Устройство для измерения тока в высоковольтной цепи с дистанционной передачей информации

Изобретение относится к измерительной технике, в частности к цифровым приборам измерения переменного и постоянного тока, преимущественно при напряжениях от 6(10) кВ. Техническим результатом является повышение надежности работы устройства. Технический результат достигается благодаря тому, что в устройство для измерения тока в высоковольтной цепи с дистанционной передачей информации, содержащее источник питания, датчик тока, выполненный в виде измерительного шунта, включенного параллельно и имеющего непосредственный контакт с токопроводом, на котором производится измерение, аналогово-цифровой преобразователь и передатчик, при этом передача информации о величине измеряемого тока производится посредством аппаратуры связи по оптическому каналу или радиоканалу, а само устройство находится под потенциалом высокого напряжения в зоне отсутствия магнитных и электрических полей, согласно предлагаемому изобретению, а также дополнительно введены микроконтроллер связи, содержащий аналогово-цифровой преобразователь, а также промежуточный или базовый сервер, первая и вторая низкочастотные катушки индуктивности, фильтрующий и стабилизирующий элементы источника питания, экранирующий герметичный кожух, при этом источник питания выполнен в виде питающего шунта, включенного параллельно и имеющего непосредственный контакт с токопроводом, на котором производится измерение, причем микроконтроллер связи выполнен с возможностью бесшовного интегрирования устройства в автоматизированную систему управления, учета и контроля электроэнергии объекта энергетики, а само устройство расположено снаружи токопровода и размещено внутри экранирующего герметичного кожуха. 1 ил.

 

Изобретение относится к измерительной технике, в частности к цифровым приборам измерения переменного и постоянного тока, преимущественно при напряжениях от 6(10) кВ.

Известно устройство для измерения переменного тока в высоковольтной цепи по патенту RU №2408891, МПК G01R 19/25, 10.01.2011, содержащее датчик тока, аналого-цифровой преобразователь, оптический кабель для передачи цифрового кода под потенциал земли, цифроаналоговый преобразователь для преобразования цифрового кода в сигнал, пропорциональный измеряемому току. При этом в устройстве в качестве датчика тока используется установленный на проводнике с измеряемым током, низковольтный измерительный трансформатор тока, вторичная обмотка которого имеет контакт с высоковольтным проводником с измеряемым током и присоединена к входу аналого-цифрового преобразователя, питаемого от источника постоянного напряжения, получаемого с использованием трансформации измеряемого тока. Выходной сигнал аналого-цифрового преобразователя через устройство задержки подан на цифроаналоговый преобразователь, выход которого подключен к приемнику сигнала, корпус цифроаналогового преобразователя и корпус приемника сигнала находятся под потенциалом земли.

Известное устройство для измерения переменного тока в высоковольтной цепи имеет следующие недостатки:

- высокая погрешность измерения, вызванная влиянием магнитных и электрических полей от токопроводов соседних фаз, которые обычно находятся на небольшом расстоянии друг от друга;

- высокая чувствительность электронных устройств и компонентов к электрическим и магнитным полям от токопровода с измеряемым током;

- возможность выхода из строя электронной аппаратуры при воздействии больших внутренних электрических потенциалов, наведенных в аппаратуре токами короткого замыкания или коммутационными перенапряжениями;

- прекращение измерения и передачи измеряемого сигнала при протекании токов короткого замыкания в первичной обмотке трансформаторов тока вследствие прекращения питания. При коротком замыкании ток в первичной обмотке приближается по форме к постоянному, а во вторичной обмотке трансформатора тока, ответственного за питание всего устройства, перестает индуцироваться ЭДС и питание пропадает;

- по принципу действия устройство может работать только в сетях переменного напряжения.

Наиболее близким техническим решением является высоковольтное оптоэлектронное устройство для измерения тока по патенту RU №2346285, МПК G01R 19/00, 10.02.2009, содержащее шунт, включенный параллельно и имеющий непосредственный контакт с токопроводом, на котором производится измерение, аналого-цифровой преобразователь (АЦП), блок, передающий цифровую информацию о силе тока с помощью электромагнитных волн (радио- или оптического диапазона), делитель напряжения, предназначенный для питания измерительного устройства, опорный изолятор, приемник, находящийся под потенциалом низкого напряжения (земли). Устройство помещается внутрь токопровода с измеряемым током. Поэтому электронная аппаратура, помещенная внутрь токопровода, не испытывает воздействия электромагнитных полей. При этом токопровод защищает аппаратуру от возможных внешних и внутренних перенапряжений, а также минимизирует температурный градиент между шунтирующей и измерительной частью цепи. Благодаря этому соблюдается одинаковое изменение проводимости материала шунтирующей и измеряемой цепи токопровода, и соответственно компенсируются температурные изменения окружающей среды. Отсутствие необходимости во внешних устройствах позволяет полость токопровода с измерительным устройством сделать герметичной. Так как электрический ток распространяется по поверхности проводника и с ростом частоты тока толщина околоповерхностного слоя, по которому распространяется ток, уменьшается, устройству не угрожают грозовые и коммутационные перенапряжения большой частоты.

