наличием элементной базы, на основе которой могут быть изготовлен трехэлектродный датчик.

Заявленное устройство поясняется чертежом,

где на фиг.1 показана принципиальная схема трехэлектродного датчика

Заявленное устройство реализуется следующим образом.

На фиг.1 схематически показан принципиальный вариант конструкции датчика. Датчик содержит неподвижный потенциальный электрод 1, обладающий по размеру малой площадью, соединяемый с измерительным прибором экранированным коаксиальным кабелем α; съемный потенциальный электрод 2, обладающий площадью больших размеров, могущий дискретно устанавливаться на различные расстояния от первого неподвижного потенциального электрода с учетом активной удельной электропроводности жидкости, в том числе жидкого электролита, с помощью металлической прокладки 4, задающей межэлектродный зазор; корпус 3, являющийся экранным электродом, служащий для размещения в нем и закрепления элементов конструкции; контактное металлическое кольцо 5, соединенное со съемным потенциальным электродом и измерительным прибором экранированным коаксиальным кабелем β; керамических колец 6 (4 шт.), служащих для изоляции; фланца 7, служащего для установки датчика в стационарных емкостях или трубопроводах.

Датчик работает в комплекте с измерителями иммитанса. В низкочастотной области его целесообразно использовать в комплекте с измерителем иммитанса Е7-20 (Е7-25), а на повышенных частотах до 10 МГц целесообразно использовать компьютеризированную систему КСА (Патент РФ №2209422, 2003 г.).

Датчик приобретает необходимое состояние для осуществления процесса измерения всей совокупности электрофизических параметров, в том числе величин Gfx, Fx, и ε, когда активная составляющая электропроводности жидкости в рабочем объеме датчика является слагаемым двух сопоставимых величин. Одна из них обусловлена количеством движения в растворе «свободных» зарядов, образующих токи проводимости, а другая - количеством движения «связанных» зарядов, образующих токи смещения.

Такое состояние датчика достигается сочетанием размера площади неподвижного потенциального электрода и расстоянием между электродами.

Оптимальное решение имеет место, когда геометрическая постоянная рабочего объема датчика с воздухом равна

где С0 - электрическая емкость рабочего объема в вакууме (или в воздухе), пФ;

8,854 - абсолютная диэлектрическая проницаемость вакуума, пФ/м.

Допускается отклонение от оптимального значения геометрической постоянной датчика, которое определяется по выражению (Патент РФ №1423950, 1988 г., Бюллетень №34):

К=К02 /K1 (1/м),

где K1 - геометрическая постоянная датчика с исследуемой жидкостью:

К1=ε-8,854/СЭ (1/м),

СЭ - эквивалентная электрическая емкость датчика с исследуемой жидкостью, пФ.

Удельная электропроводность определяется из выражения

=K·G,

где G - измеренная проводимость датчика с жидкостью, См.

Диэлектрическая проницаемость определяется из выражения

ε=С/С0,

где С - измеренная емкость датчика с исследуемым продуктом, пФ;

С0 - емкость датчика до введения жидкости (в вакууме или в воздухе), пФ.

Диапазон определения электрофизических параметров датчика составляет: диэлектрической проницаемости от 1 до 120 относительных единиц в диапазоне удельной электропроводимости от 10-1 до 10-6 См/м и менее (корректируется в соответствии с разрешающей способностью измерительного прибора).

Конструкция датчика позволяет обеспечить максимальное исключение токов утечки (паразитных потерь) на результат измерения, состоящего из двух видов активной электропроводности жидкости. Уменьшить паразитные потери можно за счет изоляции экранного электрода от гальванического контакта с анализируемой жидкостью. В другом варианте съемный потенциальный электрод может быть изолирован. А в нем можно очистить от изоляции поверхность, параллельную и равную поверхности неподвижного потенциального электрода или других размеров. Кроме того, имеется возможность простой смены прокладки 4, изменяющей межэлектродный зазор и, следовательно, геометрическую постоянную.