Основными недостатками известного устройства являются низкая надежность работы, высокие массогабаритные параметры и стоимость, в том числе монтажа и наладки. Кроме этого, в случае его использования в качестве датчика тока в автоматизированной системе управления, учета и контроля электроэнергии объекта энергетики, оно требует дополнительных затрат на проектирование, монтаж и установку устройств сопряжения с объектом (УСО) с последующей интеграцией в указанную автоматизированную систему управления. Недостатки обусловлены тем, что в его конструкции для установки измерительной части над приемником используется опорный изолятор, для питания измерительной части применен делитель напряжения, требующий подключения к потенциалу земли, а также из-за отсутствия в его конструкции компонентов, обеспечивающих «бесшовную» интеграцию такого устройства в автоматизированную систему управления, учета и контроля электроэнергии объекта энергетики.

Задача изобретения - повышение надежности работы устройства, уменьшение его габаритов и стоимости, в том числе монтажа и наладки, а также повышение удобства и гибкости решений по компоновке оборудования при возведении, реконструкции и реновации распределительных устройств (РУ) на электроэнергетических объектах.

Технический результат достигается тем, что в устройство для измерения тока в высоковольтной цепи с дистанционной передачей информации, содержащее источник питания, датчик тока, выполненный в виде измерительного шунта, включенного параллельно и имеющего непосредственный контакт с токопроводом, на котором производится измерение, аналогово-цифровой преобразователь и передатчик, при этом передача информации о величине измеряемого тока производится посредством аппаратуры связи по оптическому каналу или радиоканалу, а само устройство находится под потенциалом высокого напряжения в зоне отсутствия магнитных и электрических полей, согласно предлагаемому изобретению, дополнительно введены микроконтроллер связи, содержащий аналогово-цифровой преобразователь, а также промежуточный или базовый сервер, первая и вторая низкочастотные катушки индуктивности, фильтрующий и стабилизирующий элементы источника питания, экранирующий герметичный кожух, при этом источник питания выполнен в виде питающего шунта, включенного параллельно и имеющего непосредственный контакт с токопроводом, на котором производится измерение, причем питающий шунт последовательно соединен с первой низкочастотной катушкой индуктивности и подключен через последовательно соединенные фильтрующий и стабилизирующий элементы источника питания к микроконтроллеру связи, а измерительный шунт последовательно соединен со второй низкочастотной катушкой индуктивности и также подключен к микроконтроллеру связи, при этом микроконтроллер связи соединен посредством аппаратуры связи и оптического канала или радиоканала с промежуточным или базовым сервером, причем микроконтроллер связи выполнен с возможностью бесшовного интегрирования устройства в автоматизированную систему управления, учета и контроля электроэнергии объекта энергетики, а само устройство расположено снаружи токопровода и размещено внутри экранирующего герметичного кожуха.

Таким образом, технический результат достигается тем, что в предлагаемом устройстве для измерения тока в высоковольтной цепи с дистанционной передачей информации отсутствуют опорный изолятор, делитель напряжения, блок, передающий цифровую информацию о силе тока с помощью электромагнитных волн.

При этом в него введен микроконтроллер связи, содержащий аналогово-цифровой преобразователь, который с аппаратурой связи осуществляет сбор, преобразование, обработку, хранение и передачу полученной информации о величине измеряемого тока по каналу связи (оптическому каналу или радиоканалу) на промежуточный или базовый сервер автоматизированной системы управления, учета и контроля электроэнергии объекта энергетики.

В предлагаемом устройстве применяется беспроводной или оптический канал связи с протоколом передачи, определяемым только структурой и принципом построения автоматизированной системы управления, учета и контроля электроэнергии объекта энергетики.

Протоколы передачи информации с устройства на промежуточный или базовый сервер автоматизированной системы управления, учета и контроля электроэнергии объекта энергетики определяются программно или непосредственно при монтаже устройства, или дистанционно в процессе эксплуатации с помощью соответствующих программных продуктов.

Кроме этого в устройство введены первая и вторая низкочастотные катушки индуктивности, фильтрующий и стабилизирующий элементы источника питания, при этом источник питания выполнен в виде питающего шунта, включенного параллельно и имеющего непосредственный контакт с токопроводом, на котором производится измерение. Питающий шунт подключен через последовательно соединенные фильтрующий и стабилизирующий элементы источника питания к микроконтроллеру связи, а измерительный шунт также подключен к микроконтроллеру связи, причем для повышения надежности работы за счет защиты цепей измерения и источника питания от разрушительных процессов, возникающих при внешних или внутренних перенапряжениях в высоковольтной цепи, последовательно питающему и измерительному шунтам установлены соответственно первая и вторая низкочастотные катушки индуктивности, имеющие большие сопротивления при протекании по ним токов высокой частоты.

Устройство размещено внутри экранирующего герметичного кожуха. Устройство может быть установлено в любом подходящем по размерам месте в РУ классов напряжения от 6(10) кВ и выше. В качестве основной изоляции в устройстве используется воздушная изоляция, определяемая только расстоянием между токопроводом и заземленными частями РУ, поэтому одно и то же устройство может быть применимо в РУ различных классов напряжения.

Сущность изобретения поясняется чертежом, на котором изображена принципиальная структурная схема предлагаемого устройства для измерения тока в высоковольтной цепи с дистанционной передачей информации.

Цифрами на чертеже обозначены:

1 - токопровод, на котором производится измерение;

2 - измерительный шунт;

3 - питающий шунт;

4 - микроконтроллер связи, имеющий в своем составе аналогово-цифровой преобразователь;

5 - стабилизирующий элемент источника питания устройства;

6 - фильтрующий элемент источника питания устройства;

7 - аппаратура связи;

8 - канал связи (оптический канал или радиоканал);

9 - вторая низкочастотная катушка индуктивности;

10 - промежуточный или базовый сервер;

11 - первая низкочастотная катушка индуктивности;

12 - экранирующий герметичный кожух.

Устройство для измерения тока в высоковольтной цепи с дистанционной передачей информации содержит источник питания, датчик тока, выполненный в виде измерительного шунта 2, включенного параллельно и имеющего непосредственный контакт с токопроводом 1, на котором производится измерение, и передатчик, при этом передача информации о величине измеряемого тока производится посредством аппаратуры 7 связи по каналу 8 связи (оптическому каналу или радиоканалу).

Отличием предлагаемого устройства для измерения тока в высоковольтной цепи с дистанционной передачей информации является то, что в него дополнительно введены микроконтроллер 4 связи, содержащий аналогово-цифровой преобразователь, а также промежуточный или базовый сервер 10, первая 11 и вторая 9 низкочастотные катушки индуктивности, фильтрующий элемент 6 источника питания (содержит полупроводниковый выпрямитель переменного напряжения в случае работы в сетях переменного тока, а также фильтр низких частот, которые на чертеже условно не показаны), стабилизирующий элемент 5 источника питания (содержит аккумулятор и зарядное устройство аккумулятора) и экранирующий герметичный кожух 12.

Источник питания выполнен в виде питающего шунта 3, включенного параллельно и имеющего непосредственный контакт с токопроводом 1, на котором производится измерение. Питающий шунт 3 последовательно соединен с первой низкочастотной катушкой 11 индуктивности и подключен через последовательно соединенные фильтрующий 6 и стабилизирующий 5 элементы источника питания к микроконтроллеру 4 связи. Причем, в случае работы предлагаемого устройства в сетях переменного тока, питающий шунт 3 подключен к источнику постоянного питания через выпрямитель переменного напряжения, как минимум, с одним нелинейным элементом (на чертеже условно не показаны).

Измерительный шунт 2 последовательно соединен со второй 9 низкочастотной катушкой индуктивности и также подключен к микроконтроллеру 4 связи. Микроконтроллер 4 связи соединен посредством аппаратуры 7 связи и канала 8 связи (оптического канала или радиоканала) с промежуточным или базовым сервером 10. Микроконтроллер 4 связи выполнен с возможностью «бесшовного» интегрирования устройства в автоматизированную систему управления, учета и контроля электроэнергии объекта энергетики, а само устройство находится под потенциалом высокого напряжения снаружи токопровода 1 и размещено внутри экранирующего герметичного кожуха 12 (в зоне отсутствия магнитных и электрических полей).