Датчик может быть использован для определения указанных выше показателей - Fх(Гц), Gfx (См/м), (См/м) и ε жидкостей, обладающих любой удельной электропроводностью (от диэлектриков до электролитов) в электромагнитном поле с частотой от 1 кГц до 10 МГц. При этом исключается необходимость конструирования для проведения измерений серии датчиков.

Таким образом, в заявленном устройстве благодаря расширению возможностей прототипа обеспечивается повышение эксплуатационных качеств датчика, надежности и оперативности анализа и определения рода (и вида) жидкостей, с отбором и без отбора проб, дистанционно, путем погружения датчика в продукт в процессе производства, транспортировки и хранения.

Трехэлектродный датчик, содержащий два потенциальных электрода, один из которых снабжен заземленным охранным электродом, отличающийся тем, что, с целью определения характеристической частоты и характеристической электропроводности жидких электролитов первый из потенциальных электродов имеет малую площадь и является основным, образующим рабочий объем датчика и его геометрическую постоянную в совокупности с межэлектродным расстоянием, а второй съемный потенциальный электрод является основным в формировании однородности электромагнитного поля в рабочем объеме датчика в испытанных пределах активной удельной электропроводности жидкости от 10-1 См/м до 10-6 См/м.



 

Похожие патенты:

Изобретение относится к области аналитического приборостроения, а именно к сенсорам концентрации газов, и предназначено для селективного определения концентрации аммиака и некоторых его производных (например, гидразина и несимметричного диметилгидразина), и может быть использовано для медицинской диагностики, для экологического мониторинга в химической, нефтехимической, металлургической, холодильной, пищевой, электронной, авиакосмической и некоторых других областях промышленности.

Изобретение относится к исследованию свойств порошкообразных материалов по величине электропроводности или электросопротивления и может быть использовано для контроля качества материала в порошковой металлургии и пиротехнике.

Изобретение относится к области эксплуатации подземных и наземных металлических трубопроводов, а именно - к мониторингу их коррозионного состояния. .

Изобретение относится к измерительной технике, а именно к способам и средствам определения параметров газовой среды (температура, влажность, давление, расход, вакуум и т.п.).

Изобретение относится к измерительной технике, а именно к способам определения активности ионов водорода (показателя рН) в жидких средах. .

Изобретение относится к методам неразрушающего контроля и может быть использовано для диагностики объектов при сборке по параметрам их механических колебаний, например, серийных изделий устройств контроля схода подвижного состава (УКСПС).

Изобретение относится к методам анализа физических и химических свойств биологических тканей и материалов биологического происхождения путем регистрации электрохимических параметров и математической обработки полученных данных и может быть использовано в пищевой промышленности для аналитического контроля (диагностики) и оценки показателей качества и безопасности продуктов питания и сырья для их изготовления, а также в медицине для диагностики различных заболеваний и оценки степени патологических изменений в тканях и органах

Изобретение может быть использовано для контроля материалов, изначально свободных и защищенных от водорода для космических аппаратов, активных зон водоохлаждаемых ядерных энергетических установок (ЯЭУ), вентиляторов двигателей самолетов, дисков турбин высокого и низкого давления, их планетарных редукторов и других изделий, подвергаемых наводороживанию в процессе производства и эксплуатации. Согласно изобретению для определения содержания водорода в изделиях из титана в слоях по глубине образца величину вихревого тока определяют на различных частотах, при этом на каждой частоте определяют максимальное значение вихревого тока в зависимости от углового расположения датчика, измеряют сопротивления R1 и R2 на частотах, соответствующих разности глубин a1 и a2, вычисляют электропроводность для заданной глубины ax=a2-a1, затем по градуировочной эталонной зависимости электропроводности от концентрации водорода в титане определяют искомое содержание водорода в слое по глубине титанового изделия (образца). Изобретение обеспечивает возможность определения содержания водорода в слоях насыщенного водородом титана, расположенных на разной глубине, и повышает точность определения содержания водорода. 4 ил., 3 табл.