Устройство для измерения тока в высоковольтной цепи с дистанционной передачей информации работает следующим образом.

Падение напряжения на измерительном шунте 2 фиксируется микроконтроллером 4 связи, который, с помощью встроенного АЦП, преобразует величину напряжения Uш.и.=Iотв·Rшунт в цифровой код. Далее, согласно заложенному в микроконтроллер 4 связи программному алгоритму, микроконтроллер 4 преобразует к наиболее удобному виду цифровой код, обрабатывает его, в том числе с помощью подпрограммы цифрового фильтра и сохраняет выборки во встроенную память. Одновременно выборки подаются в аппаратуру 7 связи.

Аппаратура 7 связи из полученных от микроконтроллера 4 связи цифровых сигналов формирует согласно заложенным протоколам связи информационные сообщения (телеизмерения) и отсылает их на промежуточный или базовый сервер 10 автоматизированной системы управления, учета и контроля электроэнергии объекта энергетики. Помимо беспроводных каналов 8 (и соответственно протоколов) связи, аппаратура 7 связи может передавать информацию по оптоволокну.

Для питания микроконтроллера 4 связи и аппаратуры 7 связи в устройстве предусмотрен источник питания, основным элементом которого является питающий шунт 3, включенный в токопровод 1 измеряемой цепи (Uш.пит.=Iпит.·Rшунт). Далее питающее напряжение с питающего шунта 3 подается на фильтрующий элемент 6 источника питания, который содержит полупроводниковый выпрямитель переменного напряжения (в случае работы в сетях переменного тока), а также фильтр низких частот (на чертеже условно не показаны). Выпрямленное (или постоянное) питающее напряжение с фильтрующего элемента 6 подается на стабилизирующий элемент 5 источника питания, который содержит аккумулятор (батарею) и зарядное устройство (на чертеже условно не показаны). В последнем случае обеспечивается надежная работа всего устройства, как в режиме холостого хода, так и при полном отсутствии тока в измеряемой цепи (когда она отключена полностью).

Вся электронная аппаратура устройства размещается в экранирующем герметичном кожухе 12, находящемся под потенциалом высоковольтной цепи, в которой происходит измерение тока. Экранирующий герметичный кожух 12 позволяет защитить электронную аппаратуру устройства от воздействия электромагнитных полей, коммутационных или грозовых перенапряжений, а также минимизировать температурный градиент между шунтирующей и измеряемой цепями токопровода. Благодаря тому, что соблюдается одинаковое изменение проводимости материала шунтирующей и измеряемой цепи токопровода, и соответственно компенсируются температурные изменения окружающей среды, уменьшается погрешность, увеличивается точность и надежность измерения тока в высоковольтной цепи с дистанционной передачей информации.

Устройство может быть использовано как в сетях постоянного, так и переменного тока.

Техническими результатами, обеспечиваемыми при использовании предлагаемого изобретения, являются:

1. Повышение надежности работы устройства при воздействии коммутационных и атмосферных перенапряжений в высоковольтной цепи, а также помех, наведенных токами короткого замыкания.

2. Уменьшение массогабаритных параметров и стоимости устройства.

3. Исключение гальванической связи между частями электроустановки, находящимися под потенциалом высокого напряжения с одной стороны и потенциалом низкого напряжения (земли) с другой.

4. Повышение удобства и гибкости решений при компоновке устройства на вновь вводимых и реконструируемых РУ.

5. Обеспечение простой и удобной «бесшовной» интеграции устройства в автоматизированную систему управления, учета и контроля электроэнергии объекта энергетики.

6. Применение устройства без существенных конструктивных изменений в РУ различных классов напряжения.

Устройство для измерения тока в высоковольтной цепи с дистанционной передачей информации, содержащее источник питания, датчик тока, выполненный в виде измерительного шунта, включенного параллельно и имеющего непосредственный контакт с токопроводом, на котором производится измерение, аналогово-цифровой преобразователь и передатчик, при этом передача информации о величине измеряемого тока производится посредством аппаратуры связи по оптическому каналу или радиоканалу, а само устройство находится под потенциалом высокого напряжения в зоне отсутствия магнитных и электрических полей, отличающееся тем, что в него дополнительно введены микроконтроллер связи, содержащий аналогово-цифровой преобразователь, а также промежуточный или базовый сервер, первая и вторая низкочастотные катушки индуктивности, фильтрующий и стабилизирующий элементы источника питания, при этом источник питания выполнен в виде питающего шунта, включенного параллельно и имеющего непосредственный контакт с токопроводом, на котором производится измерение, причем питающий шунт последовательно соединен с первой низкочастотной катушкой индуктивности и подключен через последовательно соединенные фильтрующий и стабилизирующий элементы источника питания к микроконтроллеру связи, а измерительный шунт последовательно соединен со второй низкочастотной катушкой индуктивности и также подключен к микроконтроллеру связи, при этом микроконтроллер связи соединен посредством аппаратуры связи и оптического канала или радиоканала с промежуточным или базовым сервером, причем микроконтроллер связи выполнен с возможностью «бесшовного» интегрирования устройства в автоматизированную систему управления, учета и контроля электроэнергии объекта энергетики, а само устройство расположено снаружи токопровода и размещено внутри экранирующего герметичного кожуха.



 

Похожие патенты:

Изобретение относится к частотно-широтно-импульсным преобразователям аналоговых сигналов. .

Изобретение относится к электротехнике и может применяться как основной электрозащитный способ охраны труда при определении присутствия или отсутствия напряжения в электроустановках постоянного тока.

Изобретение относится к электротехнике и может быть использовано для контроля состояния заземляющих устройств, а также при экспериментальных исследованиях молнии и электромагнитной обстановки на объектах электроэнергетики.

Изобретение относится к области электромагнитных измерений и может быть использовано в электроэнергетике, в измерительной технике высоких напряжений, в области релейной защиты и автоматики.

Изобретение относится к электротехнике и электроэнергетике, предназначено для измерения тока в переходных и установившихся режимах и может быть использовано при построении устройств релейной защиты.

Изобретение относится к электроизмерительному оборудованию, а именно к датчикам постоянного и переменного тока, которые входят в состав аналоговых измерительных цепей.

Изобретение относится к измерительной технике и может быть использовано для измерения тока в проводнике в режиме реального времени, в частности в системе индикации коротких замыканий, измерения мгновенных значений тока, активной и реактивной мощности, фазы, полярности.

Изобретение относится к измерительной технике, в частности к цифровым приборам измерения переменного и постоянного напряжения, преимущественно в электроэнергетических сетях 6 (10) кВ и выше

Изобретение относится к геофизике

Изобретение относится к области измерительной техники и может быть использовано для различных систем регулирования и измерения

Изобретение относится к информационно-измерительной технике, в частности к преобразователям напряжения в длительность импульсов

Изобретение относится к области электротехники. Сущность: последовательно проводят испытания исходного и высоковольтного устройств. При испытании исходного устройства элементарные резисторы соединяют в систему и определяют ее суммарное активное сопротивление. При каждом фиксированном значении характерного параметра на высоковольтный электрод исходного устройства подают напряжение, увеличивают его до получения испытательного напряжения изоляционного промежутка, измеряют испытательное напряжение и испытательный ток. Для каждого характерного параметра определяют коэффициент нелинейности по соотношению, учитывающему испытательное напряжение изоляционного промежутка исходного устройства, испытательный ток и суммарное активное сопротивление системы элементарных резисторов, и среднее напряжение на элементарном резисторе. По результатам испытания исходного устройства определяют калибровочную зависимость коэффициента нелинейности от среднего напряжения на элементарном резисторе системы элементарных резисторов. При испытании высоковольтного устройства элементарные резисторы соединяют в систему и определяют ее суммарное активное сопротивление. Подают напряжение на высоковольтный электрод, измеряют испытательный ток, при фиксированном характерном параметре определяют среднее напряжение на элементарном резисторе, определяют коэффициент нелинейности по калибровочной зависимости и рассчитывают испытательное напряжение по соотношению, учитывающему коэффициент нелинейности, испытательный ток и суммарное активное сопротивление системы элементарных резисторов. Технический результат - повышение точности определения испытательного напряжения высоковольтного устройства. 19 з.п. ф-лы, 4 ил.

Изобретение относится к области электрических измерений, в частности к измерениям больших постоянных токов, более конкретно к способам поверки и градуировки измерителей больших постоянных токов, в частности при поверке и градуировке волоконно-оптических датчиков тока - ВОДТ, применяемых в химической и металлургической промышленности. Техническим результатом изобретения выступает повышение точности градуировки измерительных преобразователей больших постоянных токов за счет снижения методических и инструментальных погрешностей. Технический результат достигается благодаря тому, что способ включает следующую последовательность действий: при градуировке измерительный элемент в виде замкнутого контура (петли) оптического волокна пропускают через измерительные катушки с заданным числом витков, на которые подают импульсы тока от стабильного источника постоянного тока с возможностью регулировки амплитуды импульсов тока по результатам измерения падения напряжения на эталонном шунте, включенном последовательно с измерительными катушками и электронным ключом, а градуировку измерительных преобразователей производят по результатам сравнения величины стабильного постоянного тока в цепи с измерительными катушками с показанием величины тока поверяемого (градуируемого) измерительного преобразователя. 1 ил.