Изобретение относится к измерительной технике, в частности к устройствам определения электрических свойств материалов, и может быть использовано для создания веществ, обладающих требуемыми зависимостями удельной электропроводности от давления, которые применяются, например, при оценке изменения во времени горного давления в породных массивах. Техническим результатом заявленного изобретения является возможность определения зависимости удельной электропроводности пластичного вещества. Технический результат достигается за счет возможности определения зависимости удельной электропроводности пластичного вещества от давления. Устройство включает диэлектрическую трубку, в один конец которой вставлена первая металлическая втулка с внутренней резьбой, в нее вкручен винт, а во второй ее конец вставлена вторая металлическая втулка с установленным на ней датчиком давления, подключенным кабелем к регистратору давления. Электродами являются первая и вторая металлические втулки, подключенные проводниками тока к регистратору сопротивления. Диэлектрическая трубка герметизирована. 2 з.п. ф-лы, 1 ил.

Изобретение относится к контрольно-измерительной технике и предназначено для использования в нефтедобывающей промышленности для исследования пластов, определения их остаточной водонасыщенности, для оперативного контроля влажности на нефтепромысловых скважинах. Способ определения водонасыщенности керна и других форм связанной воды в материале керна включает приготовление образца из керна, экстракцию и высушивание образца, моделирование пластовых условий в образце керна, фильтрацию минерализованной воды через образец керна и последовательное измерение в процессе фильтрации промежуточных значений тока, проходящего через образец при подаче на него переменного напряжения, построение зависимости значения электрического сигнала от водонасыщенности образца керна, при этом дополнительно, согласно изобретению, перед измерениями керн изолируют тонкой диэлектрической оболочкой и помещают между электродами емкостной измерительной ячейки, а значения тока, проходящего через образец при различных значениях водонасыщенности (от 0 до 100%), определяют методом бесконтактной высокочастотной кондуктометрии, например методом нелинейного неуравновешенного моста, питаемого высокочастотным напряжением с частотой 2-10 МГц, на полученной зависимости значений электрического сигнала от водонасыщенности образца керна выделяют три области с различными значениями крутизны подъема графика с ростом водонасыщенности, а границы энергетически различных категорий связанной воды в керне, в том числе остаточной водонасыщенности, определяют как точки перегиба между упомянутыми областями с различными значениями крутизны сигнала. Изобретение обеспечивает повышение точности измерений и упрощение процесса определения остаточной водонасыщенности керна с одновременным расширением области применения разрабатываемого способа, в частности и других форм связанной воды в материале керна. 1 з.п. ф-лы, 6 ил.

Изобретение может быть использовано в системах контроля водно-химического режима для тепловой, атомной и промышленной энергетики. Cпособ определения концентрации компонентов смеси высокоразбавленных сильных электролитов включает одновременное измерение удельной электропроводности и температуры анализируемого раствора при разных температурах в количестве, равном количеству компонентов раствора, решение системы уравнений электропроводности в количестве, равном числу измерений, каждое из которых имеет определенный вид, с определением при решении уравнений значений удельной электропроводности при температуре 18°С для каждого из компонентов смеси и нахождение по известным (справочным) данным соответствующей им концентрации. Изобретение обеспечивает упрощение процесса за счет непосредственного определения концентрации каждого компонента, входящего в состав раствора. 1 пр.,1 ил.

Изобретение относится к способу и системе автоматизированного контроля процессов в первичных и вторичных отстойниках или отстойниках-илоуплотнителях очистных сооружений объектов водоотведения жилищно-коммунального хозяйства. Технический результат заключается в повышении эффективности автоматизированного контроля отстойников сточных вод. Система содержит совокупность первичных преобразователей емкостного типа для измерения электрической емкости (диэлектрической проницаемости) и электрического сопротивления (удельной электропроводности), а также температуры, размещаемых на подвижном оборудовании, расположенном внутри отстойника, совокупность вторичных преобразователей, соединенных с первичными преобразователями, подающих на первичные преобразователи сигналы воздействия заданных частоты и амплитуды и получающих ответные мгновенные значение напряжения и тока первичных преобразователей для последующей обработки, программируемое устройство или автоматизированное рабочее место контроля, подключенное к вторичным преобразователям по проводному или беспроводному каналу связи, с функциями сбора, обработки и хранения информации, включая контроль динамики изменения измеренных значений диэлектрической проницаемости и удельной электропроводности во времени или относительно конструкции отстойника и формирование итогового прогноза уровня или свойств для осадка или ила. 2 н. и 10 з.п. ф-лы, 1 ил.

Способ неинвазивного контроля содержания метаболитов в крови, включающий многократное измерение с помощью матрицы датчиков показаний электромагнитного импеданса в эпидермальном слое пациента и в одном из слоев, включающих кожный слой или подкожный слой пациента, пока разность между показаниями не превысит пороговую величину; вычисление величины импеданса, отображающей указанную разность, с использованием модели эквивалентной схемы и данных индивидуального поправочного коэффициента, характерных для физиологической характеристики пациента; и определение уровня содержания метаболитов в крови пациента на основании величины импеданса и алгоритма определения уровня содержания метаболитов в крови, в котором данные уровня содержания метаболитов в крови сопоставляются с соответствующим значением данных электромагнитного импеданса пациента. Также предложена система контроля уровня содержания по меньшей мере одного из веществ: глюкозы, электролита или искомого вещества. Изобретение обеспечивает возможность без чрезмерного экспериментирования легко адаптировать его для контроля содержания метаболитов в крови пациента. 2 н. и 15 з.п. ф-лы, 14 ил.

Использование: для обнаружения утечки гексафторида урана и/или фтористого водорода. Сущность изобретения заключается в том, что детектор состоит из цилиндрической диэлектрической подложки, слоя электропроводного лакокрасочного материала с диспергированным порошкообразным графитовым наполнителем, нанесенного на диэлектрическую подложку, электрических контактов и электропроводов для подключения источника постоянного тока к слою электропроводного лакокрасочного покрытия. Технический результат: обеспечение возможности снизить время обнаружения гексафторида урана и/или фтористого водорода. 2 н. и 6 з.п. ф-лы, 1 ил., 6 табл.

Изобретение относится к области определения электрофизических параметров порошковых материалов, а также к области определения значений параметров, характеризующих физико-химические свойства материалов, по величине электрического сопротивления. Контактное устройство для определения электрического сопротивления порошкового материала при его сжатии содержит измерительную ячейку, включающую изоляционную втулку для размещения в ней образца исследуемого материала, подвижный и неподвижный цилиндрические электроды для сжатия образца и регистрации изменения его сопротивления, выполненные с заходной частью для размещения во втулке; узлы создания и измерения перемещения подвижного электрода. В устройстве новым является то, что узлы создания и измерения перемещения подвижного электрода конструктивно разъединены. При этом чувствительный элемент узла измерения кинематически связан с узлом создания перемещения. Заходная часть каждого электрода выполнена ступенчатой. Ступень, обращенная к образцу, выполнена меньшего диаметра с разгрузочной канавкой на ее наружной поверхности, а ступень большего диаметра выполнена для сопряжения с изоляционной втулкой. При этом длина L втулки, длина l1 заходной части электродов и длина l2 сопряженной ступени электродов в исходном состоянии выбраны из определенных геометрических условий. Для обеспечения возможности проведения измерительных операций с образцом порошкового материала, находящегося в инертной среде, измерительная ячейка установлена в герметизирующую трубку. Для улучшения эксплуатационных характеристик контактного устройства, связанных с возможностью визуализации образца и процесса его уплотнения, герметизирующая трубка и изоляционная втулка выполнены прозрачными. Техническим результатом изобретения является повышение точности и расширение диапазона измерений плотности, а следовательно, и повышение точности определения электрического сопротивления исследуемого порошкового материала. 2 з.п. ф-лы, 4 ил.
Наверх