Изобретение относится к устройствам для обнаружения напряжения. Схема обнаружения различных значений напряжения на базе оптрона, состоит из устройства подачи входного напряжения для подключения к источнику напряжения; оптрона, содержащего светоизлучающий диод и сконфигурированного для обнаружения присутствия входного напряжения, поступающего на вход устройства подачи входного напряжения от источника напряжения; диода, установленного для подсоединения к устройству подачи входного напряжения; и первого транзистора, имеющего затвор, исток и сток, причем сток первого транзистора в рабочем режиме связан с диодом, а исток первого транзистора в рабочем режиме связан с оптроном; оптрона, диода и первого транзистора, установленных таким образом, чтобы ток, текущий в прямом направлении от диода, подавал напряжение смещения на светоизлучающий диод оптрона, и установленных таким образом, чтобы любое рассеяние мощности на первом транзисторе в ответ на подачу входного напряжения и протекание тока сохранялось на допустимом уровне или ниже этого уровня. Технический результат заключается в снижении уровня перекрестных наводок в системе и снижение рассеяния мощности. 4 н. и 20 з.п. ф-лы, 6 ил.

Изобретение относится к области электротехники и может быть использовано на генерирующих станциях и высоковольтных подстанциях. Технический результат - повышение точности измерения вторичного напряжения. В трансформаторе напряжения (TH) при снятых всех предохранителях, кроме первого, через вторичную обмотку (2) TH течет номинальный ток нагрузочного резистора (7). Через трансформатор тока (TT) (6) не протекает ток реальной нагрузки. Аналоговые ключи (8, 8.2) открыты на грани насыщения. Открытое состояние устанавливается смещением входного напряжения, заданным генератором тока (15, 15.2). При включении предохранителя (23) через TT (6) протекает номинальный ток через резистор (резистор отладки) (24). Номинал резистора 24 равен номиналу резистора нагрузки (7). Выключение выходного каскада аналогового ключа (8) подстраивается резистором в цепи отрицательной обратной связи (18). Соответственно, второй аналоговый ключ (8.2) выключается подстройкой резистора (18.2). Предохранитель (23) снимается - TH готов к работе. По программе производства работ включаются требуемые предохранители (4, 4.1, 4.2, …, 4.n). Таким образом, при любой расчетной нагрузке, ток вторичной обмотки TH остается равным номинальному току. Падение напряжения на кабеле нормализуется единой расчетной величиной. Контролировать отсутствие изменения тока вторичной обмотки TH можно с помощью (измерительного) контрольного резистора (25). Соответствующим выбором коэффициента отрицательной обратной связи резистором (17) с подстройкой резистором (18, 18.2) первый аналоговый ключ (8, 8.2) закрывается. 6 з.п. ф-лы, 4 ил.

Изобретение относится к автомату защиты от тока неисправности. Технический результат изобретения заключается в создании автомата защиты от тока неисправности с высоким разрешением сигнала тока неисправности в широком динамическом диапазоне при исключении в значительной степени перерегулирования, характеризующегося низкими стоимостями компонентов. При этом достигается повышение эксплуатационной готовности и надежности автоматов защиты от тока неисправности с зависимой от сетевого напряжения электроникой срабатывания. Автомат (1) защиты от тока неисправности содержит первый блок (2), выполненный с возможностью детектирования тока неисправности в электрической сети энергоснабжения и выдачи аналогового сигнала тока неисправности, первый аналого-цифровой преобразователь (3) для преобразования аналогового сигнала тока неисправности в цифровой сигнал тока неисправности, первый цифровой блок (4) обработки сигнала и второй блок (5) для заданного размыкания размыкающих контактов (6) в электрической сети энергоснабжения, для обеспечения хорошего разрешения сигнала тока неисправности в широком динамическом диапазоне. Предусмотрено, что автомат (1) защиты от тока неисправности содержит первое средство (7) для, в частности, заданного изменяющегося согласования аналогового сигнала тока неисправности с аналого-цифровым преобразователем (3). 2 н. и 6 з.п. ф-лы, 6 ил.
Наверх